With Charging Or Discharging By Control Voltage Applied To Source Or Drain Region (e.g., By Avalanche Breakdown Of Drain Junction) Patents (Class 257/322)
  • Patent number: 10868152
    Abstract: A semiconductor device including a memory cell, the semiconductor device including: a floating gate provided at a semiconductor substrate with a first insulation film inbetween, and including a pointed portion having a pointed end at one end side; a spacer provided at the floating gate; a second insulation film provided between the floating gate and the spacer and that covers a side surface of the spacer at the one end side; and a control gate that contacts a side surface of the floating gate at the one end side via a third insulation film and that contacts the side surface of the spacer at the one end side via the second insulation film and the third insulation film.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: December 15, 2020
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Akira Chiba
  • Patent number: 10797063
    Abstract: A single-poly non-volatile memory unit includes: a semiconductor substrate having a first conductivity type; first, second and third OD regions disposed on the semiconductor substrate and separated from each other by an isolation region, wherein the first OD region and the second OD region are formed in a first ion well, and the first ion well has a second conductivity type; a first memory cell disposed on the first OD region, a second memory cell disposed on the second OD region. The first memory cell and the second memory cell exhibit an asymmetric memory cell layout structure with respect to an axis. An erase gate is disposed in the third OD region.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: October 6, 2020
    Assignee: eMemory Technology Inc.
    Inventors: Hsueh-Wei Chen, Wei-Ren Chen, Wein-Town Sun, Jui-Ming Kuo
  • Patent number: 10510766
    Abstract: A method for forming a semiconductor memory device structure includes forming a select gate structure and a dielectric layer, forming a charge trapping layer along a sidewall of a lower portion of the select gate structure and a sidewall of the dielectric layer, and forming a memory gate structure over the charge trapping layer. The select gate structure and the memory gate structure contact opposing sidewalls of the charge trapping layer. The dielectric layer is interposed between the charge trapping layer and the select gate structure.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO,. LTD.
    Inventors: Sheng-Chieh Chen, Ming Chyi Liu, Shih-Chang Liu
  • Patent number: 9953717
    Abstract: Systems and methods for improving performance of a non-volatile memory by utilizing one or more tier select gate transistors between different portions of a NAND string are described. A first memory string tier may comprise a first set of memory cell transistors that may be programmed to store a first set of data and a second memory string tier may comprise a second set of memory cell transistors that are arranged above the first set of transistors and that may be programmed to store a second set of data. Between the first set of memory cell transistors and the second set of memory cell transistors may comprise a tier select gate transistor in series with the first set of memory cell transistors and the second set of memory cell transistors. The tier select gate transistor may comprise a programmable transistor or a non-programmable transistor.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 24, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jagdish Sabde, Jayavel Pachamuthu, Peter Rabkin
  • Patent number: 9837425
    Abstract: A semiconductor device with split gate flash memory cell structure includes a substrate having a first area and a second area, at least a first cell formed in the first area and at least a second cell formed in the second area. The first cell includes a first dielectric layer formed on the substrate, a floating gate (FG), a word line and an erase gate (EG) formed on the first dielectric layer, an interlayer dielectric (ILD) layer, an inter-gate dielectric layer and a control gate (CG). The FG is positioned between the word line and the EG, and the ILD layer is formed on the word line and the EG, wherein the ILD layer has a trench exposing the FG. The inter-gate dielectric layer is formed in the trench as a liner, and the CG formed in the trench is surrounded by the inter-gate dielectric layer.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: December 5, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Aaron Chen, Chi Ren
  • Patent number: 9040971
    Abstract: A thin film transistor (TFT) that includes a control electrode, a semiconductor pattern, a first input electrode, a second input electrode, and an output electrode is disclosed. in one aspect, the semiconductor pattern includes a first input area, a second input area, a channel area, and an output area. The channel area is formed between the first input area and the output area and overlapped with the control electrode to be insulated from the control electrode. The second input area is formed between the first input area and the channel area and doped with a doping concentration different from a doping concentration of the first input areas. The second input electrode makes contact with the second input area and receives a control voltage to control a threshold voltage.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Yong Soo Lee
  • Patent number: 9035370
