Vertical Transistor Patents (Class 257/302)
  • Patent number: 7098499
    Abstract: A nonvolatile memory cell is provided. The memory cell includes a storage transistor and an injector in a well of an n-type conductivity. The well is formed in a semiconductor substrate of a p-type conductivity. The storage transistor comprises a source, a drain, a channel, and a charge storage region. The source and the drain are formed in the well and having the p-type conductivity with the channel of the well defined therebetween. The charge storage region is disposed over and insulated from the channel region by an insulator. Further provided are methods operating the memory cell, including means for injecting electrons from the channel through the insulator onto the charge storage region and means for injecting holes from the injector through the well through the channel through the insulator onto the charge storage region. The memory cell can be implemented in a conventional logic CMOS process.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: August 29, 2006
    Inventor: Chih-Hsin Wang
  • Patent number: 7098478
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 29, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Patent number: 7098500
    Abstract: The cellular structure of the power device includes a substrate that has a highly doped drain region. Over the substrate there is a more lightly doped epitaxial layer of the same doping. Above the epitaxial layer is a well region formed of an opposite type doping. Covering the wells is an upper source layer of the first conductivity type that is heavily doped. The trench structure includes a sidewall oxide or other suitable insulating material that covers the sidewalls of the trench. The bottom of the trench is filled with a doped polysilicon shield. An interlevel dielectric such as silicon nitride covers the shield. The gate region is formed by another layer of doped polysilicon. A second interlevel dielectric, typically borophosphosilicate glass (BPSG) covers the gate. In operation, current flows vertically between the source and the drain through a channel in the well when a suitable voltage is applied to the gate.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 29, 2006
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Zeng
  • Patent number: 7091545
    Abstract: A memory device and fabricating method thereof. In the memory device of the present invention, a substrate has a plurality of deep trenches, wherein the deep trenches formed in the adjacent rows are staggered. A deep trench capacitor and a control gate are disposed in each deep trench successively. Word lines are disposed on the control gates respectively, and each word line is electrically coupled to the control gate thereunder. Diffusion regions are disposed in the substrate and surrounding the deep trenches respectively to serve as sources of vertical transistors. Each diffusion region is electrically connected to the surrounding deep trench capacitor. Active areas are disposed on the rows of the control gates respectively along a second direction. The regions where each active area overlaps the control gates have at least one indentation.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 15, 2006
    Assignee: Nanya Technology Corporation
    Inventors: Tieh Chiang Wu, Chien-Chang Huang, Chin-Ling Huang, Bo Ching Jiang, Yu-Wei Ting
  • Patent number: 7091553
    Abstract: A process and intermediate DRAM structure formed by providing a substrate having an array of trenches containing trench capacitors underlying vertical transistors in an array area separated by isolation trenches residing in both array and support areas. A top oxide nitride (TON) liner is deposited over array and support areas so as to directly contact the fill in the isolation trenches. An array top oxide (ATO) is then deposited directly over the TON liner such that during subsequent processing, the TON protects the isolation trench oxide from any divot opening etches while maintaining the isolation trench oxide height fixed during the ATO process. In further processing the intermediate structure, ATO and TON are removed from the support area only, leaving remaining portions of both ATO and TON only in the array area, such that the TON liner separates the ATO from the isolation trench fill.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: August 15, 2006
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Ramachandra Divakaruni, Klaus Hummler
  • Patent number: 7091541
    Abstract: A semiconductor device has a capacitive element including a first conductive film formed on the bottom and wall surfaces of an opening formed in an insulating film on a substrate, a dielectric film formed on the first conductive film, and a second conductive film formed on the dielectric film. The dielectric film of the capacitive element is crystallized. The first and second conductive films are made of a polycrystal of an oxide, a nitride or an oxynitride of a noble metal.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: August 15, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinya Natsume, Shinichiro Hayashi
  • Patent number: 7075829
    Abstract: Structures and methods for programmable memory address and decode circuits with low tunnel barrier interpoly insulators are provided. The decoder for a memory device includes a number of address lines and a number of output lines wherein the address lines and the output lines form an array. A number of logic cells are formed at the intersections of output lines and address lines. Each of the logic cells includes a floating gate transistor which includes a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposes the channel region and is separated therefrom by a gate oxide. A control gate opposing the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5 and/or a Perovskite oxide tunnel barrier.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: July 11, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7067870
