In Imaging Array Patents (Class 257/258)
  • Patent number: 8164094
    Abstract: In a fabricating method of a pixel structure, a scan line and a gate electrode are formed in each pixel area of a substrate. A gate insulation layer is formed to cover the scan line and gate electrode. A semiconductor layer is formed on the gate insulation layer above the gate electrode. A data line, source and drain are formed in each pixel area. A first passivation layer covers the data line, source and drain. A common line is formed on the first passivation layer and overlaps with at least a portion of the data line. A common electrode is formed on and electrically connected with the common line. A second passivation layer covers the common electrode and common line. A contact window is formed in the second passivation layer above the drain to expose the drain. A pixel electrode is electrically connected with the drain through the contact window.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: April 24, 2012
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Meng-Chi Liou, Li-Hsuan Chen
  • Patent number: 8138534
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Patent number: 8106429
    Abstract: Disclosed is an image sensor. The image sensor includes a semiconductor substrate including a lower interconnection, a plurality of upper interconnection sections protruding upward from the semiconductor substrate, a first trench disposed between the upper interconnection sections such that the upper interconnection sections are spaced apart from each other, a bottom electrode disposed on an outer peripheral surfaces of the upper interconnection sections, a first conductive layer disposed on an outer peripheral surface of the bottom electrode, an intrinsic layer disposed on the semiconductor substrate including the first conductive layer and the first trench, and having a second trench on the first trench, a second conductive layer disposed on the intrinsic layer and having a third trench on the second trench, a light blocking part disposed in the third trench, and a top electrode disposed on the light blocking part and the second conductive layer.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: January 31, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae Gyu Kim
  • Patent number: 8102450
    Abstract: A solid-state imaging device includes first-group pixels 41, second-group pixels 42 skipped during thinning drive, and a scanning section 13. The scanning section 13 drives each of the first-group pixels 41 to perform read operation of outputting the output signal and initializing the amount of the signal charge accumulated in the photoelectric conversion element to a first level, and also drives each of the second-group pixels 42 to perform discharge operation of initializing the amount of the signal charge accumulated in the photoelectric conversion element to a second level that is higher than the first level and lower than a saturation signal level of the photoelectric conversion element 12.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: January 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Masayuki Masuyama, Kunihiko Hara, Masashi Murakami, Shinsuke Nezaki
  • Patent number: 8101979
    Abstract: An organic light-emitting display apparatus includes a plurality of pixels arranged on a substrate, each pixel includes: a display region including at least one pixel thin film transistor and an organic light-emitting device electrically connected to the pixel thin film transistor; and a sensor region electrically connected to the display region to affect an image display of the display region.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Jong-Hyun Choi
  • Patent number: 8063350
    Abstract: An image processing system includes an image sensor circuit. The image sensor circuit is configured to obtain an image using a type of shutter operation in which an exposure pattern of a pixel array is set according to exposure information that changes over time based at least partially on charge accumulated in at least a portion of the pixel array. An image sensor circuit includes a pixel array and one or more circuits. The one or more circuits are configured to update exposure information based at least partially on one or more signals output from the pixel array, and to control an exposure pattern of the pixel array based on the exposure information. A pixel circuit includes a first transistor connected between a photodiode and a sense node, and a second transistor connected between an exposure control signal line and a gate of the first transistor.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 22, 2011
    Assignee: Cognex Corporation
    Inventors: E. John McGarry, Rafael Dominguez-Castro, Alberto Garcia
  • Patent number: 8053855
    Abstract: A CMOS image sensor for improving light sensitivity and peripheral brightness ratio, and a method for fabricating the same. The CMOS image sensor includes a substrate on which a light sensor and device isolating insulation films are formed, in which the top of the substrate is coated with a plurality of metal layers and oxide films; a plurality of reflective layers formed inside the metal layers, each being spaced apart; a color filter embedded in a groove formed by etching the oxide films inside the reflective layers by a predetermined thickness; a plurality of protrusions formed on both sides of the top of the color filter, each arranged at a predetermined distance from one another; a flat layer formed on the top of the protrusions and the oxide films; and a micro-lens formed on the top of the flat layer. The reflective layer disposed at the top of the photodiode is made of a material having a high reflectance and low absorptivity.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-ho Nam, Jin-hwan Kim, Gee-young Sung
