With Means For Preventing Charge Leakage Due To Minority Carrier Generation (e.g., Alpha Generated Soft Error Protection Or "dark Current" Leakage Protection) Patents (Class 257/297)
  • Patent number: 8227846
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Andrew E. Carlson
  • Patent number: 8193568
    Abstract: Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: June 5, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 8164128
    Abstract: Techniques for forming a magnetic device are provided. In one aspect, a magnetic device includes a magnetic tunnel junction and a dielectric layer formed over at least a portion of the magnetic tunnel junction. The dielectric layer is configured to have an underlayer proximate to the magnetic tunnel junction, and an overlayer on a side of the underlayer opposite the magnetic tunnel junction. The magnetic device further includes a via hole running substantially vertically through the dielectric layer and being self-aligned with the magnetic tunnel junction.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sivananda K. Kanakasabapathy, Michael C. Gaidis
  • Patent number: 8159014
    Abstract: A silicon-on-insulator device has a localized biasing structure formed in the insulator layer of the SOI. The localized biasing structure includes a patterned conductor that provides a biasing signal to distinct regions of the silicon layer of the SOI. The conductor is recessed into the insulator layer to provide a substantially planar interface with the silicon layer. The conductor is connected to a bias voltage source. In an embodiment, a plurality of conductor is provided that respectively connected to a plurality of voltage sources. Thus, different regions of the silicon layer are biased by different bias signals.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, John K. Zahurak
  • Publication number: 20120074478
    Abstract: As for a bypass capacitor, a first capacitor insulating film, together with a tunnel insulating film of a storage element, is formed of a first insulating film, a first electrode being a lower electrode, together with floating gate electrodes of the storage element, is formed of a doped·amorphous silicon film (a crystallized one), a second capacitor insulating film, together with a gate insulating film of transistors of 5 V in a peripheral circuit, is formed of a second insulating film, and a second electrode being an upper electrode, together with control gate electrodes of the storage element and gate electrodes of the transistors in the peripheral circuit, is formed of a polycrystalline silicon film.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 29, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Tatsuya Sugimachi
  • Patent number: 8143664
    Abstract: A semiconductor device includes a bit line that is provided in a semiconductor substrate, a silicide layer that has side faces and a bottom face surrounded by the bit line and is provided within the bit line, an ONO film that is provided on the semiconductor substrate, and sidewalls that are in contact with the side faces of a trapping layer in the ONO film over the portions of the bit line located on both sides of the silicide layer, the sidewalls being formed with silicon oxide films including phosphorus.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: March 27, 2012
    Assignee: Spansion LLC
    Inventors: Yukihiro Utsuno, Namjin Heo
  • Patent number: 8138563
    Abstract: Back-end-of-line (BEOL) circuit structures and methods are provided for blocking externally-originating or internally-originating electromagnetic edge interference. One such BEOL circuit structure includes a semiconductor substrate supporting one or more integrated circuits, and multiple BEOL layers disposed over the semiconductor substrate. The multiple BEOL layers extend to an edge of the circuit structure and include at least one vertically-extending conductive pattern disposed adjacent to the edge of the circuit structure. The vertically-extending conductive pattern is defined, at least partially, by a plurality of elements disposed in the multiple BEOL layers. The plurality of elements are uniformly arrayed at the edge of the circuit structure in a first direction or a second direction throughout at least a portion thereof.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Choongyeun Cho, Daeik Kim, Jonghae Kim, Moon Ju Kim, James R. Moulic
  • Patent number: 8129771
    Abstract: In a full CMOS SRAM having a lateral type cell (memory cell having three partitioned wells arranged side by side in a word line extending direction and longer in the word line direction than in the bit line direction) including first and second driver MOS transistors, first and second load MOS transistors and first and second access MOS transistors, two capacitors are arranged spaced apart from each other on embedded interconnections to be storage nodes, with lower and upper cell plates cross-coupled to each other.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Takahiro Yokoyama
  • Patent number: 8125010
    Abstract: A semiconductor device is proposed in which signal delay due to compensation capacitance elements in peripheral circuit element regions is eliminated. The semiconductor device includes: a first region including memory cells; a second region 10 including a functional circuit; cell capacitors formed in the first region; and compensation capacitance elements 36 to 38 formed in the second region 10, wherein the compensation capacitance elements 36 to 38 each include a lower electrode 36, a capacitance insulating film 37, and an upper electrode 38, the lower electrode 36, capacitance insulating film 37, and upper electrode 38 being the same as those of the cell capacitors, and wherein the compensation capacitance elements are formed over an upper layer of the second region 10 excluding upper layer portions of drain diffusion layers 44, 46 or gate electrodes 32 of transistors in the functional circuit.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: February 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Mizushima
  • Patent number: 8115243
