With High Dielectric Constant Insulator (e.g., Ta 2 O 5 ) Patents (Class 257/310)
  • Patent number: 7495277
    Abstract: The invention includes memory circuitry. In one implementation, memory circuitry includes a memory array comprising a plurality of memory cell capacitors. Individual of the capacitors include a storage node electrode, a capacitor dielectric region, and a cell electrode. The cell electrode is commonly shared among at least some of the plurality of memory cell capacitors within the memory array. The cell electrode within the memory array includes a conductor metal layer including at least one of elemental tungsten, a tungsten alloy, tungsten silicide and tungsten nitride. Polysilicon is received over the conductor metal layer. The conductor metal layer and the polysilicon are received over the storage node electrodes of said at least some of the plurality of memory cell capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: February 24, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Thomas M. Graettinger
  • Patent number: 7491996
    Abstract: A capacitive element includes a base member 10, an underlying insulating film 11 formed on the base member 10, a capacitor Q constructed by forming a lower electrode 13, a capacitor dielectric film 14, and an upper electrode 15 sequentially on the underlying insulating film 11, a lower protection insulating film 16a formed on the upper electrode 15 to cover at least a part of the capacitor Q, and an upper protection insulating film 16b formed on the lower protection insulating film 16a and having a wider energy band gap than the lower protection insulating film 16a.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: February 17, 2009
    Assignee: Fujitsu Limited
    Inventors: John David Baniecki, Takeshi Shioga, Kazuaki Kurihara
  • Patent number: 7489000
    Abstract: Methods for fuming dielectric layers over polysilicon substrates, useful in the construction of capacitors and other semiconductor circuit components are provided. A self-limiting nitric oxide (NO) anneal of a polysilicon layer such as an HSG polysilicon capacitor electrode, at less than 800° C., is utilized to grow a thin oxide (oxynitride) layer of about 40 angstroms or less over the polysilicon layer. The NO anneal provides a nitrogen layer at the polysilicon-oxide interface that limits further oxidation of the polysilicon layer and growth of the oxide layer. The oxide layer is exposed to a nitrogen-containing gas to nitridize the surface of the oxide layer and reduce the effective dielectric constant of the oxide layer. The process is particularly useful in forming high K dielectric insulating layers such as tantalum pentoxide over polysilicon.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 10, 2009
    Assignee: Micron Technology Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 7485915
    Abstract: A semiconductor device includes a capacitor which includes a capacitor insulating film at least including a first insulating film and a ferroelectric film formed in contact with the first insulating film, containing a compound of a preset metal element and a constituent element of the first insulating film as a main component and having a dielectric constant larger than that of the first insulating film, a first capacitor electrode formed of one of Cu and a material containing Cu as a main component, and a second capacitor electrode formed to sandwich the capacitor insulating film in cooperation with the first capacitor electrode.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: February 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hayato Nasu, Takamasa Usui, Hideki Shibata
  • Patent number: 7485503
    Abstract: A Group III-V Semiconductor device and method of fabrication is described. A high-k dielectric is interfaced to a confinement region by a chalcogenide region.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 3, 2009
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Suman Datta, Mark L. Doczy, James M. Blackwell, Matthew V. Metz, Jack T. Kavalieros, Robert S. Chau
  • Patent number: 7485913
    Abstract: A semiconductor memory device includes a memory cell and a dummy cell. The amount of leakage current per unit area in a capacitor in the dummy cell is larger than that in a capacitor in the memory cell.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: February 3, 2009
    Assignee: Panasonic Corporation
    Inventor: Hisashi Ogawa
  • Patent number: 7473949
    Abstract: After a step of fabricating a MOS transistor (14) on a semiconductor substrate (11) and further steps up to bury a W plug (24), an Ir film (25a), an IrOy film (25b), a PZT film (26), and an IrOx film (27) are formed sequentially over the entire surface. The composition of the PZT film (26) is such that the content of Pb exceeds that of Zr and that of Ti. After processing the Ir film (25a), the IrOy film (25b), the PZT film (26) and the IrOx film (27), annealing is effected to remedy the damage to the PZT film (26) that is caused when the IrOx film (27) is formed and to diffuse Ir in the IrOx film (27) into the PZT film (26). As a result, the Ir diffused into the PZT film (26) concentrates at an interface between the IrOx film (27) and the PZT film (26) and at grain boundaries in the PZT film (26), and the Ir concentrations at the interface and boundaries are higher than those in the grains.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: January 6, 2009