  • Patent number: 8044407
    Abstract: A liquid crystal display device provided with a thin film transistor with excellent electrical characteristics and reduced off current, for which increase in manufacturing costs can be suppressed while suppressing reduction in yield. A thin film transistor includes a gate electrode provided over a substrate; a gate insulating film provided to cover the substrate and the gate electrode; a first island-shaped semiconductor layer and a second island-shaped semiconductor layer each formed as a stack of a microcrystalline semiconductor layer and a buffer layer with a depression on an upper surface thereof, over the gate electrode with the gate insulating film interposed therebetween; a conductive semiconductor layer; and a conductive layer provided on the conductive semiconductor layer. The conductive semiconductor layer is provided between the first island-shaped semiconductor layer and the second island-shaped semiconductor layer in contact with the gate insulating film.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsushi Miyaguchi, Satohiro Okamoto
  • Patent number: 8039839
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. When an organic layer having an emission layer (EML) is formed using a deposition mask, damage to a pixel defining layer due to inconsistencies or unevenness of the deposition mask is prevented or reduced using spherical spacers disposed on the pixel defining layer. A plurality of spherical spacers are applied on the pixel defining layer prior to forming an opening in the pixel defining layer exposing the first electrode. An organic layer having an emission layer (EML) is formed on the first electrode at the opening by using a deposition mask. The spherical spacers prevent or reduce damage to the pixel defining layer caused by inconsistencies or unevenness in the deposition mask by maintaining a spacing between the pixel defining layer and the deposition mask.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 18, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Jung-Hyun Kwon
  • Patent number: 8030692
    Abstract: A solid state image sensing device in which many pixels are disposed in a matrix on a two-dimensional plane comprises a plurality of light receiving devices disposed in such a way that a center interval may periodically change in a column direction and/or a row direction, and a plurality of micro-lenses, for collecting an incident light of each light receiving device, wherein a center interval periodically changes in accordance with the periodic change of the center interval of the light receiving device.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 4, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tadao Inoue, Hiroshi Daiku
  • Patent number: 8030659
    Abstract: This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Jun Koyama, Yukio Tanaka, Hidehito Kitakado, Hideto Ohnuma
  • Patent number: 8013336
    Abstract: A solid-state imaging device of a three-transistor pixel configuration having no selection transistor has a problem of a non-selection hot carrier white point, which is specific to this apparatus. A bias current during a non-reading period of pixels is made to flow to a pixel associated with an immediately previous selection pixel, for example, the immediately previous selection pixel itself. As a result, dark current only for one line occurs in each pixel, and the dark current for one line itself can be reduced markedly. Consequently, defective pixels due to non-selection hot carrier white points can be virtually eliminated.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 6, 2011
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7994547
    Abstract: Low temperature processed back side redistribution lines (RDLs) are disclosed. Low temperature processed back side RDLs may be electrically connected to the active surface devices of a semiconductor substrate using through wafer interconnects (TWIs). The TWIs may be formed prior to forming the RDLs, after forming the RDLs, or substantially simultaneously to forming the RDLs. The material for the back side RDLs and various other associated materials, such as dielectrics and conductive via filler materials, are processed at temperatures sufficiently low so as to not damage the semiconductor devices or associated components contained on the active surface of the semiconductor substrate. The low temperature processed back side RDLs of the present invention may be employed with optically interactive semiconductor devices and semiconductor memory devices, among many others. Semiconductor devices employing the RDLs of the present invention may be stacked and electrically connected theretogether.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Peter A Benson, Salman Akram
  • Patent number: 7994500
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 9, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Min-Kyu Kim, Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Yeon-Gon Mo, Jin-Seong Park, Hyun-Joong Chung, Kwang-Suk Kim, Hul-Won Yang
  • Patent number: 7964875
    Abstract: The semiconductor device includes a thin film transistor; a first interlayer insulating film over the thin film transistor; a first electrode electrically connected to one of a source region and a drain region, over the first interlayer insulating film; a second electrode electrically connected to the other of the source region and the drain region; a second interlayer insulating film formed over the first interlayer insulating film, the first electrode, and the second electrode; a first wiring electrically connected to one of the first electrode and the second electrode, on the second interlayer insulating film; and a second wiring not electrically connected to the other of the first electrode and the second electrode, on the second interlayer insulating film; in which the second wiring is not electrically connected to the other of the first electrode and the second electrode by a separation region formed in the second interlayer insulating film.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: June 21, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kengo Akimoto