    Abstract: A semiconductor device, includes: a semiconductor substrate; a first conductivity type well and a second conductivity type well; a first active area; a second active area; a first well contact layer; a plurality of first source/drain layers; a first gate insulating film; a first gate electrode; a second well contact layer; a plurality of second source/drain layers; a second gate insulating film; and a second gate electrode. The first well contact layer is formed in the first active area at one end part in the one direction. The one end parts in each of the first active areas and in each of the second active areas are mutually on the same side.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: May 19, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiko Kato, Hiroyuki Kutsukake
  • Patent number: 9029934
    Abstract: A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Masaru Kidoh, Tomoko Fujiwara, Yosuke Komori, Megumi Ishiduki, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Ryota Katsumata, Ryouhei Kirisawa, Junya Matsunami, Hideaki Aochi
  • Patent number: 8987792
    Abstract: Merged active devices on a common substrate are presented. Methods for operating and fabricating such merged active devices are also presented.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Jaroslaw Adamski, Chris Olson
  • Patent number: 8963232
    Abstract: According to one embodiment, a control gate is formed on the semiconductor substrate and includes a cylindrical through hole. A block insulating film, a charge storage film, a tunnel insulating film, and a semiconductor layer are formed on a side surface of the control gate inside the through hole. The tunnel insulating film comprises a first insulating film having SiO2 as a base material and containing an element that lowers a band gap of the base material by being added. A density and a density gradient of the element monotonously increase from the semiconductor layer toward the charge storage film.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Yasuda, Masaru Kito
  • Patent number: 8907373
    Abstract: A protection device includes a triac and triggering units. Each triggering unit is formed by a MOS transistor configured to operate at least temporarily in a hybrid operating mode and a field-effect diode. The field-effect diode has a controlled gate that is connected to the gate of the MOS transistor.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics SA
    Inventors: Philippe Galy, Jean Jimenez, Johan Bourgeat, Boris Heitz
  • Patent number: 8872249
    Abstract: The technology of the present invention relates to a non-volatile memory device and a fabrication method thereof. The non-volatile memory device includes channel layers protruding vertically from a substrate, a plurality of hole-supply layers and a plurality of gate electrodes, which are alternately stacked along the channel layers, and a memory film interposed between the channel layers and the gate electrodes and between the hole-supply layers and the gate electrodes. According to this technology, the hole-supply layers are formed between the memory cells such that sufficient holes are supplied to the memory cells during the erase operation of the memory cells, whereby the erase operation of the memory cells is smoothly performed without using the GIDL current, and the properties of the device are protected from being deteriorated due to program/erase cycling.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: October 28, 2014
    Assignee: SK Hynix Inc.
    Inventor: Sung-Wook Jung
  • Patent number: 8866222
    Abstract: A semiconductor device includes a semiconductor body and a source metallization arranged on a first surface of the body. The body includes: a first semiconductor layer including a compensation-structure; a second semiconductor layer adjoining the first layer, comprised of semiconductor material of a first conductivity type and having a doping charge per horizontal area lower than a breakdown charge per area of the semiconductor material; a third semiconductor layer of the first conductivity type adjoining the second layer and comprising at least one of a self-charging charge trap, a floating field plate and a semiconductor region of a second conductivity type forming a pn-junction with the third layer; and a fourth semiconductor layer of the first conductivity type adjoining the third layer and having a maximum doping concentration higher than that of the third layer. The first semiconductor layer is arranged between the first surface and the second semiconductor layer.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Stefan Gamerith, Franz Hirler
  • Patent number: 8823077
    Abstract: A semiconductor device according to example embodiments may include a channel including a nanowire and a charge storage layer including nanoparticles. A twin gate structure including a first gate and a second gate may be formed on the charge storage layer. The semiconductor device may be a memory device or a diode.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 2, 2014
    Assignees: Samsung Electronics Co., Ltd., SNU R&D Foundation
    Inventors: Eun-Hong Lee, Seung-Hun Hong, Un-jeong Kim, Hyung-Woo Lee, Sung Myung
  • Patent number: 8823098
    Abstract: The invention discloses a manufacture method and structure of a power transistor, comprising a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode. The two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the two gate units; the upper electrode covers the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Wuxi Versine Semiconductor Corp. Ltd.