    Assignee: Fujitsu Limited
    Inventors: Jeffrey Scott Cross, Mineharu Tsukada, John David Baniecki, Kenji Nomura, Igor Stolichnov
  • Patent number: 7473652
    Abstract: Organic polymers for use in electronic devices, wherein the polymer includes repeat units of the formula: wherein: each R1 is independently H, an aryl group, Cl, Br, I, or an organic group that includes a crosslinkable group; each R2 is independently H, an aryl group or R4; each R3 is independently H or methyl; each R5 is independently an alkyl group, a halogen, or R4; each R4 is independently an organic group that includes at least one CN group and has a molecular weight of about 30 to about 200 per CN group; and n=0-3; with the proviso that at least one repeat unit in the polymer includes an R4. These polymers are useful in electronic devices such as organic thin film transistors.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 6, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Feng Bai, Todd D. Jones, Kevin M. Lewandowski, Tzu-Chen Lee, Dawn V. Muyres, Tommie W. Kelley
  • Patent number: 7474002
    Abstract: In the semiconductor device having a structure in which a plurality of layers are built-up by layers made of different materials or layers including various formed patterns, it is an object to provide a method which smoothing surface can be achieved without a polishing treatment by CMP method or a smoothing process by depositing a SOG film, a substrate material is not chosen, and the smoothing is simple and easy. In the semiconductor device in which a plurality of different layers are formed, smoothing surface can be achieved without the polishing treatment by the CMP method or the smoothing process by depositing the SOG film to a dielectric film formed on a dielectric film and a wring (electrode) or a semiconductor layer in a manner that an aperture portion is formed in the dielectric film, the wring (electrode) or the semiconductor layer is formed in the aperture portion.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 6, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Akira Ishikawa
  • Patent number: 7470585
    Abstract: An integrated circuit has at least one semiconductor device for storing charge that includes at least one elementary active component and at least one elementary storage capacitor. The device includes a substrate having a lower region containing at least one buried capacitive elementary trench forming the elementary storage capacitor, and an elementary well located above the lower region of the substrate and isolated laterally by a lateral electrical isolation region. The elementary active component is located in the elementary well or in and on the elementary well. The capacitive elementary trench is located under the elementary active component and is in electrical contact with the elementary well. In one preferred embodiment, the lateral electrical isolation region is formed by a trench filled with a dielectric material and has a greater depth than that of the elementary well. Also provided is a method for fabricating an integrated circuit that includes a semiconductor device for storing charge.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 30, 2008
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Menut, Yvon Gris
  • Patent number: 7465976
    Abstract: The present invention relates to a Tunnel Field Effect Transistor (TFET). which utilizes angle implantation and amorphization to form asymmetric source and drain regions. The IFET further includes a silicon germanium alloy epitaxial source region with a conductivity opposite that of the drain.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: December 16, 2008
    Assignee: Intel Corporation
    Inventors: Jack T. Kavalieros, Matthew V. Metz, Gilbert Dewey, Ben Jin, Justin K. Brask, Suman Datta, Robert S. Chau
  • Patent number: 7465982
    Abstract: Embodiments in accordance with the present invention provide alternative materials, and methods of forming such materials, that are effective as dielectric layers. Such embodiments include forming metal-containing dielectric layers over a silicon-containing substrate where a metal-containing layer is first formed and that treated to form a dielectric layer. Dielectric layers formed by methods of the present invention have a dielectric constant greater than that of silicon dioxide, and can have an equivalent oxide thickness of less than 2 nanometers. Such dielectric layers are useful in the forming of a variety of semiconductor devices such as transistors, capacitors and the like where such devices and integrated circuits formed from such devices are encompassed by embodiments in accordance with the present invention.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: December 16, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7465980