  • Patent number: 7960762
    Abstract: It is an object to provide a CCD solid-state image sensor, in which an area of a read channel is reduced and a rate of a surface area of a light receiving portion (photodiode) to an area of one pixel is increased.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 14, 2011
    Assignee: Unisantis Electronics (Japan) Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 7947981
    Abstract: It is an object to provide a display device including a thin film transistor which can operate at high speed and is driven at a low voltage in a drive circuit region, and a thin film transistor having high voltage-resistance and high reliability in a pixel region. Accordingly, it is an object to provide a high reliable display device which consumes less power. A display device including a pixel region and a drive circuit region over a substrate having an insulating surface is provided. A thin film transistor is provided in each of the pixel region and the drive circuit region. A channel formation region in a semiconductor layer of the thin film transistor provided in the drive circuit region is formed to be locally thin, and the thickness of the channel formation region is smaller than that in the pixel region.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: May 24, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Ikuko Kawamata, Yasuyuki Arai
  • Patent number: 7947985
    Abstract: A thin film transistor array substrate and its manufacturing method are disclosed. A thin film transistor (TFT) includes a gate electrode formed on a substrate, and source and drain electrodes formed on the gate electrode and separated from each other. A common line made of the same material as the gate electrode is formed on the substrate. A storage capacitor includes a storage electrode connected with a storage electrode line and a pixel electrode formed on the storage electrode. The storage electrode and the pixel electrode are formed by patterning a transparent conductive film, and accordingly, light can be transmitted through the region where the storage capacitor is formed to thus increase an aperture ratio.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 24, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Cheol Kim, Woong-Kwon Kim, Sang-Youn Han, In-Woo Kim, Ho-Jun Lee, Byeong-Jae Ahn
  • Patent number: 7943962
    Abstract: A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 17, 2011
    Assignee: Sony Corporation
    Inventors: Keiji Tatani, Hideshi Abe, Masanori Ohashi, Atsushi Masagaki, Atsuhiko Yamamoto, Masakazu Furukawa
  • Patent number: 7943932
    Abstract: A flexible display substrate includes: a thin film transistor on the flexible substrate, the thin film transistor including a gate electrode, a gate insulating layer insulating the gate electrode, a channel layer on the gate insulating layer, a source electrode connected with the channel layer, and a drain electrode connected with the channel layer; a first stress absorbing layer below the thin film transistor; a first protection layer on the first stress absorbing layer; a second stress absorbing layer on the thin film transistor; a second protection layer on the second stress absorbing layer; and a pixel electrode on the second protection layer, the pixel electrode being connected with the drain electrode.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: May 17, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Yong In Park, Seung Han Paek, Sang Soo Kim
  • Patent number: 7943488
    Abstract: A method includes placing a first bonding layer on at least one of a first functional region bonded on a release layer with a light releasable adhesive layer on a first substrate, and a transfer region on a second substrate; bonding the first functional region to the second substrate by the first bonding layer; irradiating the release layer with light with a light blocking member being provided to separate the first substrate from the first functional region at the release layer; placing a second bonding layer on at least one of a second functional region on the first substrate, and a transfer region on the release layer or a transfer region on a third substrate; bonding the second functional region to the second substrate or the third substrate by the second bonding layer; and separating the first substrate from the second functional region at the release layer.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: May 17, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takao Yonehara
  • Patent number: 7920189
    Abstract: A solid-state imaging device comprising a plurality of pixel parts each capable of obtaining one color signal, said plurality of pixel parts being arranged in the same plane, wherein each of the pixel parts comprises: a photoelectric conversion element comprising a lower electrode formed on or above a substrate, an upper electrode formed above the lower electrode and a photoelectric conversion film sandwiched between the lower electrode and the upper electrode; and a color filter formed on or above the upper electrode, wherein d<p where d is a distance from a lower face of the photoelectric conversion film to an upper face of the color filter and p is an arrangement pitch of the photoelectric conversion element.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 5, 2011