    Abstract: A semiconductor element of this invention includes a drift layer of a first conductivity type formed on a semiconductor substrate of the first conductivity type, a well layer of a second conductivity type selectively formed in the surface of the drift layer, a source layer of the first conductivity type selectively formed in the surface of the well layer, a trench formed to reach at least the inside of the drift layer from the surface of the source layer through the well layer, a buried electrode formed in the trench through a first insulating film, and a control electrode formed on the drift layer, the well layer, and the source layer through a second insulating film.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: June 27, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Wataru Saito, Tsuneo Ogura, Hiromichi Ohashi, Yoshihiko Saito, Kenichi Tokano
  • Patent number: 7064373
    Abstract: A vertical memory cell comprises a storage capacitor, the inner electrode of which is formed in a deep trench, and a vertical selector transistor. The selection transistor has an upper source/drain region and a lower source/drain region, which has emerged by outdiffusion of a dopant from the inner electrode. A gate electrode, which in each case controls a current flow between two assigned source/drain regions, is formed, in segments, as a segment of an addressing line arranged row-wise in active trenches. The provision of an auxiliary structure in the active trenches enables the addressing lines to be vertically positioned in the active trenches independently of a depth of the active trenches. Leakage currents which occur in overlap regions of the addressing lines with the inner electrode or the lower source/drain region are reduced.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: June 20, 2006
    Assignee: Infineon Technologies AG
    Inventors: Bernd Goebel, Stefan Slesazeck
  • Patent number: 7061069
    Abstract: A first insulation film, a first conductor film, and a cap are sequentially formed on a semiconductor substrate. The first insulation film, the first conductor film, and the cap, and the substrate are etched in the same pattern. A second insulation film is placed in that etched pattern. The cap is removed. A second conductor film is formed on the side face of the second insulation film.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: June 13, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Mori, Mitsuhiro Noguchi
  • Patent number: 7057224
    Abstract: A semiconductor memory can have first lines to which memory cells are connected and that run divergently with respect to one another, and second lines to which the memory cells are connected that are curved. Combining the geometry of the memory cell array with storage capacitors laterally offset allows signal delays along word lines and bit lines to be aligned regardless of the position of a memory cell in the memory cell array. The geometry of the memory cell array allows short signal propagation times to be attained particularly along the first lines, which are divergent with respect to one another, this simplifying error-free operation of a semiconductor memory particularly at high clock frequencies.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 6, 2006
    Assignee: Infineon Technologies AG
    Inventors: Reidar Lindstedt, Dirk Fuhrmann
  • Patent number: 7049649
    Abstract: A semiconductor memory device comprises a silicon layer having a first diffused region and a second diffused region formed therein, a gate electrode formed through an insulating film on one side of the silicon layer between the first and the second diffused regions, a capacitor formed on said one side of the silicon layer and having a storage electrode connected to the first diffused region, and a bit line formed on the other side of the silicon layer and connected to the second diffused region, whereby a semiconductor memory device of SOI structure can be easily fabricated. The bit line connected to the second diffused region is formed on the other side of the semiconductor layer, whereby the bit line can be arranged without restriction by the structure, etc. Of the capacitor. Short circuit between the capacitor and the bit line can be prevented.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: May 23, 2006
    Assignee: Fujitsu Limited
    Inventor: Shunji Nakamura
  • Patent number: 7049647
    Abstract: A semiconductor memory cell is formed in a substrate and includes a trench capacitor and a selection transistor. The trench capacitor includes a capacitor dielectric and a conductive trench filling. Disposed on the conductive trench filling is a diffusion barrier on which an epitaxial layer is formed. The selection transistor is disposed as a planar transistor above the trench capacitor. A drain doping region of the selection transistor is disposed in the epitaxial layer.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: May 23, 2006
    Assignee: Infineon Technologies AG
    Inventors: Wolfram Karcher, Dietmar Temmler, Martin Schrems
  • Patent number: 7045845
    Abstract: A transistor (10) is formed in a semiconductor substrate (12) whose top surface (48) is formed with a pedestal structure (24). A conductive material (40) is disposed along a side surface (28) of the pedestal structure to self-align an edge of a first conduction electrode (45) of the transistor. A dielectric spacer (55) is formed along a side surface (49) of the conductive material to self-align a contact area (56) of the first conduction electrode.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 16, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Gordon M. Grivna
  • Patent number: 7042040