    Inventors: Qin Huang, Yuming Bai
  • Patent number: 8796756
    Abstract: A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 5, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Akita, Daisuke Okada, Keisuke Kuwahara, Yasafumi Morimoto, Yasuhiro Shimamoto, Kan Yasui, Tsuyoshi Arigane, Tetsuya Ishimaru
  • Patent number: 8796694
    Abstract: A semiconductor device includes a semiconductor substrate made of silicon carbide and having a surface, a normal vector for the surface having an off angle with respect to a <0001> direction or a <000-1> direction, a semiconductor layer of a first conductivity type formed on the semiconductor substrate, a first semiconductor region of a second conductivity type formed in a surface region of the semiconductor layer, a source region of a first conductivity type formed in a surface region of the first semiconductor region, a second semiconductor region of a second conductivity type formed in the surface region of the semiconductor layer, contacting the first semiconductor region, and having a bottom surface lower than a bottom surface of the first semiconductor region, wherein at least one end of the bottom surface of the second semiconductor region is perpendicular to an off angle direction.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: August 5, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Hatakeyama, Takashi Shinohe
  • Patent number: 8779501
    Abstract: Provided is an ultra highly-integrated flash memory cell device. The cell device includes a semiconductor substrate, a first doping semiconductor area formed on the semiconductor substrate, a second doping semiconductor area formed on the first doping semiconductor area, and a tunneling insulating layer, a charge storage node, a control insulating layer, and a control electrode which are sequentially formed on the second doping semiconductor area. The first and second doping semiconductor areas are doped with impurities of the different semiconductor types According to the present invention, it is possible to greatly improve miniaturization characteristics and performance of the cell devices in conventional NOR or NAND flash memories. Unlike conventional transistor type cell devices, the cell device according to the present invention does not have a channel and a source/drain.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 15, 2014
    Assignee: SNU R&DB Foundation
    Inventor: Jong-Ho Lee
  • Patent number: 8772857
    Abstract: A vertical memory device includes a channel, a ground selection line (GSL), word lines and a string selection line (SSL). The channel extends in a first direction substantially perpendicular to a top surface of a substrate, and a thickness of the channel is different according to height. The GSL, the word lines and the SSL are sequentially formed on a sidewall of the channel in the first direction and spaced apart from each other.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-In Choe, Jae-Hoon Jang, Sun-Il Shim, Han-Soo Kim, Jin-Man Han
  • Patent number: 8728919
    Abstract: A non-volatile semiconductor storage device includes a plurality of memory strings each having a plurality of electrically rewritable memory cells connected in series. Each of the memory strings comprising: a first semiconductor layer including a columnar portion extending in a vertical direction with respect to a substrate; a plurality of first conductive layers formed to surround side surfaces of the columnar portions via insulation layers, and formed at a certain pitch in the vertical direction, the first conductive layers functioning as floating gates of the memory cells; and a plurality of second conductive layers formed to surround the first conductive layers via insulation layers, and functioning as control electrodes of the memory cells. Each of the first conductive layers has a length in the vertical direction that is shorter than a length in the vertical direction of each of the second conductive layers.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Megumi Ishiduki, Yosuke Komori, Hiroyasu Tanaka, Ryota Katsumata, Hideaki Aochi
  • Patent number: 8716780
    Abstract: A memory device includes a planar substrate, a plurality of horizontal conductive planes above the planar substrate, and a plurality of horizontal insulating layers interleaved with the plurality of horizontal conductive planes. An array of vertical conductive columns, perpendicular to the pluralities of conductive planes and insulating layers, passes through apertures in the pluralities of conductive planes and insulating layers. The memory device includes a plurality of programmable memory elements, each of which couples one of the horizontal conductive planes to a respective vertical conductive column.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 6, 2014
    Assignee: Rambus Inc.