    Abstract: A ferroelectric memory device includes a gate electrode formed on a semiconductor body via a ferroelectric film, first and second diffusion regions being formed in the semiconductor body at respective sides of a channel region, wherein the ferroelectric film comprises a first region located in the vicinity of the first diffusion region, a second region located in the vicinity of the second diffusion region, and a third region located between the first and second regions, wherein the first, second and third regions carry respective, mutually independent polarizations.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: December 16, 2008
    Assignees: Fujitsu Limited, Tokyo Institute of Technology
    Inventors: Yoshihiro Arimoto, Hiroshi Ishihara, Tetsuro Tamura, Hiromasa Hoko, Koji Aizawa, Yoshiaki Tabuchi, Masaomi Yamaguchi, Yasuo Nara, Kazuhiro Takahashi, Satoshi Hasegawa
  • Patent number: 7462901
    Abstract: A field effect transistor is provided. The field effect transistor includes a channel region, electrically conductive channel connection regions, and a control region. The electrically conductive channel connection regions adjoin the channel region along with a transistor dielectric. The control region is separated from the channel region by the transistor dielectric. In addition, the control region may comprise a monocrystalline material.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 9, 2008
    Assignee: Infineon Technologies AG
    Inventor: Helmut Tews
  • Publication number: 20080296650
    Abstract: A metal oxide semiconductor (MOS) structure having a high dielectric constant gate insulator layer containing gold (Au) nano-particles is presented with methods for forming the layer with high step coverage of underlying topography, high surface smoothness, and uniform thickness. The transistor may form part of a logic device, a memory device, a persistent memory device, a capacitor, as well as other devices and systems. The insulator layer may be formed using atomic layer deposition (ALD) to reduce the overall device thermal exposure. The insulator layer may be formed of a metal oxide, a metal oxycarbide, a semiconductor oxide, or semiconductor oxide oxycarbide, and the gold nano-particles in insulator layer increase the work function of the insulator layer and affect the tunneling current and the threshold voltage of the transistor.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7459741
    Abstract: A semiconductor memory device excellent in data holding characteristics even when a cell area is reduced is disclosed. According to one aspect of the present invention, a semiconductor memory device comprises a transistor including a source, a drain and a channel region disposed in a semiconductor substrate, and including a gate electrode disposed through a gate insulator on a surface of the semiconductor substrate of the channel region, a capacitor connected to the channel region, a first wiring line electrically connected to the gate electrode, and a second wiring line electrically connected to the drain.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: December 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Hideaki Aochi, Ryota Katsumata, Masaru Kito
  • Patent number: 7456456
    Abstract: A semiconductor device according to the present invention comprises a semiconductor substrate, a capacitor including a lower electrode disposed above the semiconductor substrate, a dielectric film disposed above the lower electrode, and an upper electrode disposed above the dielectric film, the upper electrode including metal oxide formed of ABO3 perovskite oxide and containing at least an Ru element as a B site element, and a metal film containing a Ti element being disposed between the dielectric film and the upper electrode.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 25, 2008
    Assignees: Kabushiki Kaisha Toshiba, Infineon Technologies AG
    Inventors: Hiroshi Itokawa, Koji Yamakawa, Rainer Bruchhaus
  • Patent number: 7456459
    Abstract: The present invention discloses capacitors having via connections and electrodes designed such that they provide a low inductance path, thus reducing needed capacitance, while enabling the use of embedded capacitors for power delivery and other uses. One embodiment of the present invention discloses a capacitor comprising the following: a top capacitor electrode and a bottom capacitor electrode, wherein the top electrode is smaller than the bottom electrode, comprising, on all sides of the capacitor; in an array, a multiplicity of vias located on all sides of the top and bottom capacitor electrodes, wherein the top electrode and the vias connecting to the top electrode act as an inner conductor, and the bottom electrode and the vias connecting to the bottom electrode act as an outer conductor.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: November 25, 2008
