Photodiodes Accessed By Fets Patents (Class 257/292)
  • Patent number: 10692922
    Abstract: A photoelectric conversion device includes photoelectric converter arranged in semiconductor substrate made of silicon and is and transistor arranged on surface of the substrate. The photoelectric converter includes first region of a first conductivity type, configured to accumulate charges, and second region of second conductivity type. The first region is arranged between the surface and the second region. The substrate includes third region as source and/or drain of the transistor. The substrate includes, in position which is below the third region and is apart from the third region, impurity region containing group 14 element other than silicon. Depth from the surface of peak position in density distribution of the group 14 element in the impurity region is smaller than depth from the surface of peak position in density distribution of majority carrier in the second region.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 23, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tasuku Kaneda, Toshihiro Shoyama
  • Patent number: 10692914
    Abstract: An image sensor is disclosed. The image sensor includes an epitaxial layer, a plurality of plug structures and an interconnect structure. Wherein the plurality of plug structures are formed in the epitaxial layer, and each plug structure has doped sidewalls, the epitaxial layer and the doped sidewalls form a plurality of photodiodes, the plurality of plug structures are used to separate adjacent photodiodes, and the epitaxial layer and the doped sidewalls are coupled to the interconnect structure via the plug structures. An associated method of fabricating the image sensor is also disclosed. The method includes: providing a substrate having a first-type doped epitaxial substrate layer on a second-type doped epitaxial substrate layer; forming a plurality of isolation trenches in the first-type doped epitaxial substrate layer; forming a second-type doped region along sidewalls and bottoms of the plurality of isolation trenches; and filling the plurality of isolation trenches by depositing metal.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Alexander Kalnitsky, Jhy-Jyi Sze, Dun-Nian Yaung, Chen-Jong Wang, Yimin Huang, Yuichiro Yamashita
  • Patent number: 10686001
    Abstract: An image sensor includes: a photoelectric conversion unit that photoelectrically converts incident light transmitted through a microlens to generate electric charge; an accumulation unit that accumulates the electric charge generated by the photoelectric conversion unit; and a transfer unit that transfers the electric charge generated by the photoelectric conversion unit to the accumulation unit, wherein: the photoelectric conversion unit, the transfer unit, and the accumulation unit are provided along a direction of an optical axis of the microlens.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 16, 2020
    Assignee: NIKON CORPORATION
    Inventors: Toru Takagi, Satoshi Nakayama, Ryoji Ando, Takashi Seo, Yohei Matsuoka, Yoshiyuki Watanabe
  • Patent number: 10672808
    Abstract: An optical sensor in which photo currents generated by light in the visible and infrared wavelength ranges are to be tapped separately at pn junctions of active regions. The active regions include n- or p-doping and are formed in a p-substrate 52. The optical sensor comprises a surface-near first active region 12, and a second active region 14 subjacent to the first active region 12 and forming together with the first active region 12 a pn junction 22 that is short-circuited. A third active region 20 is subjacent to the second active region 14 and forming together with the second active region a further pn junction 23. Together with a fourth active region 24 subjacent to the second active region 20, a further pn junction 25, 29 is formed together with the third active region 20 and the substrate 52.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 2, 2020
    Assignee: X-FAB Semiconductor Foundries GmbH
    Inventor: Daniel Gaebler
  • Patent number: 10665802
    Abstract: An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: May 26, 2020
    Assignee: SONY CORPORATION
    Inventors: Toru Udaka, Masaki Murata, Rui Morimoto, Osamu Enoki
  • Patent number: 10649100
    Abstract: The present disclosure relates to an X-ray detector. The X-ray detector includes the first and second gate lines arranged to be spaced apart from each other on a substrate, a data line and a bias line that are arranged to be spaced apart from each other in a direction intersecting the first and second gate lines, and define a unit pixel area, a storage capacitor that is arranged in the unit pixel area and has one end connected to a ground, a phototransistor that is turned on by a reset signal applied to the first gate line and provides a signal generated by an incident light source to the storage capacitor, and a thin film transistor that is turned on by a gate signal applied to the second gate line to provide a charge stored in the storage capacitor to the data line.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 12, 2020
    Assignee: LG Display Co., Ltd.