    Abstract: A semiconductor memory device comprises select transistors formed on side surfaces of plural silicon columns defined by a grid-like trenches on a surface of a silicon substrate, each select transistor having a source and a drain on the top surface and the bottom of the silicon column. A capacitor is formed on the top surface of the silicon column to form a DRAM cell. The source/drain layers on the bottom of a greater number of memory cells are commonly connected, or the source/drain layers on the bottom of adjacent memory cells are commonly connected, to be brought out to the surface of the silicon substrate by a connection line to be connected to a constant voltage or a bit line.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: May 9, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Fumio Horiguchi
  • Patent number: 7042047
    Abstract: A memory cell, array and device include an active area formed in the substrate with a vertical transistor including a first end disposed over a first portion of the active area. The vertical transistor is formed as an epitaxial post on the substrate surface, extends from the surface of the substrate, and includes a gate formed around a perimeter of the epitaxial post. A capacitor is formed on the vertical transistor and a buried digit line vertically couples to a second portion of the active area. An electronic system and method for forming a memory cell are also disclosed.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: May 9, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Anton P. Eppich
  • Patent number: 7038267
    Abstract: A non-volatile memory cell is provided. The non-volatile memory at least includes a substrate, a gate, a first source/drain region, a composite dielectric layer and a second source/drain region. A trench is formed in a substrate and a gate is formed inside the trench. The first source/drain region is formed at the bottom of the trench. The composite dielectric layer is formed between the gate and the surface of the trench. The composite dielectric layer includes at least a charge-trapping layer. The second source/drain region is formed in the substrate next to the sides of the gate.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 2, 2006
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Ko-Hsing Chang, Chiu-Tsung Huang
  • Patent number: 7034351
    Abstract: A semiconductor memory cell structure and method for forming the same. The memory cell is formed on a surface of a substrate and includes an active region formed in the substrate, an epitaxial post formed on the surface of the substrate over the active region. The epitaxial post has at least one surface extending outwardly from the surface of the substrate and another surface opposite of the surface of the substrate. A gate structure is formed adjacent to at least a portion of all the outwardly extending surfaces of the epitaxial post, and a capacitor formed on an exposed surface of the epitaxial post.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: April 25, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Kris K. Brown
  • Patent number: 7034352
    Abstract: The methods and structures of the present invention involve providing a vertical dynamic random access memory (DRAM) cell device comprising a buried strap which can be laterally constrained, thereby maintaining freedom from cross talk, even at 6F2 scaling, in the absence of adjacent Shallow Trench Isolation (STI). The methods and structures of the present invention involve the further recognition that the STI can therefore be vertically confined, freed of any need to extend down below the level of the buried strap. The reduction of the buried strap to 1F width and the concomitant reduction in the depth of the STI together permit a significantly reduced aspect ratio, permitting critically improved manufacturability.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: April 25, 2006
    Assignee: Infineon Technologies AG
    Inventors: Mihel Seitz, Venkatachalam C. Jaiprakash
  • Patent number: 7023041
    Abstract: A versatile structure is formed, based on a deep trench, vertical transistor DRAM cell, that forms a conductive extension of the trench electrode in an elongated trench that contacts the lower electrode of the vertical transistor. The structure can be used as a capacitor, as a discrete transistor as a single-transistor amplifier or as a building block for more complex circuits.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Giuseppe La Rosa, Thomas W. Dyer, Oleg Gluschenkov, Jack A. Mandelman, Carl J. Radens, Alvin W. Strong
  • Patent number: 7015526
    Abstract: A memory device has a plurality of memory cells, wherein each memory cell has a trench capacitor formed in a semiconductor substrate and an access transistor for it. Each access transistor has a first contact region connected to an internal electrode of the trench capacitor, a second contact region to a bit line and a control electrode region, wherein the control electrode regions of neighboring access transistors are connected by a word line formed in the semiconductor substrate.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: March 21, 2006
    Assignee: Infineon Technologies AG
    Inventor: Dietrich Bonart
  • Patent number: 7009239
    Abstract: A semiconductor device includes an n-type semiconductor substrate (1) including a p-type collector layer (2) formed in a second main surface side thereof, a trench (13) is formed in a peripheral portion of the semiconductor substrate (1) so as to surround the inside and reach the collector layer (2) from a first main surface of the semiconductor substrate (1), and a p-type isolation region (14) formed by diffusion from a sidewall of the trench (13) is provided to be connected to the collector layer (2). The trench (13) is filled with a filling material (16).