    Assignee: Fujifilm Corporation
    Inventor: Takashi Goto
  • Patent number: 7910961
    Abstract: A color pixel array includes first, second, and third pluralities of color pixels each including a photosensitive region disposed within a first semiconductor layer. In one embodiment, a second semiconductor layer including deep dopant regions is disposed below the first semiconductor layer. The deep dopant regions each reside below a corresponding one of the first plurality of color pixels but substantially not below the second and third pluralities of color pixels. In one embodiment, buried wells are disposed beneath the second and third pluralities of color pixels but substantially not below the first plurality of color pixels.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: March 22, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Vincent Venezia, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Patent number: 7906826
    Abstract: A CMOS image sensor with a many million pixel count. Applicants have developed techniques for combining its continuous layer photodiode CMOS sensor technology with CMOS integrated circuit lithography stitching techniques to provide digital cameras with an almost unlimited number of pixels. A preferred CMOS stitching technique exploits the precise alignment accuracy of CMOS stepper processes by using specialized mask sets to repeatedly produce a single pixel array pattern many times on a single silicon wafer with no pixel array discontinuities. The single array patterns are stitched together lithographically to form a pixel array of many million pixels. A continuous multilayer photodiode layer is deposited over the top of the many million pixel array to provide a many million pixel sensor with a fill factor of 100 percent or substantially 100 percent.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 15, 2011
    Assignee: e-Phocus
    Inventors: Peter Martin, Paul Johnson, Chris Sexton
  • Patent number: 7898000
    Abstract: A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 1, 2011
    Assignee: Sony Corporation
    Inventors: Keiji Tatani, Hideshi Abe, Masanori Ohashi, Atsushi Masagaki, Atsuhiko Yamamoto, Masakazu Furukawa
  • Patent number: 7884392
    Abstract: One embodiment exemplarily described herein can be characterized as an image sensor including a substrate having a front surface and a rear surface; a photoelectric converting portion on the front surface of the substrate; a through via extending through the substrate, wherein the through via is electrically connected to the photoelectric converting portion; an external connection terminal on the rear surface of the substrate, wherein the external connection terminal is connected to the through via; and a light shading layer formed on a portion of the rear surface of the substrate, wherein the light shading layer is substantially opaque with respect to an external light. In some embodiments, the portion of the rear surface of the substrate on which the light shading layer is formed is not overlapped by the through via or the external connection terminal.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: February 8, 2011
    Inventors: Hyuek-Jae Lee, Tae-Je Cho, Yong-Hwan Kwon, Un-Byoung Kang, Chung-Sun Lee, Woon-Seong Kwon, Hyung-Sun Jang
  • Patent number: 7880196
    Abstract: Embodiments relate to an image sensor and a method of forming an image sensor. According to embodiments, an image sensor may include a first substrate and a photodiode. A circuitry including a metal interconnection may be formed on and/or over the first substrate. The photodiode may be formed over a first substrate, and may contact the metal interconnection. The circuitry of the first substrate may include a first transistor, a second transistor, an electrical junction region, and a first conduction type region. The first and second transistors may be formed over the first substrate. According to embodiments, an electrical junction region may be formed between the first transistor and the second transistor. The first conduction type region may be formed at one side of the second transistor, and may be connected to the metal interconnection.
    Type: Grant
    Filed: December 28, 2008
    Date of Patent: February 1, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Hee-Sung Shim, Seoung-Hyun Kim, Joon Hwang, Kwang-Soo Kim, Jin-Su Han
  • Patent number: 7868354
    Abstract: GaN-based heterojunction field effect transistor (HFET) sensors are provided with engineered, functional surfaces that act as pseudo-gates, modifying the drain current upon analyte capture. In some embodiments, devices for sensing nitric oxide (NO) species in a NO-containing fluid are provided which comprise a semiconductor structure that includes a pair of separated GaN layers and an AlGaN layer interposed between and in contact with the GaN layers. Source and drain contact regions are formed on one of the GaN layers, and an exposed GaN gate region is formed between the source and drain contact regions for contact with the NO-containing fluid. The semiconductor structure most preferably is formed on a suitable substrate (e.g., SiC). An insulating layer may be provided so as to cover the semiconductor structure. The insulating layer will have a window formed therein so as to maintain exposure of the GaN gate region and thereby allow the gate region to contact the NO-containing fluid.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: January 11, 2011
    Assignee: Duke University
    Inventors: Michael A. Garcia, Scott D. Wolter, April S. Brown, Joseph Bonaventura, Thomas F. Kuech
  • Patent number: 7863661