    Assignee: Georgia Tech Research Corporation
    Inventor: Lixi Wan
  • Patent number: 7453115
    Abstract: A capacitor structure having a dielectric layer disposed between two conductive electrodes, wherein the dielectric layer contains at least one charge trap site corresponding to a specific energy state. The energy states may be used to distinguish memory states for the capacitor structure, allowing the invention to be used as a memory device. A method of forming the trap cites involves an atomic layer deposition of a material at pre-determined areas in the dielectric layer.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Patent number: 7449742
    Abstract: The present memory device includes first and second electrodes, a passive layer between the first and second electrodes; and an active layer between the first and second electrodes, the active layer being of dendrimeric material which provides passages through the active layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 11, 2008
    Assignee: Spansion LLC
    Inventors: Igor Sokolik, Juri Krieger, Xiaobo Shi, Richard Kingsborough, William Leonard
  • Publication number: 20080272421
    Abstract: Methods, constructions, and devices that include tantalum oxide layers adjacent to niobium nitride are disclosed herein. In certain embodiments, the niobium nitride is crystalline and has a hexagonal close-packed structure. Optionally, the niobium nitride can have a surface that includes niobium oxide adjacent to at least a portion thereof. In certain embodiments, the tantalum oxide layer is crystallographically textured and has a hexagonal structure.
    Type: Application
    Filed: May 2, 2007
    Publication date: November 6, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Vishwanath Bhat
  • Patent number: 7446363
    Abstract: The invention comprises integrated circuitry and to methods of forming capacitors. In one implementation, integrated circuitry includes a capacitor having a first capacitor electrode, a second capacitor electrode and a high K capacitor dielectric region received therebetween. The high K capacitor dielectric region has a high K substantially amorphous material layer and a high K substantially crystalline material layer. In one implementation, a capacitor forming method includes forming a first capacitor electrode layer over a substrate. A substantially amorphous first high K capacitor dielectric material layer is deposited over the first capacitor electrode layer. The substantially amorphous high K first capacitor dielectric material layer is converted to be substantially crystalline. After the converting, a substantially amorphous second high K capacitor dielectric material layer is deposited over the substantially crystalline first high K capacitor dielectric material layer.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 7446367
    Abstract: A reliable gap-filling process is performed in the manufacturing of a semiconductor device. An apparatus for performing the gap-filling process includes a chamber in which a wafer chuck is disposed, a plasma generator for generating plasma used to etch the wafer, an end-point detection unit for detecting the point at which the etching of the wafer is to be terminated, and a controller connected to the end-point detection unit. The end-point detection unit monitors the structure being etched at a region outside the opening that is to be filled, and generates in real time data representative of the layer that is being etched. As soon as an underlying layer is exposed and begins to be etched, an end-point detection signal is generated and the etching process is terminated. In the case in which the layer being etched is an oxide layer, a uniform etching is achieved despite any irregularity that exists in the thickness to which the oxide layer is formed.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 4, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-kyu Kim, Jin-ho Jeon, Kyoung-soo Kwon
  • Patent number: 7442982
    Abstract: The present invention is directed to a capacitor having a reaction preventing layer and a method forming the same. A lower electrode of silicon is formed on a substrate. An assistance layer of metal oxide or metal nitride is formed on the lower electrode. A nitridation process is performed to enable the silicon of the lower electrode, the assistance layer, and nitrogen supplied by the nitridation process to react with one another, forming a reaction preventing layer comprising metal silicon oxynitride or metal silicon nitride. A high-k dielectric film and an upper electrode are formed on the reaction preventing layer.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: October 28, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Dae-Jin Kwon
  • Patent number: 7442983
    Abstract: A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 28, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Gilbert Dewey, Suman Datta, Sangwoo Pae, Justin K. Brask, Jack Kavalieros, Matthew V. Metz, Adrian B. Sherrill, Markus Kuhn, Robert S. Chau