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: March 7, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Norifumi Tokuda, Tadaharu Minato, Mitsuru Kaneda
  • Patent number: 7009237
    Abstract: The present invention provides a vertical memory device formed in a silicon-on-insulator substrate, where a bitline contacting the upper surface of the silicon-on-insulator substrate is electrically connected to the vertical memory device through an upper strap diffusion region formed through a buried oxide layer. The upper strap diffusion region is formed by laterally etching a portion of the buried oxide region to produce a divot, in which doped polysilicon is deposited. The upper strap region diffusion region also provides the source for the vertical transistor of the vertical memory device. The vertical memory device may also be integrated with a support region having logic devices formed atop the silicon-on-insulator substrate.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: March 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Gary B. Bronner, Dureseti Chidambarrao, Ramachandra Divakaruni, Carl J. Radens
  • Patent number: 7009236
    Abstract: A memory device with vertical transistors and deep trench capacitors. The device includes a substrate containing at least one deep trench and a capacitor deposited in the lower portion of the deep trench. A conducting structure, having a first conductive layer and a second conductive layer, is deposited on the trench capacitor. A ring shaped insulator is deposited on the sidewall and between the substrate and the first conductive layer. The first conductive layer is surrounded by the ring shaped insulator, and the second conductive layer is deposited on the first conductive layer and the ring shaped insulator. A diffusion barrier between the second conductive layer and the substrate of the deep trench is deposited on one side of the sidewall of the deep trench. A TTO is deposited on the conducting structure. A control gate is deposited on the TTO.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: March 7, 2006
    Assignee: Nanya Technology Corporation
    Inventors: Yi-Nan Chen, Hui-Min Mao, Chih-Yuan Hsiao, Ming-Cheng Chang
  • Patent number: 7005692
    Abstract: The invention includes a method of forming an array of memory cells. A series of capacitor constructions is formed, with the individual capacitor constructions having storage nodes. The capacitor constructions are defined to include a first set of capacitor constructions and a second set of capacitor constructions. A series of electrically conductive transistor gates are formed over the capacitor constructions and in electrical connection with the capacitor constructions. The transistor gates are defined to include a first set that is in electrical connection with the storage nodes of the first set of capacitor constructions, and a second set that is in electrical connection with the storage nodes of the second set of capacitor constructions. A first conductive line is formed over the transistor gates and in electrical connection with the first set of transistor gates, and a second conductive line is formed over the first conductive line and in electrical connection with the second set of transistor gates.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 28, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzalez
  • Patent number: 6998666
    Abstract: A method of fabricating an integrated circuit device comprises etching a trench in a substrate and forming a dynamic random access memory (DRAM) cell having a storage capacitor at a lower end and an overlying vertical metal oxide semiconductor field effect transistor (MOSFET) comprising a gate conductor and a boron-doped channel. The method includes forming trenches adjacent the DRAM cell and a silicon-oxy-nitride isolation liner on either side of the DRAM cell, adjacent the gate conductor. Isolation regions are then formed in the trenches on either side of the DRAM cell. Thereafter, the DRAM cell, including the boron-containing channel region adjacent the gate conductor, is subjected to elevated temperatures by thermal processing, for example, forming a support device on the substrate adjacent the isolation regions. The nitride-containing isolation liner reduces segregation of the boron in the channel region, as compared to an essentially nitrogen-free oxide-containing isolation liner.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: February 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Rama Divakaruni, Rajarao Jammy
  • Patent number: 6995418
    Abstract: The invention relates to an integrated semiconductor memory with at least one memory cell having at least one transistor which forms an inversion channel in the switched-on state. The transistor comprises a structure element having a first source/drain region, a second source/drain region and a region arranged between the first and the second source/drain region, the structure element is insulated from a semiconductor substrate by an insulation layer, a gate dielectric being arranged on the structure element and a word line being arranged on the gate dielectric.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: February 7, 2006