    Abstract: A vertical transistor having an annular transistor body surrounding a vertical pillar, which can be made from oxide. The transistor body can be grown by a solid phase epitaxial growth process to avoid difficulties with forming sub-lithographic structures via etching processes. The body has ultra-thin dimensions and provides controlled short channel effects with reduced need for high doping levels. Buried data/bit lines are formed in an upper surface of a substrate from which the transistors extend. The transistor can be formed asymmetrically or offset with respect to the data/bit lines. The offset provides laterally asymmetric source regions of the transistors. Continuous conductive paths are provided in the data/bit lines which extend adjacent the source regions to provide better conductive characteristics of the data/bit lines, particularly for aggressively scaled processes.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 14, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8067289
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device. A semiconductor device may include an epitaxial layer over a semiconductor substrate, a first well region over a epitaxial layer, a first isolation layer and/or a third isolation layer at opposite sides of said first well region and/or a second isolation layer over a first well region between first and third isolation layers. A semiconductor device may include a gate over a second isolation layer. A semiconductor device may include a second well region over a first well region between a third isolation layer and a gate, a first ion-implanted region over a second well region between a third isolation layer and a gate, and/or a second ion-implanted region between a first ion-implanted region and a gate. A semiconductor device may include an accumulation channel between a second well region and a gate.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 29, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Il-Yong Park
  • Patent number: 8050066
    Abstract: The present invention aims to enhance the reliability of a semiconductor device having first through fourth capacitive elements. The first through fourth capacitive elements are disposed over a semiconductor substrate. A series circuit of the first and second capacitive elements and a series circuit of the third and fourth capacitive elements are coupled in parallel between first and second potentials. Lower electrodes of the first and third capacitive elements are respectively formed by a common conductor pattern and coupled to the first potential. Lower electrodes of the second and fourth capacitive elements are respectively formed by a conductor pattern of the same layer as the above conductor pattern and coupled to the second potential. Upper electrodes of the first and second capacitive elements are respectively formed by a common conductor pattern and brought to a floating potential.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Keiichi Haraguchi, Toshikazu Matsui, Satoshi Kamei, Hisanori Ito
  • Patent number: 8034684
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Soo Park
  • Patent number: 8003471
    Abstract: Systems and methods for raised source/drain with super steep retrograde channel. In accordance with a first embodiment of the present invention, in one embodiment, a semiconductor device comprises a substrate comprising a surface and a gate oxide disposed above the surface comprising a gate oxide thickness. The semiconductor device further comprises a super steep retrograde channel region formed at a depth below the surface. The depth is about ten to thirty times the gate oxide thickness. Embodiments in accordance with one embodiment may provide a more desirable body biasing voltage to threshold voltage characteristic than is available under the conventional art.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: August 23, 2011
    Inventors: James B. Burr, Archisman Bagchi, Jawad Nasrullah
  • Patent number: 7986006
    Abstract: A semiconductor fabrication method includes forming a semiconductor structure including source/drain regions disposed on either side of a channel body wherein the source/drain regions include a first semiconductor material and wherein the channel body includes a migration barrier of a second semiconductor material. A gate dielectric overlies the semiconductor structure and a gate module overlies the gate dielectric. An offset in the majority carrier potential energy level between the first and second semiconductor materials creates a potential well for majority carriers in the channel body. The migration barrier may be a layer of the second semiconductor material over a first layer of the first semiconductor material and under a capping layer of the first semiconductor material. In a one dimensional migration barrier, the migration barrier extends laterally through the source/drain regions while, in a two dimensional barrier, the barrier terminates laterally at boundaries defined by the gate module.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: July 26, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, James D. Burnett
  • Patent number: 7965540
    Abstract: A digital logic storage structure includes cross coupled first and second complementary metal oxide semiconductor (CMOS) inverters formed on a semiconductor substrate, the CMOS inverters including a first storage node and a second storage node that is the logical complement of the first storage node; both of the first and second storage nodes each selectively coupled to a deep trench capacitor through a switching transistor, with the switching transistors controlled by a common capacitance switch line coupled to gate conductors thereof; wherein, in a first mode of operation, the switching transistors are rendered nonconductive so as to isolate the deep trench capacitors from the inverter storage nodes and, in a second mode of operation, the switching transistors are rendered conductive so as to couple the deep trench capacitors to their respective storage nodes, thereby providing increased resistance of the storage nodes to single event upsets (SEUs).