    Inventors: Kangwoo Kim, Siu Yoon, Sejin Shin
  • Patent number: 10651226
    Abstract: An image sensor includes a substrate having a first surface and a second surface opposite to each other, a first floating diffusion region provided in the substrate and being adjacent to the first surface, a through-electrode provided in the substrate and electrically connected to the first floating diffusion region, an insulating structure, a bottom electrode, a photoelectric conversion layer, and a top electrode sequentially stacked on the second surface, a color filter buried in the insulating structure, and a top contact plug penetrating the insulating structure to connect the bottom electrode to the through-electrode.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: May 12, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Min Lee, Seokjin Kwon, Hyeyun Park, Beomsuk Lee, Dongmo Im
  • Patent number: 10651227
    Abstract: An array substrate for an X-ray detector and an X-ray detector including the reduces or minimizes a leakage current caused by etching of a PIN layer, and also reduces or minimizes light reaction of the PIN layer within a non-pixel region. The array substrate for the X-ray detector includes an integrated PIN layer formed to cover all pixel regions. Upper electrodes, which are spaced apart from each other according to individual pixel regions, are disposed over the PIN layer. A light shielding portion is disposed between neighboring upper electrodes.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 12, 2020
    Assignee: LG DISPLAY CO., LTD.
    Inventor: Jungyul Yang
  • Patent number: 10644058
    Abstract: An image sensor includes a plurality of photo diodes disposed at a semiconductor substrate, and a splitter disposed on the photo diodes. The splitter splits an incident light depending on a wavelength so that split light of different colors enters different photo diodes, respectively. The splitter includes a first pattern structure having a cross-sectional structure in which a plurality of refractive layer patterns are deposited in a lateral direction.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 5, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Hun Kim, Sang-Su Park, Chang-Hwa Kim, Hyung-Yong Kim, Beom-Suk Lee, Man-Geun Cho, Jae-Sung Hur
  • Patent number: 10636930
    Abstract: A single photon avalanche diode (SPAD) image sensor is disclosed. The SPAD image sensor includes: a substrate having a front surface and a back surface; wherein the substrate includes a sensing region, and the sensing region includes: a common node heavily doped with dopants of a first conductivity type, the common node being within the substrate and abutting the back surface of the substrate; a sensing node heavily doped with dopants of a second conductivity type opposite to the first conductivity type, the sensing node being within the substrate and abutting the front surface of the substrate; and a first layer doped with dopants of the first conductivity type between the common node and the sensing node.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Yuichiro Yamashita
  • Patent number: 10636825
    Abstract: Embodiments described herein generally relate to an apparatus for capturing an image and a photoactive device for that apparatus. In one embodiment, the apparatus for capturing an image includes a lens and a photoactive device. The photoactive device is positioned behind the lens. The photoactive device includes a substrate, one or more photodiodes, and a color filter array. The one or more photodiodes are formed in the substrate. The color filter array is positioned over the substrate. The color filter array has one or more color filters. Each color filter has a radiation receiving surface that is shaped to re-direct radiation to a respective photodiode.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph R. Johnson, Robert Jan Visser, Wayne McMillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 10622399
    Abstract: Disclosed herein is a solid-state imaging device including: a laminated semiconductor chip configured to be obtained by bonding two or more semiconductor chip sections to each other and be obtained by bonding at least a first semiconductor chip section in which a pixel array and a multilayer wiring layer are formed and a second semiconductor chip section in which a logic circuit and a multilayer wiring layer are formed to each other in such a manner that the multilayer wiring layers are opposed to each other and are electrically connected to each other; and a light blocking layer configured to be formed by an electrically-conductive film of the same layer as a layer of a connected interconnect of one or both of the first and second semiconductor chip sections near bonding between the first and second semiconductor chip sections. The solid-state imaging device is a back-illuminated solid-state imaging device.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 14, 2020
    Assignee: Sony Corporation
    Inventor: Toshihiko Hayashi
  • Patent number: 10615198
    Abstract: A method for fabricating an optoelectronic device includes forming an isolation structure between an array of pixel electrodes and a built-in pad (BIP) on a dielectric layer of an integrated circuit, depositing a photosensitive film over the dielectric layer, such that at least one pinch point is formed in the photosensitive film at an edge of the isolation structure. The method further includes depositing an electrode layer, which is at least partially transparent, over the photosensitive film, etching away the photosensitive film from the BIP, and after etching away the photosensitive film, depositing a metal layer over the BIP and in contact with the electrode layer.
