Schottky Gate To Silicon Semiconductor Patents (Class 257/281)
  • Patent number: 10658477
    Abstract: A junction gate field-effect transistor (JFET) includes a substrate, a source region formed in the substrate, a drain region formed in the substrate, a channel region formed in the substrate, and at least one gate region formed in the substrate. The channel region connects the source and drain regions. The at least one gate region contacts one of the source and drain regions at an interface, and the at least one gate region is isolated from the other of the source and drain regions. A dielectric layer covers the interface while exposing portions of the gate region and the one of the source and drain regions.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Victor Chiang Liang
  • Patent number: 9773897
    Abstract: A transistor device is provided that includes a base structure and a superlattice structure that overlies the base structure. The superlattice structure comprises a multichannel ridge having sides that extend to the base structure. The multichannel ridge comprises a plurality of heterostructures that each form a channel of the multichannel ridge. A three-sided gate configuration is provided that wraps around and substantially surrounds the top and sides of the multichannel ridge along at least a portion of its depth. The three-sided gate configuration is configured to re-distribute peak electric fields along the three-sided gate configuration to facilitate the increase in breakdown voltage of the transistor device.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: September 26, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Bettina A. Nechay, Robert S. Howell, Eric J. Stewart, Howell George Henry, Justin Andrew Parke, Ronald G. Freitag
  • Patent number: 9502433
    Abstract: Various methods and devices that involve radio frequency (RF) switches with clamped bodies are provided. An exemplary RF switch with a clamped body comprises a channel that separates a source and a drain. The RF switch also comprises a clamp region that spans the channel, extends into the source and drain, and has a lower dopant concentration than both the source and drain. The RF switch also comprises a pair of matching silicide regions formed on either side of the channel and in contact with the clamp region. The clamp region forms a pair of Schottky diode barriers with the pair of matching silicide regions. The RF switch can operate in a plurality of operating modes. The pair of Schottky diode barriers provide a constant sink for accumulated charge in the clamped body that is independent of the operating mode in which the RF switch is operating.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: November 22, 2016
    Assignee: QUALCOMM Incorporated
    Inventor: Paul A. Nygaard
  • Patent number: 9171947
    Abstract: A nitride semiconductor device includes a substrate, a nitride semiconductor laminate, and an ohmic electrode of TiAl-based material. The nitride semiconductor laminate has a first nitride semiconductor layer on the substrate, and a second nitride semiconductor layer forming a heterointerface with the first nitride semiconductor layer. The nitride semiconductor device has an oxygen concentration profile in a depth direction of the device across between the ohmic electrode and the nitride semiconductor laminate. The profile has a first oxygen concentration peak near an interface between the ohmic electrode and the nitride semiconductor laminate in a region, of the nitride semiconductor laminate, that is on a substrate side of the interface, and a second oxygen concentration peak having an oxygen concentration of 3×1017 cm?3-1.2×1018 cm?3 in a position deeper than that of the first oxygen concentration peak.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 27, 2015
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Satoshi Morishita, Koichiro Fujita
  • Patent number: 9165922
    Abstract: According to an embodiment, a semiconductor device includes a conductive substrate, a Schottky barrier diode, and a field-effect transistor. The Schottky barrier diode is mounted on the conductive substrate and includes an anode electrode and a cathode electrode. The anode electrode is electrically connected to the conductive substrate. The field-effect transistor is mounted on the conductive substrate and includes a source electrode, a drain electrode, and a gate electrode. The source electrode of the field-effect transistor is electrically connected to the cathode electrode of the Schottky barrier diode. The gate electrode of the field-effect transistor is electrically connected to the anode electrode of the Schottky barrier diode.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 20, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Yoshioka, Yasunobu Saito, Hidetoshi Fujimoto, Takeshi Uchihara, Naoko Yanase, Toshiyuki Naka, Tetsuya Ohno, Tasuku Ono
  • Patent number: 8884347
    Abstract: The present disclosure provides a method of manufacturing a photoelectric conversion device, including, a first step of forming a plurality of photoelectric conversion regions on a surface on one side of a semiconductor wafer, a second step of preparing a light-blocking wafer having insertion openings, a third step of bonding the one-side surface of the semiconductor wafer and a surface on the opposite side to a surface on the one side of the light-blocking wafer to each other to form a bonded wafer body, and a fourth step of dividing the bonded wafer body in peripheries of the photoelectric conversion regions, to obtain bonded-body chips each having the photoelectric conversion region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventor: Yasuhide Nihei
  • Patent number: 8878327