  • Patent number: 7439105
    Abstract: A gate electrode (202) for a transistor including a metal gate structure (207) containing zirconium and a polycrystalline silicon cap (209) located there over. The metal gate structure (207) is located over a gate dielectric (205). The zirconium inhibits diffusion of silicon from the cap to the metal gate structure and gate dielectric. In one embodiment, the gate dielectric is a high K dielectric.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: October 21, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Rama I. Hegde
  • Publication number: 20080246070
    Abstract: An embodiment relates generally to a method of forming a capacitor. The method includes depositing a first layer of polysilicon on a substrate and implanting a high dose of implant into the first layer of polysilicon. The method also includes depositing a layer of dielectric over the first layer of polysilicon and depositing a second layer of polysilicon over the layer of dielectric. The method further includes implanting an equivalent concentration of implant in both the first layer of polysilicon into the second layer of polysilicon.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Byron Lovell Williams, Maxwell Walthour Lippitt, C. Matthew Thompson
  • Patent number: 7425761
    Abstract: A method of manufacturing a dielectric layer for a capacitor including sequentially supplying and purging a first and a second precursor material for a first and a second predetermined amount of time, respectively, in an initial cycle, sequentially supplying and purging the first and the second precursor materials for a third predetermined amount of time, which is shorter than the first and/or second predetermined amount of time, in a post cycle, which follows the initial cycle, and repeating the initial and post cycles to form a dielectric layer having a predetermined thickness.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: September 16, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyoung Choi, Sung-ho Kang, Jung-hee Chung, Seog-min Lee, Jong-bom Seo, Young-min Kim
  • Patent number: 7423311
    Abstract: The use of atomic layer deposition (ALD) to form a dielectric layer of zirconium nitride (Zr3N4) and zirconium oxide (ZrO2) and a method of fabricating such a dielectric layer produces a reliable structure for use in a variety of electronic devices. Forming the dielectric structure includes depositing zirconium oxide using atomic layer deposition using precursor chemicals, followed by depositing zirconium nitride using precursor chemicals, and repeating. Alternatively, the zirconium nitride may be deposited first followed by the zirconium nitride, thus providing a different work function. Such a dielectric may be used as the gate insulator of a MOSFET, a capacitor dielectric, or a tunnel gate insulator in memories, because the high dielectric constant (high-k) of the film provides the functionality of a thinner silicon dioxide film, and because of the reduced leakage current of the physically thicker dielectric layer when compared to an electrically equivalent thickness of silicon dioxide.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7420239
    Abstract: Embodiments in accordance with the present invention provide alternative materials, and methods of forming such materials, that are effective as dielectric layers. Such embodiments include forming metal-containing dielectric layers over a silicon-containing substrate where a metal-containing layer is first formed and that treated to form a dielectric layer. Dielectric layers formed by methods of the present invention have a dielectric constant greater than that of silicon dioxide, and can have an equivalent oxide thickness of less than 2 nanometers. Such dielectric layers are useful in the forming of a variety of semiconductor devices such as transistors, capacitors and the like where such devices and integrated circuits formed from such devices are encompassed by embodiments in accordance with the present invention.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: September 2, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7420237
    Abstract: A capacitor element is provided which is composed of a lower electrode, an upper electrode formed in opposing relation to the lower electrode, and a capacitor dielectric film made of a ferroelectric material or a high dielectric material and formed between the lower and upper electrodes. The lower electrode, the capacitor dielectric film, and the upper electrode are formed in a region extending at least from within a hole provided in an interlayer insulating film having a first hydrogen barrier film disposed on the upper surface thereof toward a position above the hole. A second hydrogen barrier film in contact with the first hydrogen barrier film is disposed to cover the upper surface of the upper electrode and the side surface of the portion of the upper electrode which has been formed above the hole.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 2, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Nagano, Takumi Mikawa