    Inventors: Mark D. Kellam, Gary B. Bronner
  • Patent number: 8698227
    Abstract: A mesa-type bidirectional Shockley diode delimited on its two surfaces by a peripheral groove filled with a glassivation including a substrate of a first conductivity type; a layer of the second conductivity type on each side of the substrate; a region of the first conductivity type in each of the layers of the second conductivity type; a buried region of the first conductivity type under each of the regions of the first conductivity type, at the interface between the substrate and the corresponding layer of the second conductivity type, each buried region being complementary in projection with the other; and a peripheral ring under the external periphery of each of the glassivations, of same doping profile as the buried regions.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 15, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventors: Yannick Hague, Samuel Menard
  • Patent number: 8674434
    Abstract: Impact ionization devices including vertical and recessed impact ionization metal oxide semiconductor field effect transistor (MOSFET) devices and methods of forming such devices are disclosed. The devices require lower threshold voltage than conventional MOSET devices while maintaining a footprint equal to or less than conventional MOSFET devices.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: March 18, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Venkatesan Ananthan
  • Patent number: 8664691
    Abstract: A silicon photomultiplier maintains the photon detection efficiency high while increasing a dynamic range, by reducing the degradation of an effective fill factor that follows the increase of cell number density intended for a dynamic range enhancement.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: March 4, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Joon Sung Lee
  • Patent number: 8659069
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Patent number: 8652916
    Abstract: A method of forming a semiconductor structure, including forming a gate structure on a substrate; performing a first angled implantation on a first side of the gate structure to form a first doped region in the substrate, the first doped region partially extends within a channel of the gate structure and the gate structure blocks the first angled implantation from affecting the substrate on a second side of the gate structure; forming sidewall spacers on sidewalls of the gate; and forming a second doped region in the substrate on the second side of the gate, spaced apart from the channel.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Paul Chang, Kangguo Cheng, Chengwen Pei, William R. Tonti
  • Patent number: 8629456
    Abstract: A semiconductor device includes a semiconductor substrate made of silicon carbide and having a surface, a normal vector for the surface having an off angle with respect to a <0001> direction or a <000-1> direction, a semiconductor layer of a first conductivity type formed on the semiconductor substrate, a first semiconductor region of a second conductivity type formed in a surface region of the semiconductor layer, a source region of a first conductivity type formed in a surface region of the first semiconductor region, a second semiconductor region of a second conductivity type formed in the surface region of the semiconductor layer, contacting the first semiconductor region, and having a bottom surface lower than a bottom surface of the first semiconductor region, wherein at least one end of the bottom surface of the second semiconductor region is perpendicular to an off angle direction.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Hatakeyama, Takashi Shinohe
  • Patent number: 8587036
    Abstract: A non-volatile memory is formed on a substrate. The non-volatile memory includes an isolation structure, a floating gate, and a gate dielectric layer. The isolation structure is disposed in the substrate to define an active area. The floating gate is disposed on the substrate and crosses over the active area. The gate dielectric layer is disposed between the floating gate and the substrate. The floating gate includes a first region and a second region. An energy band of the second region is lower than an energy band of the first region, so that charges stored in the floating gate are away from an overlap region of the floating gate and the gate dielectric layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 19, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Shih-Chen Wang, Wen-Hao Ching
  • Patent number: 8575017
    Abstract: A non-volatile semiconductor memory device comprises a plurality of memory cells, each including a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a floating gate formed on the semiconductor substrate with the inclusion of the first insulating film, a second insulating film formed on the floating gate, and a control gate formed on the floating gate with the inclusion of the second insulating film; an element isolation insulating film formed in the semiconductor substrate and extending in a gate-length direction to isolate between memory cells adjoining in a gate-width direction; and an air gap formed on the element isolation insulating film and between floating gates adjoining in the gate-width direction.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takuji Kuniya
  • Patent number: 8530953