    Abstract: A Schottky barrier device includes a semiconductor substrate, a first contact metal layer, a second contact metal layer and an insulating layer. The semiconductor substrate has a first surface, and plural trenches are formed on the first surface. Each trench includes a first recess having a first depth and a second recess having a second depth. The second recess extends down from the first surface while the first recess extends down from the second recess. The first contact metal layer is formed on the second recess. The second contact metal layer is formed on the first surface between two adjacent trenches. The insulating layer is formed on the first recess. A first Schottky barrier formed between the first contact metal layer and the semiconductor substrate is larger than a second Schottky barrier formed between the second contact metal layer and the semiconductor substrate.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Tyng Yen, Young-Shying Chen, Chien-Chung Hung, Chwan-Ying Lee
  • Patent number: 8860174
    Abstract: Antifuses having two or more materials with differing work function values may be fabricated as recessed access devices and spherical recessed access devices for use with integrated circuit devices and semiconductor devices. The use of materials having different work function values in the fabrication of recessed access device antifuses allows the breakdown areas of the antifuse device to be customized or predicted.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Casey Smith, Jasper S. Gibbons, Kunal R. Parekh
  • Patent number: 8841697
    Abstract: A method of manufacturing a semiconductor device is disclosed. The method includes forming a first trench and a second trench in an n-type substrate surface, the first trenches being spaced apart from each other, the second trench surrounding the first trenches, the second trench being wider than the first trench. The method also includes forming a gate oxide film on the inner surfaces of the first and second trenches, and depositing an electrically conductive material to the thickness a half or more as large as the first trench width. The method further includes removing the electrically conductive material using the gate oxide film as a stopper layer, forming an insulator film thicker than the gate oxide film, and polishing the insulator film by CMP for exposing the n-type substrate and the electrically conductive material in the first trench.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 23, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Tomonori Mizushima
  • Patent number: 8816408
    Abstract: A compound semiconductor device includes a compound semiconductor laminated structure; a source electrode, a drain electrode, and a gate electrode formed over the compound semiconductor laminated structure; a first protective film formed over the compound semiconductor laminated structure between the source electrode and the gate electrode and including silicon; and a second protective film formed over the compound semiconductor laminated structure between the drain electrode and the gate electrode and including more silicon than the first protective film.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Limited
    Inventors: Kozo Makiyama, Toshihide Kikkawa
  • Patent number: 8778747
    Abstract: Embodiments include but are not limited to apparatuses and systems including a buffer layer, a group III-V layer over the buffer layer, a source contact and a drain contact on the group III-V layer, and a regrown Schottky layer over the group III-V layer, and between the source and drain contacts. The embodiments further include methods for making the apparatuses and systems. Other embodiments may be described and claimed.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 15, 2014
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Edward A. Beam, III
  • Patent number: 8723234
    Abstract: A semiconductor device of an embodiment includes: a semiconductor substrate; a field-effect transistor formed on the semiconductor substrate; and a diode forming area which is adjacent to a forming area of the field-effect transistor, wherein the diode forming area is insulated from the forming area of the transistor on the semiconductor substrate, and includes a first diode electrode in which a gate electrode of the field-effect transistor is placed in Schottky barrier junction and/or ohmic contact with the semiconductor substrate through a bus wiring or a pad; and a second diode electrode in which a source electrode of the field-effect transistor is placed in ohmic contact and/or Schottky barrier junction with the semiconductor substrate through a bus interconnection or a pad to form a diode between the gate electrode and the source electrode.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiharu Takada, Kentaro Ikeda
  • Patent number: 8716784
    Abstract: A semiconductor device and a method for forming the semiconductor device wherein the semiconductor comprises: a trench MOSFET, formed on a semiconductor initial layer, comprising a well region, wherein the semiconductor initial layer has a first conductivity type and wherein the well region has a second conductivity type; an integrated Schottky diode next to the trench MOSFET, comprising a anode metal layer contacted to the semiconductor initial layer; a trench isolation structure, coupled between the trench MOSFET and integrated Schottky diode, configured to resist part of lateral diffusion from the well region; wherein the well region comprises an overgrowth part which laterally diffuses under the trench isolation structure and extends out of it.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: May 6, 2014
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Lei Zhang, Tiesheng Li
  • Patent number: 8669623
    Abstract: A semiconductor structure which includes a shielded gate FET is formed as follows. A plurality of trenches is formed in a semiconductor region using a mask. The mask includes (i) a first insulating layer over a surface of the semiconductor region, (ii) a first oxidation barrier layer over the first insulating layer, and (iii) a second insulating layer over the first oxidation barrier layer. A shield dielectric is formed extending along at least lower sidewalls of each trench. A thick bottom dielectric (TBD) is formed along the bottom of each trench. The first oxidation barrier layer prevents formation of a dielectric layer along the surface of the semiconductor region during formation of the TBD. A shield electrode is formed in a bottom portion of each trench. A gate electrode is formed over the shield electrode in each trench.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: March 11, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: James Pan, Christopher Lawrence Rexer