    Type: Grant
    Filed: December 23, 2018
    Date of Patent: April 7, 2020
    Assignee: APPLE INC.
    Inventors: Yu-Hua Chang, Zachary M Beiley, Richard W Snow, Robin W Cheung
  • Patent number: 10615213
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor substrate having a top surface, on which has been formed a color filter and a micro-lens, and a bottom surface opposite to the top surface, forming a redistribution line on the bottom surface of the semiconductor substrate, and forming on the bottom surface of the semiconductor substrate a passivation layer covering the redistribution line. After the redistribution line and passivation layer are formed, an oxide layer between the redistribution line and the passivation is formed at a temperature that avoids thermal damage to the color filter and the micro-lens.
    Type: Grant
    Filed: June 3, 2018
    Date of Patent: April 7, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yonghoe Cho, Jongbo Shim, Seunghoon Yeon, Won Il Lee
  • Patent number: 10608026
    Abstract: An image sensor for securing an area of a photodiode includes a pixel area and a transistor area adjacent to the pixel area. The pixel area may include a photodiode and a floating diffusion area. The transistor area may include transistors extending along an edge of the pixel area. The transistors in the transistor area may include a reset transistor, one or more source follower transistors, and one or more selection transistors, and the reset transistor and one source follower transistor adjacent to the reset transistor may share a common drain area. The source follower transistors and the selection transistors may each share a common source area or a common drain area between two adjacent transistors thereof.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 31, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jonghyun Go, Jae-Kyu Lee
  • Patent number: 10608028
    Abstract: The present technology relates to techniques of preventing intrusion of moisture into a chip. Various illustrative embodiments include image sensors that include: a substrate; a plurality of layers stacked on the substrate; the plurality of layers including a photodiode layer having a plurality of photodiodes formed on a surface of the photodiode layer; the plurality of layers including at least one layer having a groove formed such that a portion of the at least one layer is excavated; and a transparent resin layer formed above the photodiode layer and formed in the groove. The present technology can be applied to, for example, an image sensor.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: March 31, 2020
    Assignee: SONY CORPORATION
    Inventors: Atsushi Yamamoto, Shinji Miyazawa, Yutaka Ooka, Kensaku Maeda, Yusuke Moriya, Naoki Ogawa, Nobutoshi Fujii, Shunsuke Furuse, Masaya Nagata, Yuichi Yamamoto
  • Patent number: 10600827
    Abstract: An image sensor includes: an accumulation unit that accumulates an electric charge generated by a photoelectric conversion unit that photoelectrically converts incident light transmitted through a microlens; and a readout unit that reads out a signal based on a voltage of the accumulation unit, wherein the accumulation unit and the readout unit are included along an optical axis direction of the microlens.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: March 24, 2020
    Assignee: NIKON CORPORATION
    Inventor: Osamu Saruwatari
  • Patent number: 10600833
    Abstract: An image sensor is provided. The image sensor includes a visible light receiving portion and an infrared receiving portion. The visible light receiving portion is configured to receive a visible light. The infrared receiving portion is configured to receive infrared. The visible light receiving portion includes a color filter ball layer configured to collect the visible light. In some embodiments of the present invention, the infrared receiving portion includes an infrared pass filter ball layer configured to collect the infrared. In some other embodiments of the present invention, the infrared receiving portion includes a white filter ball layer configured to collect the infrared.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: March 24, 2020
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Yu-Jui Hsieh, Po-Nan Chen
  • Patent number: 10586825
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge, and a metal grid, including a metal shield that is coplanar with the metal grid, disposed proximate to a backside of the semiconductor material. The metal grid is optically aligned with the plurality of photodiodes to direct the image light into the plurality of photodiodes, and a contact pad is disposed in a trench in the semiconductor material. The contact pad is coupled to the metal shield to ground the metal shield.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 10, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Qin Wang, Gang Chen, Duli Mao
  • Patent number: 10580808
    Abstract: A photodetection device includes: a photoelectric converter generating charge; a first diffusion region having a first end connected to the photoelectric converter and a second end and extending in a first direction from the first end toward the second end; a second diffusion region having a third end connected to a first side surface, of the first diffusion region, which is along the first direction and a fourth end and extending in a second direction from the third end toward the fourth end; a first charge accumulator connected to the fourth end; a first gate electrode covering at least part of the first diffusion region; and a second gate electrode covering at least part of the second diffusion region. The second gate electrode covers a first portion of the first diffusion region without the first gate electrode intervention. The first portion is adjacent to the second diffusion region.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Panasonic Intellectual Property Management Co. Ltd.