  • Patent number: 7416952
    Abstract: A dielectric interlayer, especially for a storage capacitor, is formed from a layer sequence subjected to a temperature process, wherein the layer sequence has at least a first metal oxide layer and a second metal oxide layer formed by completely oxidizing a metal nitride layer to higher valency.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: August 26, 2008
    Assignee: Infineon Technologies AG
    Inventors: Bernd Hintze, Henry Bernhardt, Frank Bernhardt
  • Patent number: 7417276
    Abstract: A thin film capacitor comprising a top electrode, a bottom electrode, and a dielectric film held between the top and bottom electrodes. The dielectric film is composed of at least cations Ba, Sr, and Ti and anion O. The concentration of Sr, Ti, and O ions are uniform along the growth direction of the dielectric film while the concentration of the Ba cation is non-uniform along the growth direction such that a reduced Ba-I region in which the average concentration of perovskite type Ba cations (Ba-I) is less than the average concentration of non-perovskite type Ba cations (Ba-II) exists at or near the boundary between at least one of the top and bottom electrodes, with ratio R=(atm % Ba-I)/[(atm % Ba-I)+(atm % Ba-II)] within a range of 0.1<R<0.2.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: August 26, 2008
    Assignee: Fujitsu Limited
    Inventors: John David Baniecki, Takeshi Shioga, Kazuaki Kurihara
  • Patent number: 7417302
    Abstract: In a method of manufacturing a semiconductor device, a first insulation layer on the substrate is patterned to form a first opening having a first width. A lower electrode is formed along an inner contour of the first opening. A second insulation layer on the first insulation layer is patterned to form a second opening that has a second width greater than the first width and is connected to the first opening with a stepped portion. A dielectric layer is formed on the lower electrode in the first opening, a sidewall of the second opening and a first stepped portion between the first insulation layer and the second insulation layer, so that the electrode layer is covered with the dielectric layer. An upper electrode is formed on the dielectric layer. Accordingly, a leakage current between the lower and upper electrodes is suppressed.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Woo Lee, Hong-Jae Shin, Jeong-Hoon Ahn, Seung-Man Choi, Byung-Jun Oh, Yoon-Hae Kim
  • Patent number: 7408217
    Abstract: Provided is a metal-insulator-transition switching transistor with a gate electrode on a silicon substrate (back-gate structure) and a metal-insulator-transition channel layer of VO2 that changes from an insulator phase to a metal phase, or vice versa, depending on a variation of an electric field, and a method for manufacturing the same, whereby it is possible to fabricate a metal-insulator-transition switching transistor having high current gain characteristics and being stable thermally.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: August 5, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Doo Hyeb Yoon, Hyun Tak Kim, Byung Gyu Chae, Kwang Yong Kang, Sung Lyul Maeng
  • Patent number: 7407897
    Abstract: In a capacitor of an analog semiconductor device having a multi-layer dielectric film and a method of manufacturing the same, the multi-layer dielectric film can be readily manufactured, has weak reactivity with corresponding electrodes and offers excellent leakage current characteristics. In order to obtain these advantages, a lower dielectric film having a negative quadratic VCC, an intermediate dielectric film having a positive quadratic VCC, and an upper dielectric film having a negative quadratic VCC are sequentially formed between a lower electrode and an upper electrode. The lower dielectric film and the upper dielectric film may be composed of SiO2. The intermediate dielectric film may be composed of HFO2.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: August 5, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-jun Won, Yong-kuk Jeong, Dae-jin Kwon, Min-woo Song, Weon-hong Kim
  • Patent number: 7402857
    Abstract: A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Charles Thomas Black, Alfred Grill, Randy William Mann, Deborah Ann Neumayer, Wilbur David Pricer, Katherine Lynn Saenger, Thomas McCarroll Shaw
  • Patent number: 7398595
    Abstract: An integrated circuit structure includes a digit line and an electrode adapted to be part of a storage cell capacitor and includes a barrier layer interposed between a conductive plug and an oxidation resistant layer. An insulative layer protects sidewalls of the barrier layer during deposition and anneal of a dielectric layer. The method includes forming the conductive plug recessed in an insulative layer. The barrier layer is formed in the recess and the top layer. An oxidation resistant conductive layer and a further oxide layer are formed in the recess. The conductive layer is planarized to expose the oxide or oxide/nitride layer. The oxide layers are then etched to expose the top surface and vertical portions of the conductive layer. A dielectric layer is formed to overlie the storage node electrode. A cell plate electrode is fabricated to overlie the dielectric layer.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: July 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Pierre C. Fazan, Viju K. Mathews