  • Patent number: 8618583
    Abstract: The disclosure relates generally to junction gate field effect transistor (JFET) structures and methods of forming the same. The JFET structure includes a p-type substrate having a p-region therein; an n-channel thereunder; and n-doped enhancement regions within the n-channel, each n-doped enhancement region separated from the p-region.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 31, 2013
    Assignee: International Business Machines Corporation
    Inventors: Panglijen Candra, Richard A. Phelps, Robert M. Rassel, Yun Shi
  • Patent number: 8546852
    Abstract: A semiconductor device includes: substrate region; a gate electrode, a source electrode, and a drain electrode which are placed on a first surface of the substrate regions; an active area between gate and source placed between the gate electrode and the source electrode; an active area between gate and drain placed between the gate electrode and the drain electrode; an active area placed on the substrate region of the underneath part of the gate electrode, the source electrode, and the drain electrode; and a non-active area placed adjoining the active area, the active area between gate and source, and the active area between gate and drain. Furthermore, width WA1 of the active area between gate and source is wider than width WA2 of the active area between gate and drain. Channel resistance of an active area between source and gate placed between a gate electrode and a source electrode is reduced, and high-frequency performance is provided.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 8492254
    Abstract: A method of manufacturing a semiconductor device is disclosed. The method includes forming a first trench and a second trench in an n-type substrate surface, the first trenches being spaced apart from each other, the second trench surrounding the first trenches, the second trench being wider than the first trench. The method also includes forming a gate oxide film on the inner surfaces of the first and second trenches, and depositing an electrically conductive material to the thickness a half or more as large as the first trench width. The method further includes removing the electrically conductive material using the gate oxide film as a stopper layer, forming an insulator film thicker than the gate oxide film, and polishing the insulator film by CMP for exposing the n-type substrate and the electrically conductive material in the first trench.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: July 23, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Tomonori Mizushima
  • Patent number: 8461632
    Abstract: A method of manufacturing an SiC semiconductor device according to the present invention includes the steps of (a) by using a single mask, etching regions of an SiC semiconductor layer which serve as an impurities implantation region and a mark region, to form recesses, (b) by using the same mask as in the step (a), performing ion-implantation in the recesses of the regions which serve as the impurities implantation region and the mark region, at least from an oblique direction relative to a surface of the SiC semiconductor layer and (c) positioning another mask based on the recess of the region which serves as the impurities implantation region or the mark region, and performing well implantation in a region containing the impurities implantation region.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Noriaki Tsuchiya, Yoichiro Tarui
  • Patent number: 8441048
    Abstract: The present invention provides a horizontally depleted Metal Semiconductor Field Effect Transistor (MESFET). A drain region, a source region, and a channel region are formed in the device layer such that the drain region and the source region are spaced apart from one another and the channel region extends between the drain region and the source region. First and second gate contacts are formed in the device layer on either side of the channel region, and as such, the first and second gate contacts will also reside between opposing portions of the source and drain regions. With this configuration, voltages applied to the first and second gate contacts effectively control vertical depletion regions, which form on either side of the channel region.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 14, 2013
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Joseph E. Ervin, Trevor John Thornton
  • Patent number: 8385876
    Abstract: In view of achieving a cost reduction of an antenna switch, a technique is provided which can reduce harmonic distortion generated in the antenna switch as much as possible in particular even when the antenna switch is comprised of a field effect transistor formed over a silicon substrate. Each of a TX series transistor, an RX series transistor, and an RX shunt transistor is comprised of a low voltage MISFET, while a TX shunt transistor is comprised of a high voltage MISFET. Thus, by reducing the number of serial connections of the high voltage MISFETs constituting the TX shunt transistor, the nonuniformity of the voltage amplitudes applied to the respective serially-coupled high voltage MISFETs is suppressed. As a result, the generation of high-order harmonics can be suppressed.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Goto, Tomoyuki Miyake, Masao Kondo
  • Patent number: 8244199