    Abstract: A transistor power switch device comprising an array of vertical transistor elements for carrying current between the first and second faces of a semiconductor body and a vertical avalanche diode electrically in parallel with the array of vertical transistors. The array of transistor elements includes at the first face an array of source regions of a first semiconductor type, at least one p region of a second semiconductor type opposite to the first type interposed between the source regions and the second face, at least one control electrode for switchably controlling flow of the current through the p region, and a conductive layer contacting the source regions and insulated from the control electrode.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: September 10, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean Michel Reynes, Beatrice Bernoux, Rene Escoffier, Pierre Jalbaud, Ivana Deram
  • Patent number: 8411506
    Abstract: A non-volatile memory and a manufacturing method thereof and a method for operating a memory cell are provided. The non-volatile memory includes a substrate, first and second doped regions, a charged-trapping structure, first and second gates and an inter-gate insulation layer. The first and second doped regions are disposed in the substrate and extend along a first direction. The first and second doped regions are arranged alternately. The charged-trapping structure is disposed on the substrate. The first and second gates are disposed on the charged-trapping structure. Each first gate is located above one of the first doped regions. The second gates extend along a second direction and are located above the second doped regions. The inter-gate insulation layer is disposed between the first gates and the second gates. Adjacent first and second doped regions and the first gate, the second gate and the charged-trapping structure therebetween define a memory cell.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 2, 2013
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Guan-Wei Wu, I-Chen Yang, Yao-Wen Chang, Tao-Cheng Lu
  • Patent number: 8405140
    Abstract: In a nonvolatile semiconductor memory device, a floating gate is formed on a semiconductor substrate through a gate insulating film, and has a first portion contacting the gate insulating film and a second portion extending upwardly from a part of a surface of the first portion. A first diffusion layer is formed in the semiconductor substrate to have a plane parallel to a surface of the semiconductor substrate. A second diffusion layer is formed in the semiconductor substrate, to have the plane. A control gate is provided near the floating gate above a channel region in the semiconductor substrate and is formed on a first side of the first portion. A conductive film is connected with the first diffusion layer and is formed on a second side of the first portion and a first side of the second portion through the first insulating film.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Eiji Io
  • Patent number: 8399322
    Abstract: A non-volatile semiconductor memory device comprises a plurality of memory cells, each including a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a floating gate formed on the semiconductor substrate with the inclusion of the first insulating film, a second insulating film formed on the floating gate, and a control gate formed on the floating gate with the inclusion of the second insulating film; an element isolation insulating film formed in the semiconductor substrate and extending in a gate-length direction to isolate between memory cells adjoining in a gate-width direction; and an air gap formed on the element isolation insulating film and between floating gates adjoining in the gate-width direction.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takuji Kuniya
  • Patent number: 8390053
    Abstract: A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Akita, Daisuke Okada, Keisuke Kuwahara, Yasufumi Morimoto, Yasuhiro Shimamoto, Kan Yasui, Tsuyoshi Arigane, Tetsuya Ishimaru
  • Patent number: 8378407
    Abstract: A non-volatile memory (NVM) cell and array includes a control capacitor, tunneling capacitor, CMOS inverter and output circuit. The CMOS inverter includes PMOS and NMOS inverter transistors. The control capacitor, tunneling capacitor and PMOS and NMOS inverter transistors share a common floating gate, which is programmed/erased by Fowler-Nordheim tunneling. The output circuit includes PMOS and NMOS select transistors. The PMOS inverter and select transistors share a common source/drain region. Similarly, the NMOS inverter and select transistors share a common source/drain region. This configuration minimizes the required layout area of the non-volatile memory cell and allows design of arrays with smaller footprints. Alternately, the tunneling capacitor may be excluded, further reducing the required layout area of the NVM cell.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 19, 2013
    Assignee: Tower Semiconductor, Ltd.
    Inventors: Mikalai Audzeyeu, Yuriy Makarevich, Siarhei Shvedau, Anatoly Belous, Evgeny Pikhay, Vladislav Dayan, Yakov Roizin
  • Patent number: 8350205
    Abstract: The present invention enables the detection of light using an APD that has high gain and/or a wide range of operating temperature. A first APD is biased with a voltage bias that is controlled based on the breakdown voltage of a second APD, which is thermally coupled with the first APD. Changes in the breakdown voltage of the second APD due to aging, temperature chances, and the like, are reflective of changes in the breakdown voltage of the first APD. As a result, the first APD can be operated with greater stability and reliability at high gain and over larger temperature excursions than APDs known in the prior art.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 8, 2013
    Assignee: Princeton Lightwave, Inc.