    Inventors: Masayuki Takase, Sanshiro Shishido
  • Patent number: 10573682
    Abstract: A pixel array in an image sensor includes a first pixel group. The first pixel group includes unit pixels that include photoelectric conversion units and a first signal generation unit shared by the photoelectric conversion units. The first signal generation unit includes transfer transistors connected to the photoelectric conversion units, respectively, a first floating diffusion node connected to the transfer transistors, a plurality of driving transistors connected to the first floating diffusion node and connected in parallel with one another, and a plurality of selection transistors connected in parallel between a first output terminal and the plurality of driving transistors. The first output terminal outputs pixel signals that correspond to photo charges collected by the photoelectric conversion units, respectively. A number of the plurality of selection transistors is equal to a number of the plurality of driving transistors.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: February 25, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Sun Oh, Yi-Tae Kim, Yu-Jung Choi
  • Patent number: 10574929
    Abstract: Disclosed is an image sensor. The image sensor includes an active pixel sensor array including first to fourth pixel units sequentially arranged in a column direction, and each of the first to fourth pixel units is composed of a plurality of pixels. A first pixel group including the first and second pixel units is connected to a first column line, and a second pixel group including the third pixel unit and the fourth pixel unit is connected to a second column line. The image sensor includes a correlated double sampling circuit including first and second correlated double samplers and configured to convert a first sense voltage sensed from a selected pixel of the first pixel group and a second sense voltage sensed from a selected pixel of the second pixel group into a first correlated double sampling signal and a second correlated double sampling signal, respectively.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: February 25, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Minji Hwang, Hyosang Kim, Haesick Sul, Seung Hyun Lim
  • Patent number: 10566278
    Abstract: A computer implemented layout method for an integrated circuit (IC) structure and IC structure are provided. Such a method includes: placing a power supply rail pattern in a first device layer of the IC; bundling, for purposes of placement, a voltage level shifter and one or more inter-layer vias together as an integral unit; and placing the integral unit in the first device layer of the IC design such that one or more metal line patterns in the voltage level shifter are located parallel to albeit without overlapping the power supply rail pattern. The placing the integral unit forms a direct electrical connection channel between the voltage level shifter and a metal pattern in a second device layer of the IC design. At least one of the placing operations is performed using a layout generating machine.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: February 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Lin Chuang, Ching-Fang Chen, Jia-Jye Shen
  • Patent number: 10566367
    Abstract: The performances of a semiconductor device are improved. A semiconductor device has a transfer transistor and a photodiode. The photodiode has an n type semiconductor region, an n+ type semiconductor region, and a second p type semiconductor region surrounded by a first p type semiconductor region of an interpixel isolation region. The n+ type semiconductor region is formed on the main surface side of the semiconductor substrate, and the n type semiconductor region is formed under the n+ type semiconductor region via the second p type semiconductor region. In the channel length direction of the transfer transistor, in the n type semiconductor region, an n?? type semiconductor region having a lower impurity density than that of the n type semiconductor region is arranged, to improve the transfer efficiency of electric charges accumulated in the photodiode.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 18, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yotaro Goto, Takeshi Kamino, Fumitoshi Takahashi
  • Patent number: 10559614
    Abstract: An imaging device may have an array of image sensor pixels each having a photodiode and a floating diffusion node. Each image sensor pixel in the array may also include a dual conversion gain switch and a dual conversion gain capacitor that allows the image sensor pixel to operate in a low conversion gain mode during which the switch is turned on to share charge between the floating diffusion node and the dual conversion gain capacitor, and a high conversion gain mode in which the switch is turned off. During integration, the photodiode may generate more charge than can be held at the floating diffusion node. A buried channel may be provided beneath the dual conversion gain switch to provide a path along which the excess charge can be shared between the floating diffusion node and the dual conversion gain capacitor even when the dual conversion gain switch is off.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 11, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Minseok Oh