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Toshiharu Furukawa, David Horak, Charles W. Koburger, III, Jack A. Mandelman
  • Publication number: 20110127574
    Abstract: A device for preventing current-leakage is located between a transistor and a capacitor of a memory cell. The two terminals of the device for preventing current-leakage are respectively connected with a slave terminal of the transistor and an electric pole of the capacitor. The device for preventing current-leakage has at least two p-n junctions. The device for preventing current-leakage is a lateral silicon controlled rectifier, a diode for alternating current, or a silicon controlled rectifier. By utilizing the driving characteristic of the device for preventing current-leakage, electric charge stored in the capacitor hardly passes through the device for preventing current-leakage when the transistor is turned off to improve the current-leakage problem.
    Type: Application
    Filed: April 12, 2010
    Publication date: June 2, 2011
    Applicant: INOTERA MEMORIES, INC.
    Inventors: SHIN BIN HUANG, CHUNG-LIN HUANG, CHING-NAN HSIAO, TZUNG HAN LEE
  • Patent number: 7939872
    Abstract: A multi-dielectric film including at least one first dielectric film that is a composite film made of zirconium-hafnium-oxide and at least one second dielectric film that is a metal oxide film made of amorphous metal oxide. Adjacent ones of the dielectric films are made of different materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Lee, Sang-Yeol Kang, Ki-Vin Lim, Hoon-Sang Choi, Eun-Ae Chung
  • Patent number: 7919800
    Abstract: A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell includes forming the memory cell in an active area of a substantially physically isolated portion of the bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 5, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Chandra V. Mouli
  • Patent number: 7915684
    Abstract: To provide a structure and a manufacturing method for efficiently forming a transistor to which tensile strain is preferably applied and a transistor to which compressive strain is preferably applied over the same substrate when stress is applied to a semiconductor layer in order to improve mobility of the transistors in a semiconductor device. Plural kinds of transistors which are separated from a single-crystal semiconductor substrate and include single-crystal semiconductor layers bonded to a substrate having an insulating surface with a bonding layer interposed therebetween are provided over the same substrate. One of the transistors uses a single-crystal semiconductor layer as an active layer, to which tensile strain is applied. The other transistors use single-crystal semiconductor layers as active layers, to which compressive strain using part of heat shrink generated by heat treatment of the base substrate after bonding is applied.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 29, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshifumi Tanada
  • Patent number: 7911005
    Abstract: A semiconductor device having a DRAM region and a logic region embedded together therein, including a first transistor formed in a DRAM region, and having a first source/drain region containing arsenic and phosphorus as impurities; and a second transistor formed in a logic region, and having a second source/drain region containing at least arsenic as an impurity, wherein each of the first source/drain region and the second source/drain region has a silicide layer respectively formed in the surficial portion thereof, and the first source/drain region has a junction depth which is determined by phosphorus and is deeper than the junction depth of the second source/drain region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 22, 2011
    Assignee: RENESAS Electronics Corporation
    Inventor: Hiroki Shirai
  • Patent number: 7902590
    Abstract: The present invention provides a system comprising a semiconductor device, a method of controlling the semiconductor device in the system, and a method of manufacturing the semiconductor device in the system. The semiconductor device includes: a semiconductor region located in a semiconductor layer formed on an isolating layer; an ONO film on the semiconductor region; bit lines on either side of the semiconductor region, which are located in the semiconductor layer, and are in contact with the isolating layer; a device isolating region on two different sides of the semiconductor region from the sides on which the bit lines are located, the device isolating region being in contact with the isolating layer; and a first voltage applying unit that is coupled to the semiconductor region. In this semiconductor device, the semiconductor region is surrounded by the bit lines and the device isolating region, and is electrically isolated from other semiconductor regions.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 8, 2011
    Assignee: Spansion LLC
    Inventor: Yukio Hayakawa
  • Patent number: 7898013
    Abstract: Methods and systems for optimal decoupling capacitance in a dual-voltage power-island architecture. In low-voltage areas of the chip, accumulation capacitors of two different types are used for decoupling, depending on whether the capacitor is located in an area which is always-on or an area which is conditionally powered.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 1, 2011
    Assignee: SanDisk Corporation
    Inventors: Brian Cheung, Emmanuel De Muizon
  • Patent number: 7881135