  • Patent number: 7388246
    Abstract: A dielectric film containing lanthanide doped TiOx and a method of fabricating such a dielectric film produce a reliable dielectric layer having an equivalent oxide thickness thinner than attainable using SiO2. The lanthanide doped TiOx dielectric layer is arranged as a layered structure of one or more monolayers of the lanthanide doped TiOx. The dopant may be selected from a group consisting of Nd, Tb, and Dy.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 17, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7388248
    Abstract: A capacitor structure having a dielectric layer disposed between two conductive electrodes, wherein the dielectric layer contains at least one charge trap site corresponding to a specific energy state. The energy states may be used to distinguish memory states for the capacitor structure, allowing the invention to be used as a memory device. A method of forming the trap cites involves an atomic layer deposition,of a material at pre-determined areas in the dielectric layer.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: June 17, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Patent number: 7385242
    Abstract: A semiconductor device can be provided comprising a semiconductor substrate having an upper surface. A plurality of adjacent line patterns are formed on the upper surface of the semiconductor substrate. Each line pattern includes a line having a capping layer pattern stacked thereon. A material layer covers the upper surface of the semiconductor substrate having the line patterns. A pad contact hole is located between the line patterns within a region of the material layer. The pad contact hole includes a lower opening between the line patterns and an upper opening located above the lower opening. A barrier layer is formed on a side wall defining the upper opening. A landing pad substantially fills the lower opening and the upper opening defined by the barrier layer.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: June 10, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Sung Lee, Joo-Sung Park
  • Patent number: 7381635
    Abstract: A structure and a method for reduction of soft error rates in integrated circuits. The structure including: a semiconductor substrate; and a stack of one or more wiring levels stacked from a lowermost wiring level to an uppermost wiring level, the lowermost wiring level nearer the semiconductor substrate than the uppermost wiring level; and an alpha particle blocking layer on a top surface of the uppermost wiring level of the one or more wiring levels, the blocking layer comprising metal wires and a dielectric material, the blocking layer having a combination of a thickness of the blocking layer and a volume percent of metal wires in the blocking layer sufficient to stop a predetermined percentage of alpha particles of a selected energy or less striking the blocking layer from penetrating into the stack of one or more wiring levels or the substrate.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Kenneth P. Rodbell
  • Patent number: 7382013
    Abstract: To provide a dielectric thin with a high dielectric constant, a low leakage current, and stable physical properties and electrical properties and to provide a thin film capacitor or other thin film dielectric device with a high capacitance and high reliability and a method of production of the same, a dielectric thin film containing oxides such as barium strontium titanate expressed by the formula (BaxSr(1-x))aTiO3 (0.5<x?1.0, 0.96<a?1.00) and having a thickness of not more than 500 nm and a method of production of a thin film dielectric device including a step of annealing the dielectric thin film in an atmosphere of an oxidizing gas after forming a dielectric thin film on a conductive electrode.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: June 3, 2008
    Assignee: TDK Corporation
    Inventors: Kiyoshi Uchida, Kenji Horino, Hitoshi Saita
  • Patent number: 7382014
    Abstract: A semiconductor device with a capacitor includes a lower electrode, a dielectric and an upper electrode on the dielectric layer. The dielectric layer including more than one polycrystalline tantalum oxide layer and more than one separation layer, wherein the polycrystalline tantalum oxide layers and the separation layers are alternately stacked, while one of the polycrystalline tantalum oxide layers is a lowermost layer among the stacked layers.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: June 3, 2008
    Assignee: Elpida Memory, Inc.