  • Patent number: 10522581
    Abstract: An image sensor includes a semiconductor substrate providing a plurality of pixel regions, a semiconductor photoelectric device disposed in each of the plurality of pixel regions, an organic photoelectric device disposed above the semiconductor photoelectric device, and a pixel circuit disposed below the semiconductor photoelectric device. The pixel circuit includes a plurality of driving transistors configured to generate a pixel voltage signal from an electric charge generated in the semiconductor photoelectric device and the organic photoelectric device. A driving gate electrode of at least one of the plurality of driving transistors has a region embedded in the semiconductor substrate.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: December 31, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Gwi-Deok Ryan Lee, Myung Won Lee, Tae Yon Lee, In Gyu Baek
  • Patent number: 10515994
    Abstract: Semiconductor devices, methods of manufacturing thereof, and image sensor devices are disclosed. In some embodiments, a semiconductor device comprises a semiconductor chip comprising an array region, a periphery region, and a through-via disposed therein. The semiconductor device comprises a guard structure disposed in the semiconductor chip between the array region and the through-via or between the through-via and a portion of the periphery region.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: December 24, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Tzu-Hsuan Hsu, Feng-Chi Hung, Min-Feng Kao
  • Patent number: 10510842
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOFSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 17, 2019
    Assignee: GREENTHREAD, LLC
    Inventor: G.R. Mohan Rao
  • Patent number: 10510793
    Abstract: A semiconductor device, and a method of fabrication, is introduced. In an embodiment, one or more passivation layers are formed over a first substrate. Recesses are formed in the passivation layers and a first plurality of bonding pads and a second plurality of bonding pads are formed in the recesses. In an embodiment, the first plurality of bonding pads have a first width and a first pitch, and the second plurality of bonding pads have the first width and are grouped into clusters. The first plurality of bonding pads and the second plurality of bonding pads in the first substrate are aligned to a third plurality of bonding pads in a second substrate and are bonded using a direct bonding method.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Szu-Ying Chen, Dun-Nian Yaung
  • Patent number: 10506188
    Abstract: A solid-state imaging device is capable of simplifying the pixel structure to reduce the pixel size and capable of suppressing the variation in the characteristics between the pixels when a plurality of output systems is provided. A unit cell includes two pixels. Upper and lower photoelectric converters and, transfer transistors and connected to the upper and lower photoelectric converters, respectively, a reset transistor, and an amplifying transistor form the two pixels. A full-face signal line is connected to the respective drains of the reset transistor and the amplifying transistor. Controlling the full-face signal line, along with transfer signal lines and a reset signal line, to read out signals realizes the simplification of the wiring in the pixel, the reduction of the pixel size, and so on.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: December 10, 2019
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Tomoyuki Umeda, Keiji Mabuchi, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Patent number: 10504956
    Abstract: An image sensor includes a substrate and a plurality of infrared pixels formed in a front side of the substrate and configured to detect infrared light incident on the front side of the substrate. Each of the infrared pixels includes a photodiode, a region free of implants located above the photodiode, and a photogate formed over the substrate and above the photodiode. The image sensor also includes a plurality of color pixels dispersed among the infrared pixels, where each of the color pixels includes a pinned photodiode and is configured to detect visible light. The photodiode of each of the infrared pixels can include a deep charge-accumulation region underlying the pinned photodiode(s) of one or more neighboring color pixel(s). Methods of manufacturing also described and include forming the deep charge-accumulation regions and associated elements prior to forming any implant-blocking elements (e.g., polysilicon photogates) over the substrate.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 10, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Takayuki Goto, Dajiang Yang, Keiji Mabuchi, Sohei Manabe
  • Patent number: 10497729
    Abstract: An image sensor includes a substrate having a first region and a second region. The image sensor further includes a dielectric layer over the substrate. The image sensor further includes a conductive layer over the dielectric layer, wherein in the first region the conductive layer has a grid shape and in the second region a portion of the conductive layer is concave toward the substrate. The image sensor further includes a protective layer, wherein the protective layer is over the conductive layer in the first region, and over a top surface and along sidewalls of the conductive layer in the second region.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Wu, Chun-Chih Lin, Jian-Shin Tsai, Min-Hui Lin, Wen-Shan Chang, Yi-Ming Lin, Chao-Ching Chang, C. H. Chen, Chin-Szu Lee, Y. T. Tsai