    Abstract: A test setup for estimating the critical charge of a circuit under test (CUT) uses a charge injection circuit having a switched capacitor that is selectively connected to a node of the CUT. A voltage measurement circuit measures the voltage at a tap in the charge injection circuit before and after the charge is injected. When the injected charge causes an upset in the logical state of the CUT, the critical charge is calculated as the product of the voltage difference and the known capacitance of the capacitor. In one embodiment, (NMOS drain strike simulation) the amount of charge injected is controlled by a variable pulse width generator gating the switch of the charge injection circuit. In another embodiment (PMOS drain strike simulation) the amount of charge injected is controlled by a variable voltage supply selectively connected to the charge storage node.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, Alan J. Drake, Fadi H. Gebara, John P. Keane, AJ Kleinosowski
  • Patent number: 7851285
    Abstract: A method for fabricating a non-volatile memory device includes forming a charge tunneling layer composed of a hafnium silicate (HfSixOyNz) layer on a semiconductor substrate. A charge trapping layer composed of a hafnium oxide nitride (HfOxNy) layer is formed on the charge tunneling layer. A charge blocking layer composed of a hafnium oxide layer is formed on the charge trapping layer. A gate layer is formed on the charge blocking layer. A non-volatile memory device fabricated by the method is also disclosed.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chang Soo Park
  • Patent number: 7847365
    Abstract: A MOSFET device with an isolation structure for a monolithic integration is provided. A P-type MOSFET includes a first N-well disposed in a P-type substrate, a first P-type region disposed in the first N-well, a P+ drain region disposed in the first P-type region, a first source electrode formed with a P+ source region and an N+ contact region. The first N-well surrounds the P+ source region and the N+ contact region. An N-type MOSFET includes a second N-well disposed in a P-type substrate, a second P-type region disposed in the second N-well, an N+drain region disposed in the second N-well, a second source electrode formed with an N+ source region and a P+ contact region. The second P-type region surrounds the N+ source region and the P+ contact region. A plurality of separated P-type regions is disposed in the P-type substrate to provide isolation for transistors.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: December 7, 2010
    Assignee: System General Corp.
    Inventors: Chih-Feng Huang, Tuo-Hsin Chien, Jenn-Yu Lin, Ta-yung Yang
  • Patent number: 7847849
    Abstract: A solid-state imaging device includes: a plurality of light-receiving elements which are arranged by rows and columns. A driving unit performs a driving, so that a signal packet and a plurality of dummy packets in an identical column are mixed together into a mixed packet in each holding units, charges of the mixed packet are held in a hold unit, the held charges of the mixed packet are vertically transferred to a horizontal transfer unit so that the mixed packet is mixed with a mixed packet of a different hold unit which is vertically transferred from the different hold unit to the horizontal transfer unit.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: December 7, 2010
    Assignee: Panasonic Corporation
    Inventor: Yoshiaki Kato
  • Patent number: 7821110
    Abstract: Back end of line (BEOL) circuit structures and methods are provided for blocking externally-originating or internally-originating electromagnetic interference. One such BEOL circuit structure includes one or more semiconductor substrates supporting one or more integrated circuits, and one or more BEOL layers disposed over the semiconductor substrate(s). At least one BEOL layer includes a conductive pattern defined at least partially by a plurality of elements arrayed in a first direction and a second direction throughout at least a portion thereof. The plurality of elements are sized and positioned in at least one of the first and second directions to block electromagnetic interference of a particular wavelength from passing therethrough. In one implementation, a first conductive pattern of a first BEOL layer polarizes electromagnetic interference, and a second conductive pattern of a second BEOL layer blocks the polarized electromagnetic interference.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dae Ik Kim, Jonghae Kim, Moon Ju Kim, Choongyeun Cho
  • Patent number: 7791169
    Abstract: Disclosed is a semiconductor structure that incorporates a capacitor for reducing the soft error rate of a device within the structure. The multi-layer semiconductor structure includes an insulator-filled deep trench isolation structure that is formed through an active silicon layer, a first insulator layer, and a first bulk layer and extends to a second insulator layer. The resulting isolated portion of the first bulk layer defines the first capacitor plate. A portion of the second insulator layer that is adjacent the first capacitor plate functions as the capacitor dielectric. Either the silicon substrate or a portion of a second bulk layer that is isolated by a third insulator layer and another deep trench isolation structure can function as the second capacitor plate. A first capacitor contact couples, either directly or via a wire array, the first capacitor plate to a circuit node of the device in order to increase the critical charge, Qcrit, of the circuit node.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: John M. Aitken, Ethan H. Cannon, Philip J. Oldiges, Alvin W. Strong
  • Patent number: 7791123