    Inventor: Shinpei Iijima
  • Publication number: 20080121962
    Abstract: Electronic apparatus and methods of forming the electronic apparatus may include a tantalum aluminum oxynitride film for use in a variety of electronic systems and devices. The tantalum aluminum oxynitride film may be structured as one or more monolayers. The tantalum aluminum oxynitride film may be formed using atomic layer deposition. Metal electrodes may be disposed on a dielectric containing a tantalum aluminum oxynitride film.
    Type: Application
    Filed: August 31, 2006
    Publication date: May 29, 2008
    Inventors: Leonard Forbes, Kie Y. Ahn, Arup Bhattacharyya
  • Publication number: 20080121963
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. A preferred embodiment comprises a method of forming an insulating material layer. The method includes forming a barrier layer and forming a rare earth element-containing material layer over the barrier layer.
    Type: Application
    Filed: November 29, 2006
    Publication date: May 29, 2008
    Inventor: Shrinivas Govindarajan
  • Publication number: 20080121964
    Abstract: In one embodiment of the present invention, provided is a semiconductor device having a silicon substrate provided with a DRAM region containing first transistors and capacitor elements, and with a logic region containing second transistors. A minimum gate length of the second transistors provided in the logic region is smaller than a minimum gate length of the first transistors provided in the DRAM region. One of a cobalt silicide layer and a titanium silicide layer is provided on source/drain regions and on gate electrodes of the first transistors provided in the DRAM region, and a nickel-containing silicide layer is provided on source/drain regions and on gate electrodes of the second transistors provided in the logic region.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 29, 2008
    Applicant: NEC Electronics Corporation
    Inventors: Yoshihisa MATSUBARA, Hiroki SHIRAI
  • Patent number: 7378739
    Abstract: A capacitor including a polysilicon layer doped with impurities to be conductive, a first dielectric layer formed on the polysilicon layer, a first conductive layer formed on the first dielectric layer, a second dielectric layer formed on the first conductive layer, and a second conductive layer formed on the first dielectric layer. The second conductive layer is coupled to the polysilicon layer.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 27, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Won-Kyu Kwak, Keum-Nam Kim
  • Patent number: 7379322
    Abstract: An amorphous high-k thin film for a semiconductor device and a manufacturing method thereof are provided. The amorphous high-k thin film includes Bi, Ti, Al, and O. Since a BTAO based amorphous dielectric thin film is used as a dielectric material of a DRAM capacitor, a dielectric constant is more than 25, and an increase of a leakage current caused in reducing a physical thickness of the dielectric thin film can be prevented. Accordingly, it is very useful for the integration of the semiconductor device.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: May 27, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yo-sep Min, Young-jin Cho
  • Patent number: 7375376
    Abstract: A semiconductor display device with an interlayer insulating film in which surface levelness is ensured with a limited film formation time, heat treatment for removing moisture does not take long, and moisture in the interlayer insulating film is prevented from escaping into a film or electrode adjacent to the interlayer insulating film. A TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 20, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosue, Saishi Fujikawa