    Abstract: In view of achieving a cost reduction of an antenna switch, a technique is provided which can reduce harmonic distortion generated in the antenna switch as much as possible in particular even when the antenna switch is comprised of a field effect transistor formed over a silicon substrate. Each of a TX series transistor, an RX series transistor, and an RX shunt transistor is comprised of a low voltage MISFET, while a TX shunt transistor is comprised of a high voltage MISFET. Thus, by reducing the number of serial connections of the high voltage MISFETs constituting the TX shunt transistor, the nonuniformity of the voltage amplitudes applied to the respective serially-coupled high voltage MISFETs is suppressed. As a result, the generation of high-order harmonics can be suppressed.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Goto, Tomoyuki Miyake, Masao Kondo
  • Patent number: 8188520
    Abstract: A method for fabricating a field effect transistor includes: forming an insulating film provided on a semiconductor layer, the insulating film having an opening via which a surface of the semiconductor layer is exposed and including silicon oxide; forming a Schottky electrode on the insulating film and in the opening, the Schottky electrode having an overhang portion and having a first contact layer that is provided in a region contacting the insulating film and contains oxygen, and a second contact layer that is provided on the first contact layer and contains a smaller content of oxygen than that of the first contact layer; and removing the insulating film by a solution including hydrofluoric acid.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 29, 2012
    Assignee: Eudyna Devices Inc.
    Inventors: Tadashi Watanabe, Hajime Matsuda
  • Patent number: 8168485
    Abstract: A method of making a semiconductor device includes forming a p-type semiconductor region to an n-type semiconductor substrate in such a manner that the p-type semiconductor region is partially exposed to a top surface of the semiconductor substrate, forming a Schottky electrode of a first material in such a manner that the Schottky electrode is in Schottky contact with an n-type semiconductor region exposed to the top surface of the semiconductor substrate, and forming an ohmic electrode of a second material different from the first material in such a manner that the ohmic electrode is in ohmic contact with the exposed p-type semiconductor region. The Schottky electrode is formed earlier than the ohmic electrode.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 1, 2012
    Assignee: DENSO CORPORATION
    Inventors: Takeshi Endo, Eiichi Okuno, Takeo Yamamoto, Hirokazu Fujiwara, Masaki Konishi, Yukihiko Watanabe, Takashi Katsuno
  • Patent number: 8125008
    Abstract: A Schottky device and a semiconductor process of making the same are provided. The Schottky device comprises a substrate, a deep well, a Schottky contact, and an Ohmic contact. The substrate is doped with a first type of ions. The deep well is doped with a second type of ions, and formed in the substrate. The Schottky contact contacts a first electrode with the deep well. The Ohmic contact contacts a second electrode with a heavily doped region with the second type of ions in the deep well. Wherein the deep well has a geometry gap with a width formed under the Schottky contact, the first type of ions and the second type of ions are complementary, and the width of the gap adjusts the breakdown voltage.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 28, 2012
    Assignee: System General Corporation
    Inventors: Chiu-Chih Chiang, Chih-Feng Huang, You-Kuo Wu, Long Shih Lin
  • Patent number: 8084793
    Abstract: An undoped AlGaN layer 13 is formed on a buffer layer composed of a GaN series material formed on a semiconductor substrate, a drain electrode 15 and a source electrode 16 forming ohmic junction with the undoped AlGaN layer 13 are formed separately from each other on the undoped AlGaN layer 13. A gate electrode 17 composed of metal Ni and Au laminated in this order is formed between the drain electrodes 15 and the source electrode 16 on the undoped AlGaN layer 13. The end portion 17-2 of the gate electrode 17 is formed on the underlying metal 18 formed by a metal containing Ti via an insulating film 14 on a GaN buffer layer 12 surrounding the undoped AlGaN layer 13.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Patent number: 8030193
    Abstract: To fabricate a Schottky barrier diode in which a decrease in on current due to parasitic resistance is suppressed, variations in on current are suppressed, and an increase in off current is suppressed. The fabricating method includes the steps of forming an island-shape semiconductor film; doping the island-shape semiconductor film with a first impurity element to form a first impurity region; forming an insulating film so as to cover the island-shape semiconductor film; etching the insulating film to form a first opening and a second opening that partly expose the first impurity region; forming a mask over the insulating film so as to cover the first opening and expose the second opening; doping the first impurity region with a second impurity element to form a second impurity region; and forming a first wiring in contact with the first impurity region exposed at the first opening, and forming a second wiring in contact with the second impurity region exposed at the second opening.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Suguru Ozawa
  • Patent number: 7973344
    Abstract: Double gate JFET with reduced area consumption and fabrication method therefore. Double-gate semiconductor device including a substrate having a shallow trench isolator region comprising a first STI and a second STI, a channel region having a first and second channel edges, the channel region formed in the substrate and disposed between and in contact with the first STI and the second STI at the first and second channel edge. The first STI has a first cavity at the first channel edge, and the second STI has a second cavity at the second channel edge. The device further includes a gate electrode region comprising conductive material filling at least one of the first and second cavities. At least one of the first and second cavities is physically configured to provide electrical coupling of the gate electrode region to a back-gate P-N junction.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 5, 2011
    Assignee: SuVolta, Inc.