    Abstract: Provided is a solid-state imaging device including unit pixels, wherein the unit pixels include two kinds of unit pixels including a first unit pixel and a second unit pixel that are formed on a common well on a semiconductor substrate. The first unit pixel includes: at least one photoelectric conversion region which converts light into a signal charge; the first semiconductor region that is formed on the common well and has a conductivity type identical to that of the common well; and the first contact electrically connected to the first semiconductor region. The second unit pixel includes: at least one photoelectric conversion region; the second semiconductor region that is formed on the common well and has a conductivity type opposite to that of the common well; and the second contact electrically connected to the second semiconductor region.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: January 4, 2011
    Assignee: Panasonic Corporation
    Inventors: Motonari Katsuno, Ryohei Miyagawa, Hirohisa Ohtsuki
  • Patent number: 7863612
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: January 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Patent number: 7858983
    Abstract: An electrochromic display is disclosed which comprises an array-side substrate (10) wherein a TFT (14) and a pixel electrode (15) connected with the TFT (14) are formed, a color filter-side substrate (50) wherein a counter electrode (53) is formed, and an electrolyte layer (80) injected between the array-side substrate (10) and the color filter-side substrate (50). In this electrochromic display, the TFT (14) is formed to have an area not less than 30% of the area of the pixel, thereby supplying a larger current. Consequently, oxidation-reduction reaction in the electrochromic phenomenon proceeds at a higher rate, thereby enabling a high-speed response.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 28, 2010
    Inventors: Satoshi Morita, Takao Yamauchi, Yutaka Sano
  • Patent number: 7855406
    Abstract: An n/p?/p+ substrate where a p?-type epitaxial layer and an n-type epitaxial layer have been deposited on a p+-type substrate is provided. In the surface region of the n-type epitaxial layer, the n-type region of a photoelectric conversion part has been formed. Furthermore, a barrier layer composed of a p-type semiconductor region has been formed so as to enclose the n-type region of the photoelectric conversion part in a plane and reach the p?-type epitaxial layer from the substrate surface. A p-type semiconductor region has also been formed at a chip cutting part for dividing the substrate into individual devices so as to reach the p?-type epitaxial layer from the substrate surface.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: December 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuya Yamaguchi, Hiroshige Goto, Hirofumi Yamashita, Ikuko Inoue, Nagataka Tanaka, Hisanori Ihara
  • Patent number: 7847295
    Abstract: A thin film transistor includes a gate electrode, a gate insulating film formed to cover the gate electrode, a semiconductor layer including a channel region formed over the gate electrode, a source electrode and a drain electrode including a region connected to the semiconductor layer, where at least a part of the region is overlapped with the gate electrode, an upper insulating film formed to cover the semiconductor layer, the source electrode and the drain electrode, where the upper insulating film is directly in contact with the channel region of the semiconductor layer and discharges moisture by a heat treatment and a second upper insulating film formed to cover the first protective film and suppress moisture out-diffusion.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 7, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hitoshi Nagata, Naoki Nakagawa
  • Patent number: 7842950
    Abstract: A display device including a first substrate, a first subpixel electrode, a second subpixel electrode corresponding to the first substrate, a second substrate and a common electrode formed on the second substrate is provided. The first subpixel electrode and the second subpixel electrode are formed on the first substrate. The second subpixel electrode is spaced apart from the first subpixel electrode. The common electrode has a first cutout and a second cutout. The first cutout is disposed over the first subpixel electrode and the second cutout is disposed over the second subpixel electrode. At least a portion of the first cutout has a first width and at least a portion of the second cutout has a second width different from the first width. The first width is larger than the second width in one embodiment. This structure enhances the aperture ratio and the brightness of the display device. Failures such as a residual image, stain or fingerprint may be reduced and the picture quality is improved.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jang-Kun Song
  • Patent number: 7842985
    Abstract: Disclosed is a CMOS image sensor including a gate electrode of a finger type transfer transistor for controlling the saturation state of a floating diffusion region according to the luminance level (i.e. low luminance or high luminance). The CMOS image sensor includes first and second photodiode regions for generating electrons in response to incident light, and a transfer transistor positioned between the first and second photodiodes for receiving the generated electrons transferred from the first and/or second photodiode.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: November 30, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Keun Hyuk Lim
  • Patent number: 7838885