    Assignee: Infineon Technologies, AG
    Inventor: Andreas Spitzer
  • Patent number: 6992362
    Abstract: A method and apparatus for increasing a breakdown voltage of a semiconductor device. The semiconductor device is constructed within an epitaxial tub of a first conductivity type formed within a dielectric material and comprises a surface diffusion region of a second conductivity type, opposite that of the first conductivity type, extending into the epitaxial tub, a trench surrounding and electrically isolating the epitaxial tub, a metallization line coupled to the surface diffusion traversing the semiconductor device and the trench, a first field limiting diffusion region of the second conductivity type disposed between the surface diffusion region and the trench and below the metallization line, a poly field plate positioned over the trench and beneath the metallization line, and a first contact coupled to the field limiting diffusion region, the first contact extending below the metallization line and overlapping the poly field plate.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: January 31, 2006
    Assignee: General Electronics Applications, Inc.
    Inventor: Joseph Pernyeszi
  • Patent number: 6989561
    Abstract: Afin-type trench capacitor structure includes a buried plate diffused into a silicon substrate. The buried plate, which surrounds a bottle-shaped lower portion of the trench capacitor structure, is electrically connected to an upwardly extending annular poly electrode, thereby enabling the buried plate and the annular poly electrode to constitute a large-area capacitor electrode of the trench capacitor structure. A capacitor storage node consisting of a surrounding conductive layer, a central conductive layer and a collar conductive layer encompasses the upwardly extending annular poly electrode. A first capacitor dielectric layer isolates the capacitor storage node from the buried plate. A second capacitor dielectric layer and a third capacitor dielectric layer isolate the upwardly extending annular poly electrode from the capacitor storage node.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: January 24, 2006
    Assignee: Nanya Technology Corp.
    Inventors: Shian-Jyh Lin, Sam Liao, Chia-Sheng Yu
  • Patent number: 6990023
    Abstract: Structures and methods for memory devices are provided which operate with lower control gate voltages than conventional floating gate transistors, and which do not increase the costs or complexity of the device fabrication process. The novel memory cell includes a source region and a drain region separated by a channel region in a horizontal substrate. A first vertical gate is separated from a first portion of the channel region by a first oxide thickness. A second vertical gate is separated from a second portion of the channel region by a second oxide thickness. The total capacitance of these memory devices is about the same as that for comparable source and drain spacings. However, the floating gate capacitance (CFG) is much smaller than the control gate capacitance (CCG) such that the majority of any voltage applied to the control gate will appear across the floating gate thin tunnel oxide.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: January 24, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 6979853
    Abstract: The memory cell according to the invention has a vertical selection transistor, via whose channel region the inner electrode of the trench capacitor can be connected to a bit line. The large extent of the channel region in the bit line direction means that the trench capacitor can be rapidly charged and read. The channel region is led to the bit line through an associated word line, which completely or partially encloses the channel region. A conductive channel can be formed within the channel region depending on the potential of the word line.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 27, 2005
    Assignee: Infineon Technologies AG
    Inventors: Michael Sommer, Gerhard Enders
  • Patent number: 6979851
    Abstract: A structure and method is disclosed herein for a vertical transistor DRAM cell having a low leakage buried strap outdiffusion conductively connecting a storage capacitor in a lower portion of a trench to a vertical transistor thereabove. In the disclosed structure and method, the buried strap outdiffusion (BSOD) extends along a portion of the isolation collar having reduced thickness, the reduced thickness being substantially less than the thickness of the isolation collar otherwise. In a particular embodiment, a self-aligned lightly doped drain (LDD) extension is formed, extending between the BSOD and the vertical transistor above the LDD.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: December 27, 2005