    Inventor: Srinivasan R. Banna
  • Patent number: 7973339
    Abstract: An integrated optical waveguide has a first optical waveguide, a second optical waveguide, and a groove. The second optical waveguide is coupled to the first optical waveguide and has a refractive index that is different from the first optical waveguide. The groove is disposed so as to traverse an optical path of the first optical waveguide and is separated from an interface between the first optical waveguide and the second optical waveguide by a predetermined spacing. The spacing from the interface and the width of the groove are determined such that reflection at a boundary between the first optical waveguide and the second optical waveguide is weakened. A semiconductor board may be disposed at a boundary between the first optical waveguide and the second optical waveguide.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 5, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Makoto Kasu, Toshiki Makimoto, Kenji Ueda, Yoshiharu Yamauchi
  • Patent number: 7939865
    Abstract: In one embodiment, a metal-semiconductor field effect transistor (MESFET) comprises a first silicon layer, an insulator layer formed on the first silicon layer, and a second silicon layer formed on the insulator layer. A gate region, a source region, and a drain region are formed in the second silicon layer. A first partial trench is formed in the second silicon layer between at least a portion of the gate region and at least a portion of the source region, wherein the first partial trench stops short of the insulator layer. A second partial trench formed in the second silicon layer between at least a portion of the gate region and at least a portion of the drain region, wherein the second partial trench stops short of the insulator layer. First and second oxide spacers are formed in the first and second partial trenches. The first and second oxide spacers and the source region, gate region, and the drain region are substantially planar.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 10, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul Fechner
  • Patent number: 7928480
    Abstract: A semiconductor device has a semiconductor layer, and a first electrode (Schottky electrode or MIS electrode) and a second electrode (ohmic electrode) which are formed on the semiconductor layer apart from each other. The first electrode has a cross section in the shape of a polygon. A second electrode-side corner of the polygon has an interior angle of which an outward extension line of a bisector crosses the semiconductor layer or the second electrode. The interior angle of such a second electrode-side corner is larger than 90°.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 19, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masaharu Yamashita, John Kevin Twynam
  • Patent number: 7915704
    Abstract: Improved Schottky diodes (20) with reduced leakage current and improved breakdown voltage are provided by building a JFET (56) into the diode, serially located in the anode-cathode current path (32). The gates of the JFET (56) formed by doped regions (38, 40) placed above and below the diode's current path (32) are coupled to the anode (312) of the diode (20), and the current path (32) passes through the channel region (46) of the JFET (56). Operation is automatic so that as the reverse voltage increases, the JFET (56) channel region (46) pinches off, thereby limiting the leakage current and clamping the voltage across the Schottky junction (50) at a level below the Schottky junction (50) breakdown. Increased reverse voltage can be safely applied until the device eventually breaks down elsewhere. The impact on device area and area efficiency is minimal and the device can be built using a standard fabrication process so that it can be easily integrated into complex ICs.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: March 29, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20110042727
    Abstract: A semiconductor device includes a drain, an epitaxial layer overlaying the drain, and an active region. The active region includes a body disposed in the epitaxial layer, a source embedded in the body, a gate trench extending into the epitaxial layer, a gate disposed in the gate trench, a contact trench extending through the source and at least part of the body, a contact electrode disposed in the contact trench, and an epitaxial enhancement portion disposed below the contact trench, wherein the epitaxial enhancement portion has the same carrier type as the epitaxial layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: February 24, 2011