  • Patent number: 10490589
    Abstract: An image sensor module and method for forming the same are provided. A first side of a first wafer is attached to a first carrier wafer, the first wafer containing a plurality of first chips. A permanent bonding layer is formed on a second side of the first wafer. The permanent bonding layer includes at least one of a patterned bonding layer and a transparent bonding layer. A second chip is bonded with each first chip of the first wafer via the permanent bonding layer there-between. The first chip is one of an image sensor chip and a transparent filter chip, the second chip is the other of the image sensor chip and the transparent filter chip, and the image sensor chip has a photosensitive region facing the transparent filter chip.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 26, 2019
    Assignee: Ningbo Semiconductor International Corporation
    Inventor: Mengbin Liu
  • Patent number: 10483307
    Abstract: Provided is an imaging device including a substrate; a pixel array in which pixels are arranged in a two-dimensional manner on the substrate, each pixel including a photoelectric conversion unit that accumulates charges generated from an incident light, a charge holding unit that holds the charges transferred from the photoelectric conversion unit, and an amplification unit that receives the charges transferred from the charge holding unit; and a light-shielding portion arranged to cover at least the charge holding unit. The photoelectric conversion unit and the charge holding unit in each pixel are aligned in a first direction in a top view orthogonal to the substrate. The charge holding units of the neighboring pixels are aligned in a second direction intersecting the first direction in the top view. The light-shielding portion extends in the second direction and over the charge holding units, and covers a region between the charge holding units.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 19, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Sekine, Yusuke Onuki, Masahiro Kobayashi
  • Patent number: 10475840
    Abstract: A pixel sensor array includes a plurality of surface pixel sensors disposed in a substrate, a layer of dielectric material formed over the surface of the pixel sensors, a plurality of apertures formed in the dielectric layer each aligned with one of the surface pixel sensors and having an inner side wall. A lining layer is formed on the inner side wall of each aperture and is substantially fully reflective to visible light. The lining layer is spaced apart from the surface of the substrate and has a smaller cross-sectional area than a cross-sectional area of each surface pixel sensor. A filler material substantially transparent to visible light is disposed inside of the reflective lining layer and has a top surface lying in the plane with the top surface of the layer of dielectric material. A microlens is disposed over the top surface of each aperture.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: November 12, 2019
    Assignee: Foveon, Inc.
    Inventor: Shrinath Ramaswami
  • Patent number: 10468463
    Abstract: A display device including a lower structure with a substrate and organic light emitting diode (OLED) pixels and an upper structure with a cover glass, overcoat layer, and a reflective layer. The upper structure is adjoined to the lower structure. The cover glass includes a viewing surface of the display device and covers the OLED pixels. The OLED pixels emit light towards the viewing surface of the display device. An overcoat layer on the cover glass is on a surface opposite to the viewing surface. The reflective layer on the overcoat layer reflects light emitted from the OLED pixels towards the viewing surface.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 5, 2019
    Assignee: Facebook Technologies, LLC
    Inventor: Dong Chen
  • Patent number: 10456022
    Abstract: An imaging device includes: a first chip including a light receiving unit, and a read circuit; a second chip including a timing control circuit, an A/D conversion circuit, and a cable transmission circuit; and a connection unit configured to connect the first and the second chips. The read circuit includes a column read circuit and a horizontal selection circuit, and a vertical selection circuit. The connection unit of the first chip is provided in a first area along a side of the rectangular light receiving unit, and in a second area adjacent to the column read circuit, the horizontal selection circuit, and the vertical selection circuit. The connection unit of the second chip is provided in a third area around the timing control circuit, the A/D conversion circuit, and the cable transmission circuit and in a fourth area adjacent to the timing control circuit and the A/D conversion circuit.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: October 29, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Takatoshi Igarashi, Noriyuki Fujimori, Makoto Ono, Masashi Saito, Satoru Adachi, Nana Akahane, Takanori Tanaka, Katsumi Hosogai