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Jack Allan Mandelman, Carl John Radens
  • Patent number: 6977405
    Abstract: In order to fabricate a semiconductor memory, a trench capacitor is arranged in a first trench. Beside the first trench, a first longitudinal trench and, parallel on the other side of the first trench, a second longitudinal trench are arranged in the substrate. A first spacer word line is arranged in the first longitudinal trench and a second spacer word line is arranged in the second longitudinal trench. There are arranged in the first trench connecting webs between the first spacer word line and the second spacer word line which have a thickness which, in the direction of the first spacer word line, is less than half the width of the first trench in the direction of the first spacer word line.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 20, 2005
    Assignee: Infineon Technologies, AG
    Inventors: Jörn Lützen, Bernd Goebel, Dirk Schumann, Martin Gutsche, Harald Seidl, Martin Popp, Alfred Kersch, Werner Steinhögl
  • Patent number: 6977406
    Abstract: The ultra high-speed vertical short channel insulated-gate static induction transistor with uniform operating characteristic which has the drain layer 3 consisting of an epitaxial single crystal layer on the main surface 2 of substrate 1, the channel layer 4 with thickness 1000 ? or less on the drain layer, the source layer 5 consisting of an epitaxial single crystal layer on the channel layer 4, and the insulated-gates 6 and 7 on the sidewalls of the drain, the channel, and the source layers. Since the thickness of 1000 ? or less is accurately controlled using the molecular layer epitaxial method and the channel layer 4 is grown up, the X-ray photolithography is not needed. Since the gate oxide film is formed by low temperature CVD using active oxygen, impurity re-distribution does not occur.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: December 20, 2005
    Assignees: National Institute of Information and Communications Technology, Incorporated Administrative Agency, Zaidan Hojin Handotai Kenkyu Shinkokai
    Inventors: Toru Kurabayashi, Toru Oizumi, Kyouzou Kanamoto, Jun-ichi Nishizawa
  • Patent number: 6977404
    Abstract: A projecting semiconductor layer is formed on a major surface of a semiconductor substrate. A channel region of a first conductivity type is formed in part of the semiconductor layer. Source and drain regions of a second conductivity type are formed in the semiconductor layer such that the source and drain regions sandwich the channel region. A pair of first insulating films are formed on a surface of the channel region. A pair of gate electrodes are formed on a surface of the pair of first insulating films. A trench capacitor is provided near the source region in the semiconductor layer. A second insulating film having a greater thickness than the first insulating films is provided between surfaces of the pair of gate electrodes, which are opposed to the surfaces on which the first insulating films are formed, and a trench capacitor formed adjacent to the trench capacitor.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 20, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Katsumata, Hideaki Aochi
  • Patent number: 6974991
    Abstract: In a DRAM cell having a trench, a cell capacitor and a cell transistor, a node conducting element connects the cell capacitor to the cell transistor and a collar is disposed about the node conducting element. The collar is disposed in the substrate at least partially, up to entirely outside of the trench. Because the collar is disposed in the substrate outside of the trench, it does not restrict the size of the trench opening. This enables sub-100 nm trenches, using techniques which are compatible with contemporary DRAM process steps. A strap is embedded into a top surface of the collar.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: December 13, 2005
    Assignee: International Business Machines Corp.
    Inventors: Kangguo Cheng, Ramachandra Divkaruni, Gary Bela Bronner, Carl John Radens, Oleg G. Gluschenkov
  • Patent number: 6974988
    Abstract: A DRAM cell structure capable of high integration includes a trench-type capacitor formed in a lower region of a trench, the trench being made vertically and cylindrically in a silicon substrate, and a transistor being formed vertically and cylindrically over the trench-type capacitor, the transistor being connected to the capacitor. A method for fabricating a DRAM cell structure capable of high integration includes the steps of (a) forming a trench vertically and cylindrically in a silicon substrate, (b) forming a trench-type capacitor having a cylindrical plate electrode and a storage node electrode on a lower region of the trench, (c) forming a vertical cylindrical transistor cell structure connected to the trench-type capacitor on an upper region of the trench.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: December 13, 2005
    Assignee: DongbuAnam Semiconductor, Inc.