    Inventors: Ketan Mukund Patel, Mark Allen Itzler
  • Patent number: 8350602
    Abstract: A reconfigurable semiconductor device is disclosed. The semiconductor device includes a substrate, a first insulating material formed on the substrate, two channels having different polarities, a plurality of terminal electrodes formed on the insulating material and coupled in common with the channels at their opposite ends, a second insulating material formed on the terminal electrodes, and a control gate formed on the second insulating material. The channels have different polarity and a charge storage layer is formed inside the second insulating material. The control gate is applied with a forward bias or a reverse bias and then the bias is cut off. The voltage-current characteristics of the semiconductor device are changed according to an electrical charge created in the charge storage layer.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: January 8, 2013
    Assignee: Seoul National University Research & Development Business Foundation
    Inventors: Seunghun Hong, Sung Myung, Kwang Heo
  • Patent number: 8299509
    Abstract: A semiconductor device includes a buried insulator layer formed on a bulk substrate; a first type semiconductor material formed on the buried insulator layer, and corresponding to a body region of a field effect transistor (FET); a second type of semiconductor material formed over the buried insulator layer, adjacent opposing sides of the body region, and corresponding to source and drain regions of the FET; the second type of semiconductor material having a different bandgap than the first type of semiconductor material; wherein a source side p/n junction of the FET is located substantially within whichever of the first and the second type of semiconductor material having a lower bandgap, and a drain side p/n junction of the FET is located substantially entirely within whichever of the first and the second type of semiconductor material having a higher bandgap.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Seong-Dong Kim, Zhijong Luo, Huilong Zhu
  • Patent number: 8283715
    Abstract: An integrated circuit with a memory cell is disclosed. The integrated circuit with a memory cell includes: a word line disposed in a word line trench of a substrate; a bit line disposed below the word line in a bit line trench and extending orthogonal to the word line; and, a separating layer disposed above the bit line in the bit line trench that separates the word line from the bit line; wherein an etching rate of the separating layer approaches that of the substrate.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: October 9, 2012
    Assignee: Rexchip Electronics Corporation
    Inventors: Yung-Chang Lin, Sheng-Chang Liang
  • Patent number: 8258559
    Abstract: The present invention relates to a technology for reducing dark current noise by discharging electrons accumulated on a surface of an image sensor photodiode. In an N-type or P-type photodiode, a channel is formed between the photodiode and a power voltage terminal, so that electrons (or holes) accumulated on a surface of the photodiode are discharged to the power voltage terminal through the channel.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 4, 2012
    Assignee: Siliconfile Technologies Inc.
    Inventor: Byoung-Su Lee
  • Patent number: 8237211
    Abstract: A non-volatile semiconductor storage device has a memory string including a plurality of electrically rewritable memory cells connected in series. The non-volatile semiconductor storage device also has a protruding layer formed to protrude upward with respect to a substrate. The memory string includes: a plurality of first conductive layers laminated on the substrate; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and an electric charge storage layer formed between the first conductive layers and the first semiconductor layer, and configured to be able to store electric charges. Each of the plurality of first conductive layers includes: a bottom portion extending in parallel to the substrate; and a side portion extending upward with respect to the substrate along the protruding layer at the bottom portion. The protruding layer has a width in a first direction parallel to the substrate that is less than or equal to its length in a lamination direction.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: August 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Hiroyasu Tanaka, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Akihiro Nitayama, Hideaki Aochi, Hitoshi Ito, Yasuyuki Matsuoka
  • Patent number: 8227853
    Abstract: A semiconductor integrated circuit device includes a semiconductor substrate; a dummy pattern extending in one direction on the semiconductor substrate; a junction region electrically connecting the dummy pattern to the semiconductor substrate; and a voltage applying unit that is configured to apply a bias voltage to the dummy pattern.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Hyun Lee, Jung-Yun Choi
  • Publication number: 20120155176
    Abstract: A semiconductor memory device and a method of manufacturing the same.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 21, 2012
    Inventor: Jin Hyo Jung
  • Patent number: 8154072