  • Patent number: 10461110
    Abstract: An image pickup element includes: a semiconductor substrate including a photoelectric conversion section for each pixel; a pixel separation groove provided in the semiconductor substrate; and a fixed charge film provided on a light-receiving surface side of the semiconductor substrate, wherein the fixed charge film includes a first insulating film and a second insulating film, the first insulating film being provided contiguously from the light-receiving surface to a wall surface and a bottom surface of the pixel separation groove, and the second insulating film being provided on a part of the first insulating film, the part corresponding to at least the light-receiving surface.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 29, 2019
    Assignee: Sony Corporation
    Inventors: Shuji Manda, Susumu Hiyama, Yasuyuki Shiga
  • Patent number: 10462396
    Abstract: An imaging device includes: a pixel; a signal line electrically connected to the pixel; and a first and second sample-and-hold circuits electrically connected to the signal line. The pixel includes: a photoelectric converter that generates signal charge; a charge accumulation region that accumulates the signal charge; a reset transistor that resets a voltage of the charge accumulation region; and an amplifier transistor that amplifies a signal voltage. The first sample-and-hold circuit includes: a first switch that is electrically connected to the signal line and has input-output characteristics in which an output is clipped at a clipping voltage with respect to an input exceeding the clipping voltage; and a first capacitor electrically connected to the signal line through the first switch. The second sample-and-hold circuit includes: a second switch electrically connected to the signal line; and a second capacitor electrically connected to the signal line through the second switch.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: October 29, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Makoto Shouho, Masaaki Yanagida
  • Patent number: 10453878
    Abstract: A photoelectric conversion apparatus includes a semiconductor substrate including recessed portions and insulators disposed on the respective recessed portions. The semiconductor substrate includes a first-conductivity-type first semiconductor region, a second-conductivity-type second semiconductor region that is of a conductivity type different from the first-conductivity-type and that is formed in the first semiconductor region, a second-conductivity-type third semiconductor region in contact with the second semiconductor region on a surface of the semiconductor substrate, and a first-conductivity-type fourth semiconductor region that includes the recessed portions. The second semiconductor region and the third semiconductor region are surrounded by the fourth semiconductor region on the surface of the semiconductor substrate. The insulators on the recessed portions extend through the fourth semiconductor region and are in contact with the first semiconductor region.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: October 22, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Suzuki, Masanori Ogura, Takanori Suzuki, Jun Iba
  • Patent number: 10453885
    Abstract: The present disclosure relates to a solid-state imaging apparatus and an electronic device capable of reducing a product yield and reliability risk. By forming a contact by forming an opening in an insulating film on a back surface of a peripheral circuit region without connecting a light-shielding metal on the peripheral circuit region to the ground (GND), the light-shielding metal is connected to a Si substrate. Furthermore, a light-shielding metal on a pixel region is connected to the ground (GND). Therefore, by disposing an isolated region (insulating region) where no metal is formed between the light-shielding metal on the pixel region and the light-shielding metal on the peripheral circuit region, the light-shielding metal on the pixel region does not cause a short circuit with the light-shielding metal on the peripheral circuit region. The present disclosure can be applied to, for example, a CMOS solid-state imaging apparatus used for an imaging apparatus such as a camera.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: October 22, 2019
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Shin Iwabuchi, Kazuhiro Satou, Kensuke Motozono, Masatoshi Iwamoto
  • Patent number: 10438981
    Abstract: An image sensor, comprising: a photoelectric conversion element; a transfer transistor formed over the photoelectric conversion element; and a reset transistor formed over the photoelectric conversion element, formed substantially at the same level as the transfer transistor, and spaced apart from the transfer transistor by a gap, wherein the transfer transistor and the reset transistor are trench-type transistors and are symmetrical structure to each other with respect to the gap, wherein the photoelectric conversion element is a continuous layer under both the transfer transistor and the reset transistor, and is completely below the transfer transistor and the reset transistor.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 8, 2019
    Assignee: SK Hynix Inc.