    Abstract: A deep trench containing a doped semiconductor fill portion having a first conductivity type doping and surrounded by a buried plate layer having a second conductivity type doping at a lower portion is formed in a semiconductor layer having a doping of the first conductivity type. A doped well of the second conductivity type abutting the buried plate layer is formed. The doped semiconductor fill portion functions as a temporary reservoir for electrical charges of the first conductivity type that are generated by a radiation particle, and the buried plate layer functions as a temporary reservoir for electrical charges of the second conductivity type. The buried plate layer and the doped semiconductor fill portion forms a capacitor, and provides protection from soft errors to devices formed in the semiconductor layer or the doped well.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ethan H. Cannon, John E. Barth, Jr., Kerry Bernstein
  • Patent number: 7791122
    Abstract: In a full CMOS SRAM having a lateral type cell (memory cell having three partitioned wells arranged side by side in a word line extending direction and longer in the word line direction than in the bit line direction) including first and second driver MOS transistors, first and second load MOS transistors and first and second access MOS transistors, two capacitors are arranged spaced apart from each other on embedded interconnections to be storage nodes, with lower and upper cell plates cross-coupled to each other.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 7, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Takahiro Yokoyama
  • Patent number: 7781283
    Abstract: A method of manufacturing a dynamic random access memory cell includes: forming a substrate having an insulating region over a conductive region; forming a fin of a fin-type field effect transistor (FinFET) device over the insulating region; forming a storage capacitor at a first end of the fin; and forming a back-gate at a lateral side of the fin. The back-gate is in electrical contact with the conductive region and is structured and arranged to influence a threshold voltage of the fin.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7759715
    Abstract: Some embodiments include memory cells that contain a dynamic random access memory (DRAM) element and a nonvolatile memory (NVM) element. The DRAM element contains two types of DRAM nanoparticles that differ in work function. The NVM contains two types of NVM nanoparticles that differ in trapping depth. The NVM nanoparticles may be in vertically displaced charge-trapping planes. The memory cell contains a tunnel dielectric, and one of the charge-trapping planes of the NVM may be further from the tunnel dielectric than the other. The NVM charge-trapping plane that is further from the tunnel dielectric may contain larger NVM nanoparticles than the other NVM charge-trapping plane. The DRAM element may contain a single charge-trapping plane that has both types of DRAM nanoparticles therein. The memory cells may be incorporated into electronic systems.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: July 20, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7759669
    Abstract: A phase change memory element with phase change electrodes, and method of making the same. Exemplary embodiments include a phase change bridge, including a bottom contact layer, a first insulating layer disposed on the bottom contact layer, a first phase change region disposed on the bottom contact layer adjacent the first insulating layer, a second phase change region disposed on the bottom contact layer adjacent the first insulating layer, wherein the first insulating layer thermally and electrically isolates the first and second phase change regions, and a third phase change region disposed on each of the first and second phase change regions, each of the third phase change regions isolated from one another by a conductor layer disposed on the first insulating layer.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventor: Geoffrey W. Burr
  • Patent number: 7732279
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics, Co., Ltd
    Inventor: Joon-Soo Park
  • Patent number: 7719034
    Abstract: A semiconductor device having an improved gate process margin includes two active regions spaced apart from each other on a semiconductor substrate and respectively having bent sides with recesses and protrusions corresponding to each other, and two line-shaped gate patterns respectively formed in the longitudinal directions of the active regions. A gap at which the two gate patterns are spaced apart from each other by the recesses and the protrusions in the active regions is relatively narrower by a width difference between the recesses and the protrusions.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: May 18, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyoung Soon Yune
  • Patent number: 7700985
    Abstract: Ferroelectric memory using multiferroics is described. The multiferroic memory includes a substrate having a source region, a drain region and a channel region separating the source region and the drain region. An electrically insulating layer is adjacent to the source region, drain region and channel region. A data storage cell having a composite multiferroic layer is adjacent to the electrically insulating layer. The electrically insulating layer separated the data storage cell form the channel region. A control gate electrode is adjacent to the data storage cell. The data storage cell separates at least a portion of the control gate electrode from the electrically insulating layer.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 20, 2010
    Assignee: Seagate Technology LLC
    Inventors: Haiwen Xi, Wei Tian, Yang Li, Insik Jin, Song S. Xue
  • Patent number: 7700984