    Inventor: Cheolsoo Park
  • Patent number: 6972471
    Abstract: A deep trench isolation structure of a high-voltage device and a method of forming thereof. An epitaxial layer with a second type conductivity is formed on a semiconductor silicon substrate with a first type conductivity. A deep trench passes through the epitaxial layer. An ion diffusion region with the first type conductivity is formed in the epitaxial layer and surrounds the sidewall and bottom of the deep trench. An undoped polysilicon layer fills the deep trench.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 6, 2005
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Jia-Wei Yang, Chih-Cherng Liao
  • Patent number: 6969881
    Abstract: A partial vertical memory cell and fabrication method thereof. A semiconductor substrate is provided, in which two deep trenches having deep trench capacitors respectively are formed, and the deep trench capacitors are lower than a top surface of the semiconductor substrate. A portion of the semiconductor outside the deep trenches is removed to form a pillar between. The pillar is ion implanted to form an ion-doped area in the pillar corner acting as a S/D area. A gate dielectric layer and a conducting layer are conformally formed on the pillar sequentially. An isolation is formed in the semiconductor substrate beside the conducting layer. The conducting layer is defined to form a first gate and a second gate.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: November 29, 2005
    Assignee: Nanya Technology Corporation
    Inventors: Ming-Cheng Chang, Yi-Chen Chen, Yi-Nan Chen
  • Patent number: 6964899
    Abstract: Disclosed is a semiconductor device having a bit line extending in a first direction, a plurality of transistors electrically connected to the bit line, a plurality of first electrodes arranged in the first direction and electrically connected to the transistors, a dielectric film covering upper and side surfaces of the first electrodes, and a second electrode covering the dielectric film, wherein a width of the first electrode is smaller than a distance between adjacent first electrodes and smaller than the minimum value of design rule of the semiconductor device.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: November 15, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Katsuhiko Hieda
  • Patent number: 6956259
    Abstract: Disclosed is a semiconductor device comprises a semiconductor substrate having on its surface a trench, a polycrystalline semiconductor film formed inside the trench, a diffusion layer deposited on a surface region of the semiconductor substrate, and a metal semiconductor nitride layer interposed between the diffusion layer and the polycrystalline semiconductor film, the metal semiconductor nitride layer including a metal, nitrogen and a semiconductor constituting the semiconductor substrate, and electrically connecting the polycrystalline semiconductor film with the diffusion layer.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 18, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasushi Akasaka
  • Patent number: 6956258
    Abstract: A reprogrammable non-volatile memory array and constituent memory cells is disclosed. The semiconductor memory cells each have a data storage element constructed around an ultra-thin dielectric, such as a gate oxide. The gate oxide is used to store information by stressing the ultra-thin dielectric into breakdown (soft or hard breakdown) to set the leakage current level of the memory cell. The memory cell is read by sensing the current drawn by the cell. A suitable ultra-thin dielectric is high quality gate oxide of about 50 ? thickness or less, as commonly available from presently available advanced CMOS logic processes. The memory cells are first programmed by stressing the gate oxide until soft breakdown occurs. The memory cells are then subsequently reprogrammed by increasing the breakdown of the gate oxide.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: October 18, 2005
    Assignee: Kilopass Technologies, Inc.
    Inventor: Jack Zezhong Peng
  • Patent number: 6956256
    Abstract: A high density vertical gain cell is realized for memory operation. The gain cell includes a vertical MOS transistor used as a sense transistor having a floating body between a drain region and a source region, and a second vertical MOS transistor merged with the sense transistor. Addressing the second vertical MOS transistor provides a means for changing a potential of the floating body of the sense transistor. The vertical gain cell can be used in a memory array with a read data/bit line and a read data word line coupled to the sense transistor, and with a write data/bit line and a write data word line coupled to the second transistor of the vertical gain cell.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: October 18, 2005
    Assignee: Micron Technology Inc.