    Inventors: Ji Pan, Anup Bhalla
  • Publication number: 20110024802
    Abstract: To attain reduction in size of a semiconductor device having a power transistor and an SBD, a semiconductor device according to the present invention comprises a first region and a second region formed on a main surface of a semiconductor substrate; plural first conductors and plural second conductors formed in the first and second regions respectively; a first semiconductor region and a second semiconductor region formed between adjacent first conductors in the first region, the second semiconductor region lying in the first semiconductor region and having a conductivity type opposite to that of the first semiconductor region; a third semiconductor region formed between adjacent second conductors in the second region, the third semiconductor region having the same conductivity type as that of the second semiconductor region and being lower in density than the second semiconductor region; a metal formed on the semiconductor substrate in the second region, the third semiconductor region having a metal contact
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Inventors: NOBUYUKI SHIRAI, Nobuyoshi Matsuura, Yoshito Nakazawa
  • Patent number: 7851830
    Abstract: A multigate Schottky diode comprising an electrically conducting active semiconductor region; first and second electrically connected metallic contact arms on the active semiconductor region forming ohmic contacts therewith; the ohmic contacts being spaced apart on the active semiconductor region to define a gate receiving channel therebetween. a plurality of electrically connected metallic gate fingers, the metallic gate fingers being in contact with the active semiconductor region to form Schottky junctions, the Schottky junctions being spaced apart on the active semiconductor region and extending at least partially along the gate receiving channel.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: December 14, 2010
    Assignee: RFMD (UK) Limited
    Inventors: Ronald Arnold, Dennis Michael Brookbanks
  • Patent number: 7777257
    Abstract: A low leakage bipolar Schottky diode (20, 40, 87) is formed by parallel lightly doped N (32, 52, 103) and P (22, 42, 100) regions adapted to form superjunction regions. First ends of the P regions (22, 42, 100) are terminated by P+ layers (21, 41, 121) and second, opposed ends of the N regions (32, 52, 103) are terminated by N+ layers (31, 51, 131). Silicide layers (24, 34, 44, 54, 134, 124) are provided in contact with both ends of the parallel N and P regions (22, 32, 42, 52, 100, 103), thereby forming at the first end ohmic contacts (28, 48) with the P+ regions (21, 41, 121) and Schottky contacts (37, 57) with the N regions 32, 52, 103) and at the second, opposite end, ohmic contacts (38, 58) with the N+ regions (31, 51, 131) and Schottky contacts (27, 47) with the P regions (22, 42, 100). When forward biased current flows in both N (32, 52) and P (22, 42) regions thereby reducing the forward drop.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 17, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishnu K. Khemka, Amitava Bose, Todd C. Roggenbauer, Ronghua Zhu
  • Publication number: 20100181603
    Abstract: In one embodiment, a metal-semiconductor field effect transistor (MESFET) comprises a first silicon layer, an insulator layer formed on the first silicon layer, and a second silicon layer formed on the insulator layer. A gate region, a source region, and a drain region are formed in the second silicon layer. A first partial trench is formed in the second silicon layer between at least a portion of the gate region and at least a portion of the source region, wherein the first partial trench stops short of the insulator layer. A second partial trench formed in the second silicon layer between at least a portion of the gate region and at least a portion of the drain region, wherein the second partial trench stops short of the insulator layer. First and second oxide spacers are formed in the first and second partial trenches. The first and second oxide spacers and the source region, gate region, and the drain region are substantially planar.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: Honeywell International Inc.