    Abstract: A nonvolatile semiconductor memory apparatus includes: a source and drain regions formed at a distance from each other in a semiconductor layer; a first insulating film formed on the semiconductor layer located between the source region and the drain region, the first insulating film including a first insulating layer and a second insulating layer formed on the first insulating layer and having a higher dielectric constant than the first insulating layer, the second insulating layer having a first site performing hole trapping and releasing, the first site being formed by adding an element different from a base material to the second insulating film, the first site being located at a lower level than a Fermi level of a material forming the semiconductor layer; a charge storage film formed on the first insulating film; a second insulating film formed on the charge storage film; and a control gate electrode formed on the second insulating film.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Koike, Yuichiro Mitani, Tatsuo Shimizu, Naoki Yasuda, Yasushi Nakasaki, Akira Nishiyama
  • Patent number: 8143665
    Abstract: The invention provides a memory array. The memory array comprises a substrate, a plurality of word lines, a charge trapping structure, a plurality of trench channels and a plurality of bit lines. The word lines are located over the substrate and the word lines are parallel to each other. The charge trapping structure covers a surface of each of the word lines. The trench channels are located over the substrate and the word lines and the trench channels are alternatively arranged and each trench channel is separated from the adjacent word lines by the charge trapping structure. The bit lines are located over the word lines and each bit line is across over each of the word lines and each trench channel is electrically coupled to the bit lines.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: March 27, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Jyun-Siang Huang, Wen-Jer Tsai, Tien-Fan Ou
  • Patent number: 8115249
    Abstract: In a nonvolatile semiconductor memory device, a tunnel insulating layer, a charge storage layer and a charge block layer are formed on a silicon substrate in this order, and a plurality of control gate electrodes are provided above the charge block layer. Moreover, a cap layer made of silicon nitride is formed between the charge block layer and each of the control gate electrode, the cap layer being divided for each gate control electrode.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Isao Kamioka, Yoshio Ozawa, Katsuyuki Sekine
  • Patent number: 8084791
    Abstract: In a non-volatile memory structure, the source/drain regions are surrounded by a nitrogen-doped region. As a result, an interface between the substrate and the charge trapping layer above the nitrogen-doped region is passivated by a plurality of nitrogen atoms. The nitrogen atoms can improve data retention, and performance of cycled non-volatile memory devices.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: December 27, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Yen-Hao Shih
  • Patent number: 8053812
    Abstract: A method for fabricating a non-volatile memory array includes placing contacts over bit lines in a self-aligned manner. The placing includes forming self-aligned contact holes bounded by a second insulating material resistant to the removal of a first insulating material previously deposited over the bit lines, and depositing contact material, wherein the second insulating material blocks effusion of the contact material beyond the contact holes. The distance between neighboring bit lines in the array does not include a margin for contact misalignment.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: November 8, 2011
    Assignee: Spansion Israel Ltd
    Inventor: Assaf Shappir
  • Patent number: 8039886
    Abstract: A depletion-type NAND flash memory includes a NAND string composed of a plurality of serially connected FETs, a control circuit which controls gate potentials of the plurality of FETs in a read operation, a particular potential storage, and an adjacent memory cell threshold storage, wherein each of the plurality of FETs is a transistor whose threshold changes in accordance with a charge quantity in a charge accumulation layer, the adjacent memory cell threshold storage stores a threshold of a source line side FET adjacent to a source line side of a selected FET, and the control circuit applies a potential to the gate electrode of the source line side FET in the read operation, the applied potential being obtained by adding a particular potential stored in the particular potential storage to a threshold stored in the adjacent memory cell threshold storage.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: October 18, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Mizukami, Kiyohito Nishihara
  • Patent number: 8004034
    Abstract: Embodiments relate to a single poly type EEPROM and a method for manufacturing an EEPROM. According to embodiments, a single poly type EEPROM may include unit cells. A unit cell may include a floating gate at a side of a control node formed on and/or over a semiconductor substrate having an activation region and a device isolation area, not overlapping a device isolation region but overlapping only a top of the activation region. A select gate may be formed on and/or over a top of the activation region. According to embodiments, a ratio of a capacitance of a control node side to a capacitance of a bit line side may increase, which may improve a coupling ratio. According to embodiments, a junction capacitance may be maximized by not doping the floating gate with an impurity, which may allow for a reduction in chip size by securing design margins.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: August 23, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang-Woo Nam