    Abstract: It is an object of the present invention to provide a semiconductor device capable of additionally recording data at a time other than during manufacturing and preventing forgery due to rewriting and the like. Moreover, another object of the present invention is to provide an inexpensive, nonvolatile, and highly-reliable semiconductor device. A semiconductor device includes a first conductive layer, a second conductive layer, and an organic compound layer between the first conductive layer and the second conductive layer, wherein the organic compound layer can have the first conductive layer and the second conductive layer come into contact with each other when Coulomb force generated by applying potential to one or both of the first conductive layer and the second conductive layer is at or over a certain level.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventor: Mikio Yukawa
  • Patent number: 7683442
    Abstract: Systems and methods for raised source/drain with super steep retrograde channel. In accordance with a first embodiment of the present invention, in one embodiment, a semiconductor device comprises a substrate comprising a surface and a gate oxide disposed above the surface comprising a gate oxide thickness. The semiconductor device further comprises a super steep retrograde channel region formed at a depth below the surface. The depth is about ten to thirty times the gate oxide thickness. Embodiments in accordance with the present invention may provide a more desirable body biasing voltage to threshold voltage characteristic than is available under the conventional art.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 23, 2010
    Inventors: James B. Burr, Archisman Bagchi, Jawad Nasrullah
  • Patent number: 7651908
    Abstract: A method of fabricating an image sensor which reduces fabricating costs through simultaneous formation of capacitor structures and contact structures may be provided. The method may include forming a lower electrode on a substrate, forming an interlayer insulating film on the substrate, the interlayer insulating film may have a capacitor hole to expose a first portion of the lower electrode.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Gil-Sang Yoo, Byung-Jun Park
  • Patent number: 7646052
    Abstract: A semiconductor device in which a DRAM and a SRAM are mixedly mounted is provided. The DRAM and the SRAM have a stack-type structure in which a bitline is formed below a capacitive element. A cross couple connection of the SRAM is formed in a layer or below the layer in which a capacitive lower electrode of the DRAM is formed and in a layer or above the layer in which the bitline is formed. For example, the cross couple connection of the SRAM is formed in a same layer as a capacitive contact.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 12, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Takami Nagata, Masaru Ushiroda
  • Patent number: 7627840
    Abstract: A method of modeling soft errors in a logic circuit uses two separate current sources inserted at the source and drain of a device to simulate a single event upset (SEU) caused by, e.g., an alpha-particle strike. In an nfet implementation the current flows from the source or drain toward the body of the device. Current waveforms having known amplitudes are injected at the current sources while simulating operation of the logic circuit and the state of the logic circuit is determined from the simulated operation. The amplitudes of the current waveforms can be independently adjusted. The simulator monitors the state of device and makes a log entry when a transition occurs. The process may be repeated for other devices in the logic circuit to provide an overall characterization of the susceptibility of the circuit to soft errors.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: December 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: A J Kleinosowski, Philip J. Oldiges, Paul M. Solomon, Richard Q. Williams
  • Patent number: 7612397
    Abstract: A nonvolatile memory cell that can be mounted in a CMOS manufacturing process, and is capable of implementing high level of programming, reading and erasing ability. The memory cell is configured by a MOS transistor including two N-type first impurity diffusion layers formed separately on a P-type semiconductor substrate, and a first gate electrode formed above a first cannel region sandwiched by both diffusion layers through a first gate insulation film, a first capacitor comprising P-type second impurity diffusion layers formed on a well, and a second gate electrode formed above the diffusion layer through a second gate insulation film, and a second capacitor comprising the well adjacent to the second impurity diffusion layer, and a third gate electrode formed above the well through a third gate insulation film, wherein a different voltage can be applied to each of the capacitors.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: November 3, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoki Ueda, Yoshimitsu Yamauchi
  • Patent number: 7612819
    Abstract: A complementary metal oxide semiconductor (CMOS) image sensor and a method for operating the same are provided. The CMOS image sensor includes a pixel array unit having a matrix of pixels, wherein each pixel comprises a charge transfer element for transferring charge collected in a photoelectric conversion element to a charge detection element, and a row drive unit for supplying a voltage to the charge transfer element during part of a charge integration period of the photoelectric conversion element, wherein the supplied voltage causes the charge transfer element to have a negative potential.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: November 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jung-Hyun Nam