    Inventor: Paul Fechner
  • Patent number: 7700975
    Abstract: Metal-Semiconductor-Metal (“MSM”) photodetectors and methods to fabricate thereof are described. The MSM photodetector includes a thin heavily doped (“delta doped”) layer deposited at an interface between metal contacts and a semiconductor layer to reduce a dark current of the MSM photodetector. In one embodiment, the semiconductor layer is an intrinsic semiconductor layer. In one embodiment, the thickness of the delta doped layer is less than 100 nanometers. In one embodiment, the delta doped layer has a dopant concentration of at least 1×1018 cm?3. A delta doped layer is formed on portions of a semiconductor layer over a substrate. Metal contacts are formed on the delta doped layer. A buffer layer may be formed between the substrate and the semiconductor layer. In one embodiment, the substrate includes silicon, and the semiconductor layer includes germanium.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Intel Corporation
    Inventors: Titash Rakshit, Miriam Reshotko
  • Patent number: 7692222
    Abstract: A semiconductor structure and method wherein a recess is disposed in a surface portion of a semiconductor structure and a dielectric film is disposed on and in contract with the semiconductor. The dielectric film has an aperture therein. Portions of the dielectric film are disposed adjacent to the aperture and overhang underlying portions of the recess. An electric contact has first portions thereof disposed on said adjacent portions of the dielectric film, second portions disposed on said underlying portions of the recess, with portions of the dielectric film being disposed between said first portion of the electric contact and the second portions of the electric contact, and third portions of the electric contact being disposed on and in contact with a bottom portion of the recess in the semiconductor structure. The electric contact is formed by atomic layer deposition of an electrically conductive material over the dielectric film and through the aperture in such dielectric film.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: April 6, 2010
    Assignee: Raytheon Company
    Inventors: Kamal Tabatabaie, Robert B. Hallock
  • Patent number: 7633135
    Abstract: This invention discloses a bottom-anode Schottky (BAS) diode that includes an anode electrode disposed on a bottom surface of a semiconductor substrate. The bottom-anode Schottky diode further includes a sinker dopant region disposed at a depth in the semiconductor substrate extending substantially to the anode electrode disposed on the bottom surface of the semiconductor and the sinker dopant region covered by a buried Schottky barrier metal functioning as an Schottky anode.
    Type: Grant
    Filed: July 22, 2007
    Date of Patent: December 15, 2009
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventor: François Hébert
  • Patent number: 7608907
    Abstract: An improved diode is disclosed. The diode comprises a Schottky diode and a LDMOS device coupled in series with the Schottky diode. In a preferred embodiment, a forward current from the Schottky diode is allowed to flow through the channel of a depletion mode LDMOS that allows gate control over Schottky forward current. Integrating the Schottky diode into the drain of the depletion mode LDMOS forms the device structure.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: October 27, 2009
    Assignee: Micrel, Inc.
    Inventor: Shekar Mallikarjunaswamy
  • Publication number: 20090206375
    Abstract: Reduced leakage current field-effect transistors and fabrication methods. Semiconductor device including substrate of first conductivity type, first well and second well of second conductivity type in substrate, channel of second conductivity type between first well and second well in substrate, and gate region of first conductivity type within channel, wherein gate region is electrically operable to modulate depletion width of channel. First well may be a drain region and the second well may be a source region. Channel includes first link region between gate region and first well or drain region and second link region between the gate region and second well or source region; wherein first link region is of second conductivity type of at least two doping densities. First link region is higher doped in a portion adjacent to drain region than in another portion adjacent to gate region. Method of fabricating a reduced leakage current FET.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 20, 2009
    Inventors: Samar K. Saha, Ashok K. Kapoor
  • Patent number: 7547932
    Abstract: A vertical gate-depleted single electron transistor (SET) is fabricated on a conducting or insulating substrate. A plurality of lightly doped basic materials and tunneling barriers are fabricated on top of a substrate, wherein at least two of the layers of basic materials sandwich the layers of tunneling barriers and at least two of the layers of tunneling barriers sandwich at least one of the layers of basic materials. A mesa is fabricated on top of the layers of basic materials and tunneling barriers, and has an undercut shape. An ohmic contact is fabricated on top of the mesa, and one or more gate Schottky contacts are fabricated on top of the layers of lightly doped basic materials and tunneling barriers. A quantum dot is induced by gate depletion, when a source voltage is set as zero, a drain voltage is set to be less than 0.1, and a gate voltage is set to be negative.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: June 16, 2009
    Assignee: The Regents of the University of California
    Inventors: Yaohui Zhang, Filipp A. Baron, Kang L. Wang
  • Patent number: 7453107