    Inventor: Leonard Forbes
  • Patent number: 6956260
    Abstract: In semiconductor memories, in particular DRAMs, the memory cells of which have vertical transistors at vertical lands formed from substrate material, gate electrodes are formed as spacers which run around the land. The gate electrodes of adjacent memory cells conventionally have to be retroactively connected to form word lines. It is known to fill spaces between adjacent lands with an oxide, with the result that the spacers are formed directly as word lines but only cover two side walls of a land. Two transistors which are connected in parallel are formed at these side walls instead of a single transistor, since the gate electrode does not run around the land. The invention proposes a method for fabricating a semiconductor memory in which all four side walls of a land are covered by the word lines and at the same time lands of adjacent memory cells are connected to one another by the word lines.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: October 18, 2005
    Assignee: Infineon Technologies AG
    Inventors: Dirk Manger, Till Schlösser, Martin Popp, Michael Sesterhenn
  • Patent number: 6953968
    Abstract: A semiconductor device of the present invention has an insulating gate type field effect transistor portion having an n-type emitter region (3) and an n? silicon substrate (1), which are opposed to each other sandwiching a p-type body region (2), as well as a gate electrode (5a) which is opposed to p-type body region (2) sandwiching a gate insulating film (4a), and also has a stabilizing plate (5b). This stabilizing plate (5b) is made of a conductor or a semiconductor, is opposed to n? silicon substrate (1) sandwiching an insulating film (4, 4b) for a plate, and forms together with n? silicon substrate (1), a capacitor. This stabilizing plate capacitor formed between stabilizing plate (5b) and n? silicon substrate (1) has a capacitance greater than that of the gate-drain capacitor formed between gate electrode (5a) and n? silicon substrate (1).
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 11, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Katsumi Nakamura, Shigeru Kusunoki, Hideki Nakamura
  • Patent number: 6949815
    Abstract: A semiconductor device has an LSI device provided with a plurality of power supply line connection pads and ground line connection pad in a peripheral edge part of a circuit-formation surface, metal foil leads 5 electrically connected to each of the pads and adhered to the LSI device via an insulation layer, and decoupling capacitors mounted on one surface of the metal foil leads.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: September 27, 2005
    Assignee: NEC Corporation
    Inventors: Takao Yamazaki, Toru Mori, Akinobu Shibuya, Shintaro Yamamichi, Yuzo Shimada
  • Patent number: 6946704
    Abstract: A semiconductor memory cell and forming method thereof utilizes a vertical select transistor to eliminate the problem of a large cell surface area in memory cells of the related art utilizing phase changes. A memory cell with a smaller surface area than the DRAM device of the related art is achieved by the present invention. Besides low power consumption during read operation, the invention also provides phase change memory having low power consumption even during write operation. Phase change memory also has stable read-out operation.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: September 20, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Matsuoka, Kiyoo Itoh, Motoyasu Terao, Satoru Hanzawa, Takeshi Sakata
  • Patent number: 6946700
    Abstract: A DRAM array having trench capacitor cells of potentially 4F2 surface area (F being the photolithographic minimum feature width), and a process for fabricating such an array. The array has a cross-point cell layout in which a memory cell is located at the intersection of each bit line and each word line. Each cell in the array has a vertical device such as a transistor, with the source, drain, and channel regions of the transistor being formed from epitaxially grown single crystal silicon. The vertical transistor is formed above the trench capacitor.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: September 20, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6943373
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: September 13, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Patent number: 6943396
    Abstract: As disclosed herein, an electrostatic discharge (ESD) protection circuit is provided for an integrated circuit including a semiconductor substrate. The ESD protection circuit includes a plurality of active devices formed in the semiconductor substrate, the active devices being formed by a process including a plurality of steps carried out to form, at the same time, a plurality of active devices having a function other than ESD protection. For example, the ESD circuit may include an array of vertical transistors formed according to a process including many of the steps used to form, at the same time, vertical transistors of a DRAM array. Also disclosed is the formation of an ESD circuit in an “unusable” area of a semiconductor chip, such as under a bond pad, land or under bump metallization of the chip.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 13, 2005
    Assignee: Infineon Technologies AG
    Inventor: Grant McNeil