  • Patent number: 7592642
    Abstract: A thyristor-based memory device may comprise two base regions of opposite type conductivity formed between a cathode-emitter region and an anode-emitter region. A junction defined between the p-base region and the cathode-emitter region of the thyristor may be “treated” with a high ionization energy acceptor such as indium in combination with carbon as an activation assist species. These two implants may form complexes that may extend across the junction region.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: September 22, 2009
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Srinivasa R. Banna, James D. Plummer
  • Patent number: 7592577
    Abstract: A camera having an exposure detector is disclosed. The camera includes an array of pixel sensors, CMOS circuitry that is separate from the array of pixel sensors, a guard region, and a current detector. The guard region separates the CMOS circuitry from the array of pixel sensors. The guard region is positioned such that the guard region is exposed to light when the array of pixel sensors is exposed to light. The current detector measures the current flowing from the guard region to a power rail when the guard region is biased to a predetermined potential and generates a start trigger signal when the current exceeds a threshold value. A controller resets the pixel sensors in response to the start trigger signal.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 22, 2009
    Assignee: Fairchild Imaging, Inc.
    Inventor: XinQiao Liu
  • Publication number: 20090224304
    Abstract: A deep trench containing a doped semiconductor fill portion having a first conductivity type doping and surrounded by a buried plate layer having a second conductivity type doping at a lower portion is formed in a semiconductor layer having a doping of the first conductivity type. A doped well of the second conductivity type abutting the buried plate layer is formed. The doped semiconductor fill portion functions as a temporary reservoir for electrical charges of the first conductivity type that are generated by a radiation particle, and the buried plate layer functions as a temporary reservoir for electrical charges of the second conductivity type. The buried plate layer and the doped semiconductor fill portion forms a capacitor, and provides protection from soft errors to devices formed in the semiconductor layer or the doped well.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan H. Cannon, John E. Barth, JR., Kerry Bernstein
  • Publication number: 20090206380
    Abstract: Deep submicron wells of MOS transistors, implemented over an ungrounded well, exhibit two modes of operation: a current sink mode and a current source mode. While operation as a current sink is well understood and successfully controlled, it is also necessary to control the current provided in the current source mode of the well. A Schottky diode is connected between the well and the gate, the Schottky diode having a smaller barrier height than that of the PN junction of the well-to-source. For an NMOS transistor, current flows through the PN junction when the gate is high. When the gate is low, current flows through the Schottky diode. This difference of current flow results in a difference in transistor threshold, thereby achieving a dynamic threshold voltage using the current from the well when operating at the current source mode.
    Type: Application
    Filed: January 5, 2009
    Publication date: August 20, 2009
    Inventor: Robert Strain
  • Patent number: 7573084
    Abstract: According to an aspect of the present invention, there is provided a non-volatile semiconductor memory device, including a ferroelectric capacitor being stacked a first electrode, a ferroelectric film and a second electrode in order, a first protective film with hydrogen barrier performance, the first protective film being formed under the first electrode and on a side-wall of the ferroelectric capacitor, the first protective film being widened from the second electrode towards the first electrode, a second protective film with hydrogen barrier performance, the second protective film being formed over the second electrode and on the first protective film formed on the side-wall of the ferroelectric capacitor, the second protective film being widened from the first electrode towards the second electrode, a cell transistor, a source of the cell transistor being connected to the first electrode, a drain of the cell transistor being connected to a bit line and a gate being connected to a word line.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: August 11, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Kumura, Tohru Ozaki, Iwao Kunishima
  • Patent number: RE41625
    Abstract: A protective insulating film is deposited over first and second field-effect transistors formed on a semiconductor substrate. A capacitor composed of a capacitor lower electrode, a capacitor insulating film composed of an insulating metal oxide film, and a capacitor upper electrode is formed on the protective insulating film. A first contact plug formed in the protective insulating film provides a direct connection between the capacitor lower electrode and an impurity diffusion layer of the first field-effect transistor. A second contact plug formed in the protective insulating film provides a direct connection between the capacitor upper electrode and an impurity diffusion layer of the second field-effect transistor.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshihisa Nagano, Yasuhiro Uemoto