    Abstract: A thin film transistor (TFT), a method of fabricating the TFT, and a display device including the TFT are provided. The TFT includes a semiconductor layer having a channel region and source and drain regions is crystallized using a crystallization-inducing metal. The crystallization-inducing metal is gettered by either a metal other than the crystallization-inducing metal or a metal silicide of a metal other than the crystallization-inducing metal. A length and width of the channel region of the semiconductor layer and a leakage current of the semiconductor layer satisfy the following equation: Ioff/W=3.4E-15L2+2.4E-12L+c, wherein Ioff (A) is the leakage current of the semiconductor layer, W (mm) is the width of the channel region, L (?m) is the length of the channel region, and “c” is a constant ranging from 2.5E-13 to 6.8E-13.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 23, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7838955
    Abstract: An image sensor includes a metal interconnection and readout circuitry over a first substrate, an image sensing device, and an ion implantation isolation layer. The image sensing device is over the metal interconnection, and an ion implantation isolation layer is in the image sensing device. The image sensing device includes first, second and third color image sensing units, and ion implantation contact layers. The first, second and third color image sensing units are stacked in or on a second substrate. The ion implantation contact layers are electrically connected to the first, second and third color image sensing units, respectively.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 23, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hee Sung Shim
  • Patent number: 7834360
    Abstract: The present invention relates to a thin film transistor array substrate comprising a gate line and a data line that are separated by an insulting layer and intersecting each other to define a pixel, wherein a data auxiliary line is disposed adjacent to an intersection portion between the data line and the gate line, and both ends of the data auxiliary line are on two sides of the intersection portion and connected with the data lines, respectively.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 16, 2010
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Seungjin Choi, Youngsuk Song
  • Patent number: 7829921
    Abstract: An imager device that has mitigated dark current leakage and punch-through protection. The transistor associated with the photoconversion device is formed with a single (i.e. one-sided) active area extension region on one side of the transistor gate opposite the photoconversion device, while other transistors can have normal symmetrical (i.e, two-sided) active area extension regions (e.g., lightly doped drains) with resulting high performance and short gate lengths. The asymmetrical active area extension region of the transistor associated with the photodiode can serve to reduce dark current at the photoconversion device. The punch-through problem normally cured by a lightly doped drain is fixed at the transistor associated with the photoconversion device by adding a Vt adjustment implant and/or increasing its gate length.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 9, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: Howard E. Rhodes
  • Patent number: 7800114
    Abstract: Manufacture of TFTs corresponding to various circuits makes structures thereof complex, which involves a larger number of manufacturing steps. Such an increase in the number of the manufacturing steps leads to a higher manufacturing cost and a lower manufacturing yield. In the invention, a high concentration of impurities is doped by using as masks a tapered resist that is used for the manufacture of a tapered gate electrode, and the tapered gate electrode, and then the tapered gate electrode is etched in the perpendicular direction using the resist as a mask. A semiconductor layer under the thusly removed tapered portion of the gate electrode is doped with a low concentration of impurities.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 21, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Satoru Okamoto
  • Patent number: 7781784
    Abstract: A display apparatus includes pixel electrodes disposed on a first base substrate, a second base substrate which faces the first base substrate, color pixels disposed on the second base substrate, the color pixels correspond to the pixel electrodes in a one-to-one correspondence, each color pixel partially covers the corresponding pixel electrode, a common electrode disposed on the second base substrate to cover the pixel electrodes and an electrophoretic layer including a plurality of electrophoretic particles, the electrophoretic layer being interposed between the pixel electrodes and the common electrode.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Il Kim, Son-Uk Lee, Nam-Seok Roh, Jeong-Kuk Lee
  • Patent number: 7781798
    Abstract: Disclosed herein is a solid-state image pickup device, including, a light receiving pixel section, a black level reference pixel section, a multi-layer wiring line section, a first light blocking film, a second light blocking film, a third light blocking film, and a fourth light blocking layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 24, 2010
    Assignee: Sony Corporation
    Inventors: Yusaku Kobayashi, Koji Watanabe, Toshihiko Hayashi
  • Patent number: 7777225
    Abstract: An organic light-emitting display device. The organic light-emitting display device according to an embodiment of the present invention utilizes an N-type driving transistor, and therefore it has a drain electrode of a driving transistor electrically connected to a cathode electrode of an organic light-emitting diode, wherein the organic light-emitting display device includes a thin metal film between the cathode electrode and the organic light-emitting layer.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 17, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hun-jung Lee, Nam-choul Yang, Jae-kyeong Jeong, Hyun-soo Shin, Jin-seong Park, Jong-han Jeong, Yeon-gon Mo