    Inventors: Pyong-Su Kwag, Young-Jun Kwon, Cha-Young Lee
  • Patent number: 10424613
    Abstract: A solid-state imaging device has: a counter dope region of a first conductivity type which is formed so as to surround a drain region of a transfer transistor of the solid-state imaging device and in which impurity concentration of the first conductivity type is lower than that of the drain region; and an isolating region of a second conductivity type which is formed in a deep region below channel regions of a plurality of transistors and in which impurity concentration of the second conductivity type is higher than that of a well region, wherein a depth position of a lower surface of the counter dope region is deeper than a depth position of a lower surface of a buried channel region.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 24, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Hiromasa Tsuboi, Fumihiro Inui, Masahiro Kobayashi
  • Patent number: 10424568
    Abstract: A method of forming a device including a SPAD detector and a BSI visible light sensor positioned on different planes, the device exhibiting improved resolution and pixel density are provided. Embodiments include a photodiode for detecting visible light; and a SPAD detector for detecting IR radiation, wherein the photodiode and the SPAD detector are on different planes.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: September 24, 2019
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Kian Ming Tan, Khee Yong Lim, Elgin Kiok Boone Quek
  • Patent number: 10411049
    Abstract: An optical sensor in which photo currents generated by light in the visible and infrared wavelength ranges are to be tapped separately at pn junctions of active regions. The active regions include n- or p-doping and are formed in a p-substrate 52. The optical sensor comprises a surface-near first active region 12, and a second active region 14 subjacent to the first active region 12 and forming together with the first active region 12 a pn junction 22 that is short-circuited. A third active region 20 is subjacent to the second active region 14 and forming together with the second active region a further pn junction 23. Together with a fourth active region 24 subjacent to the second active region 20, a further pn junction 25, 29 is formed together with the third active region 20 and the substrate 52.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: September 10, 2019
    Assignee: X-FAB Semiconductor Foundries GmbH
    Inventor: Daniel Gaebler
  • Patent number: 10411061
    Abstract: A semiconductor structure and a fabrication method are provided. The fabrication method includes: providing a substrate, containing first doping ions and including a pixel region for forming a pixel structure; forming a deeply doped region, in the photosensitive region of the substrate and containing second doping ions; forming a floating diffusion area in the floating diffusion region of the substrate and containing third doping ions; forming a gate structure on the substrate at the junction of the photosensitive region and the floating diffusion region; forming a sidewall film covering the gate structure and the substrate; forming a sidewall spacer; forming a first doped region in the floating diffusion region on one side of the gate structure; forming a metal connection layer on the first doped region; forming an interlayer dielectric layer on the substrate; and forming a source/drain contact plug in the interlayer dielectric layer.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: September 10, 2019
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: De Kui Qi
  • Patent number: 10388617
    Abstract: The present disclosure relates generally to flip chip technology and more particularly, to a method for fabricating a mechanically anchored controlled collapse chip connection (C4) pad on a semiconductor structure and a structure formed thereby. In an embodiment, a method is disclosed that includes forming a C4 pad on a patterned dielectric layer having grooves therein, the grooves providing an interfacial surface area between the patterned dielectric layer and the C4 pad sufficient to inhibit the C4 pad from delaminating during thermal expansion or contraction.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 20, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Erdem Kaltalioglu, Ping-Chuan Wang, Ronald Gene Filippi, Jr.
  • Patent number: 10388701
    Abstract: A stacked image sensor and a method of manufacturing the same are provided. The stacked image sensor includes a lower photoelectric conversion layer, a micro-lens provided on the lower photoelectric conversion layer, and an upper photoelectric conversion layer provided on the micro-lens. The lower photoelectric conversion layer and the upper photoelectric conversion layer are different types of photoelectric conversion layers.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: August 20, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sookyoung Roh, Seokho Yun, Sunghyun Nam
  • Patent number: 10386500
    Abstract: Provided is a technique that reduces patterning defects of data lines in an imaging panel and drain electrodes in thin film transistors without lowering the aperture ratio of the imaging panel. The imaging panel captures scintillation light, which are X-rays that have passed through a specimen and been converted by a scintillator. The imaging panel includes a plurality of gate lines and a plurality of data lines. The imaging panel includes, in each of the pixels, a conversion element that converts scintillation light to electric charge, and a thin film transistor connected to the gate line, data line, and conversion element. A drain electrode of the thin film transistor is formed such that edges of the drain electrode near the data line are more inside the pixel than edges of the conversion element near the data line.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: August 20, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhide Tomiyasu, Shigeyasu Mori
  • Patent number: 10381396
    Abstract: The present invention aims at inhibiting the occurrence of thinning or disconnecting of the bias wiring line in an imaging panel and X-ray imaging device, thereby inhibiting signal delays, signal transmission defects, and the like. A second contact hole electrically connecting an electrode of a photodiode to a bias wiring line penetrates a second interlayer insulating film and photosensitive resin layer. In the second contact hole, an area of a region where the photosensitive resin layer opens is smaller than an area of a region where the second interlayer insulating film opens.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 13, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhide Tomiyasu, Shigeyasu Mori