    Abstract: A semiconductor device includes a substrate of semiconductor material. A source region, a drain region, and a conducting region of the semiconductor device are formed in the substrate and doped with a first type of impurities. The conducting region is operable to conduct current between the drain region and the source region when the semiconductor device is operating in an on state. A gate region is also formed in the substrate and doped with a second type of impurities. The gate region abuts a channel region of the conducting region. A stress layer is deposited on at least a portion of the conducting region. The stress layer applies a stress to the conducting region along a boundary of the conducting region that strains at least a portion of the conducting region.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: November 18, 2008
    Assignee: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Patent number: 7432179
    Abstract: A method of forming semiconductor structures comprises following steps. A gate dielectric layer is formed over a substrate in an active region. A gate electrode layer is formed over the gate dielectric layer. A first photo resist is formed over the gate electrode layer. The gate electrode layer and dielectric layer are etched thereby forming gate structures and dummy patterns, wherein at least one of the dummy patterns has at least a portion in the active region. The first photo resist is removed. A second photo resist is formed covering the gate structures. The dummy patterns unprotected by the second photo resist are removed. The second photo resist is then removed.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: October 7, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei
  • Patent number: 7345350
    Abstract: A method for forming a conductive via in a semiconductor component is disclosed. The method includes providing a substrate having a first surface and an opposing, second surface. At least one hole is formed in the substrate extending between the first surface and the opposing, second surface. A seed layer is formed on a sidewall defining the at least one hole of the substrate and coated with a conductive layer, and a conductive or nonconductive filler material is introduced into the remaining space within the at least one hole. A method of forming a conductive via through a substrate using a blind hole is also disclosed. Semiconductor components and electronic systems having substrates including the conductive via of the present invention are also disclosed.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Nishant Sinha
  • Patent number: 7342307
    Abstract: A semiconductor device includes: a package; two semiconductor chip fixing parts located adjacently to each other in the package; and first and the second semiconductor chips, each of which is fixed on the semiconductor chip fixing part and has a field effect transistor formed therein. A gate lead G1, a source lead S1, and a drain lead D2 are arranged from left to right on the first surface of the package and a drain lead D1, a source lead S2, and a gate lead G2 are arranged from left to right on the second surface. A gap between the source lead S1 and the drain lead D2 is two times a gap between the gate lead G1 and the source lead S1, and a gap between the drain lead D1 and the source lead S2 is two times a gap between the source lead S2 and the gate lead G2.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: March 11, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Toshiyuki Hata, Takamitsu Kanazawa, Takeshi Otani
  • Patent number: 7332754
    Abstract: In the semiconductor switch of the present invention, the gate electrode, source electrode and drain electrode are formed such that the distance between the gate and the drain of an MESFET, assuming a shunt FET, is longer than the distance between the gate and the drain of an MESFET, assuming a through FET, so that the gate breakdown voltage of the MESFET, assuming a shunt FET, is increased without changing the gate breakdown voltage of the MESFET, assuming a through FET.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: February 19, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Uno, Manabu Yanagihara, Hidetoshi Ishida, Tsuyoshi Tanaka
  • Patent number: 7250643
    Abstract: A semiconductor device includes: a gate electrode that is provided on a semiconductor layer; a source electrode and a drain electrode that are provided on the semiconductor layer so as to interpose the gate electrode; a source wall that extends from the source electrode to a point between the gate electrode and the drain electrode through the region above the gate electrode, the source wall having a joining portion in the extending region; and an electrode portion that is joined to the joining portion and has a region extending closer to the drain electrode than the joining portion.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 31, 2007
    Assignee: Eudyna Devices Inc.
    Inventor: Masahiro Nishi
  • Patent number: 7202528
    Abstract: Wide bandgap semiconductor devices including normally-off VJFET integrated power switches are described. The power switches can be implemented monolithically or hybridly, and may be integrated with a control circuit built in a single-or multi-chip wide bandgap power semiconductor module. The devices can be used in high-power, temperature-tolerant and radiation-resistant electronics components. Methods of making the devices are also described.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: April 10, 2007
    Assignee: Semisouth Laboratories, Inc.
    Inventors: Igor Sankin, Joseph N. Merrett
  • Patent number: 7183573
    Abstract: A silicon on insulator transistor is disclosed which has a Schottky contact to the body. The Schottky contact may be formed on the source and/or drain side of the gate conductor. A spacer, with at least a part thereof being disposable, is formed on the sidewalls of the gate conductor. Extension regions are provided in the substrate which extend under the spacer and the gate conductor. Source and drain diffusion regions are implanted into the substrate adjacent to the extension regions. The disposable part of the spacer is then removed to expose a portion of the extension region. A metal layer is formed at least in the extension regions, resulting in the Schottky contact.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: February 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Jerome B. Lasky, Effendi Leobandung, Dominic J. Schepis