  • Patent number: 7759755
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Patent number: 7737444
    Abstract: The invention provides a display device and an electronic device, each of which has one of a structure in which a substrate provided with a light emitting element which performs bottom light emission and a substrate provided with a light emitting element which performs top light emission are attached, and a structure in which two substrates, each of which is provided with a light emitting element which performs bottom light emission are attached. By attaching two substrates, each of which is provided with a light emitting element, displays are provided on the front and back of the display device, thus a high added value can be realized. One of the two substrates, each of which is provided with a light emitting element also functions as a sealing substrate for another substrate, thus a compact, thin, and lightweight display device can be obtained.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mitsuaki Osame, Aya Anzai, Jun Koyama, Yasuko Watanabe, Shunpei Yamazaki
  • Patent number: 7732843
    Abstract: Forming an impurity region 6 and an impurity region 5 having a lower concentration than the impurity region 6 in a lower layer region of a gate electrode close to the boundary with a signal electron-voltage conversion section of a horizontal CCD outlet makes it possible to smooth a potential distribution at the time of transfer, improve the transfer efficiency, increase the number of saturated electrons and reduce variations in the transfer efficiency and variations in saturation.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventor: Keishi Tachikawa
  • Patent number: 7723766
    Abstract: A solid-state image sensing device includes a plurality of pixels. Each pixel has a photodiode, a first transistor, and a second transistor. The photodiode is constituted by a first-conductivity-type semiconductor region and a second-conductivity-type semiconductor region. The first and second conductivity types are opposite to each other. The first transistor has a first-conductivity-type drain region formed in the second-conductivity-type semiconductor region to transfer signal charge to the drain region. The second transistor has a source region and a drain region which are formed in the second-conductivity-type semiconductor region and which have the first conductivity type. At least one second-conductivity-type potential barrier is provided under the drain region of the first transistor and the source region and/or the drain region of the second transistor.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mahito Shinohara, Shunsuke Inoue
  • Patent number: 7705381
    Abstract: A solid-state image sensing device includes a plurality of pixels. Each pixel has a photodiode, a first transistor, and a second transistor. The photodiode is constituted by a first-conductivity-type semiconductor region and a second-conductivity-type semiconductor region. The first and second conductivity types are opposite to each other. The first transistor has a first-conductivity-type drain region formed in the second-conductivity-type semiconductor region to transfer signal charge to the drain region. The second transistor has a source region and a drain region which are formed in the second-conductivity-type semiconductor region and which have the first conductivity type. At least one second-conductivity-type potential barrier is provided under the drain region of the first transistor and the source region and/or the drain region of the second transistor.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 27, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Mahito Shinohara, Shunsuke Inoue
  • Patent number: 7700396
    Abstract: Embodiments relate to an image sensor having a gate spacer and a fabricating method by which damage in a photodiode area can be prevented. Embodiments relate to a method of fabricating an image sensor including forming a gate electrode over a substrate having a prescribed photodiode area. A first oxide layer, a nitride layer, and a second oxide layer may be formed over the substrate including the gate electrode. A photoresist pattern may be formed over the substrate to open the photodiode area centering on the gate electrode. A transformed nitride layer may be formed by selectively carrying out nitridation on the second oxide layer formed over the photodiode area centering on the gate electrode using the photoresist pattern as a mask. The photoresist mask pattern may be removed. A spacer may be formed over one side of the gate electrode by carrying out blank etch on the first oxide layer, the nitride layer, the transformed nitride layer, and the second oxide layer.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 20, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang-Il Hwang
  • Publication number: 20100084692
    Abstract: A color pixel array includes first, second, and third pluralities of color pixels each including a photosensitive region disposed within a first semiconductor layer. In one embodiment, a second semiconductor layer including deep dopant regions is disposed below the first semiconductor layer. The deep dopant regions each reside below a corresponding one of the first plurality of color pixels but substantially not below the second and third pluralities of color pixels. In one embodiment, buried wells are disposed beneath the second and third pluralities of color pixels but substantially not below the first plurality of color pixels.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Vincent Venezia, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes