Complementary Field Effect Transistor Structures Only (i.e., Not Including Bipolar Transistors, Resistors, Or Other Components) Patents (Class 257/351)
  • Patent number: 8288296
    Abstract: A replacement gate structure and method of fabrication are disclosed. The method provides for fabrication of both high performance FET and low leakage FET devices within the same integrated circuit. Low leakage FET devices are fabricated with a hybrid gate dielectric comprised of a low-K dielectric layer and a high-K dielectric layer. High performance FET devices are fabricated with a low-K gate dielectric.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Kangguo Cheng, Dechao Guo, Pranita Kulkarni
  • Patent number: 8274095
    Abstract: A semiconductor device having the present high withstand voltage power device IGBT has at a back surface a p collector layer with boron injected in an amount of approximately 3×1013/cm2 with an energy of approximately 50 KeV to a depth of approximately 0.5 ?m, and an n+ buffer layer with phosphorus injected in an amount of approximately 3×1012/cm2 with an energy of 120 KeV to a depth of approximately 20 ?m. To control lifetime, a semiconductor substrate is exposed to protons at the back surface. Optimally, it is exposed to protons at a dose of approximately 1×1011/cm2 to a depth of approximately 32 ?m as measured from the back surface. Thus snapback phenomenon can be eliminated and an improved low saturation voltage (Vce (sat))-offset voltage (Eoff) tradeoff can be achieved.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 25, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshiaki Hisamoto
  • Patent number: 8273629
    Abstract: The present invention, provides a semiconductor device including a substrate including a semiconductor layer overlying an insulating layer, wherein a back gate structure is present underlying the insulating layer and a front gate structure on the semiconductor layer; a channel dopant region underlying the front gate structure of the substrate, wherein the channel dopant region has a first concentration present at an interface of the semiconductor layer and the insulating layer and at least a second concentration present at the interface of the front gate structure and the semiconductor layer, wherein the first concentration is greater than the second concentration; and a source region and drain region present in the semiconductor layer of the substrate.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Geng Wang, Paul C. Parries
  • Publication number: 20120235240
    Abstract: Dual orientation of finFET transistors in a static random access memory (SRAM) cell allows aggressive scaling to a minimum feature size of 15 nm and smaller using currently known masking techniques that provide good manufacturing yield. A preferred layout and embodiment features inverters formed from adjacent, parallel finFETs with a shared gate and different conductivity types developed through a double sidewall image transfer process while the preferred dimensions of the inverter finFETs and the pass transistors allow critical dimensions of all transistors to be sufficiently uniform despite the dual transistor orientation of the SRAM cell layout.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Abhisek Dixit
  • Patent number: 8269279
    Abstract: A semiconductor device including: a low threshold PMOS device formed over an N-type region, the source and drain of the low threshold PMOS formed in P-regions surrounded by N-regions; a low threshold NMOS device formed in a P-type region, the source and drain of the low threshold NMOS formed in N-regions surrounded by P-regions; first and second substrate bias generators, each connected to one of the low threshold devices for generating a substrate bias; a voltage source for generating substrate bias during a standby mode to reduce leakage current; wherein a low voltage threshold is established by the source and drain regions of the low threshold devices and their respective surrounding regions of opposite polarity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 18, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 8264038
    Abstract: A buried layer architecture which includes a floating buried layer structure adjacent to a high voltage buried layer connected to a deep well of the same conductivity type for components in an IC is disclosed. The floating buried layer structure surrounds the high voltage buried layer and extends a depletion region of the buried layer to reduce a peak electric field at lateral edges of the buried layer. When the size and spacing of the floating buried layer structure are optimized, the well connected to the buried layer may be biased to 100 volts without breakdown. Adding a second floating buried layer structure surrounding the first floating buried layer structure allows operation of the buried layer up to 140 volts. The buried layer architecture with the floating buried layer structure may be incorporated into a DEPMOS transistor, an LDMOS transistor, a buried collector npn bipolar transistor and an isolated CMOS circuit.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: September 11, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Binghua Hu, Xinfen Chen
  • Patent number: 8258576
    Abstract: A semiconductor device has a first MOS transistor formed on first active region of the first conductivity type, having first gate electrode structure, first source/drain regions, recesses formed in the first source/drain regions, and semiconductor buried regions buried and grown on the recesses for applying stress to the channel under the first gate electrode structure, and a second MOS transistor formed on second active region of the second conductivity type, having second gate electrode structure, second source/drain regions, and semiconductor epitaxial layers formed on the second source/drain regions without forming recesses and preferably applying stress to the channel under the second gate electrode structure. In a CMOS device, performance can be improved by utilizing stress and manufacture processes can be simplified.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 4, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hiroyuki Ohta
  • Patent number: 8253202
    Abstract: A thin film transistor substrate with good process efficiency and a method of manufacturing the same are provided. The thin film transistor substrate includes a first conductive type MOS transistor and a second conductive type MOS transistor. The first conductive type MOS transistor includes a first semiconductor layer formed on a blocking layer and having first conductive type low-concentration doping regions adjacent to both sides of a channel region, first conductive type source/drain regions adjacent to the first conductive type low-concentration doping regions, a first gate insulating layer formed on the first semiconductor layer, a second gate insulating layer formed on the first gate insulating layer and overlapping with the channel region and the low-concentration doping regions of the first semiconductor layer, and a first gate electrode formed on the second gate insulating layer.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-min Park, Chun-gi You
  • Publication number: 20120216158
    Abstract: Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. BEDELL, Kangguo CHENG, Bruce B. DORIS, Ali KHAKIFIROOZ, Pranita KULKARNI, Katherine L. SAENGER
  • Patent number: 8242564
    Abstract: A semiconductor structure having a transistor region and an optical device region includes a transistor in a first semiconductor layer of the semiconductor structure, wherein the first semiconductor layer is over a first insulating layer, the first insulating layer is over a second semiconductor layer, and the second semiconductor layer is over a second insulating layer. A gate dielectric of the transistor is in physical contact with a top surface of the first semiconductor layer, and the transistor is formed in the transistor region of the semiconductor structure. A waveguide device in the optical device region and a third semiconductor layer over a portion of the second semiconductor layer.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 14, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, Jill C. Hildreth, Robert E. Jones
  • Publication number: 20120199910
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure include a hybrid orientation substrate having a first active region having a first crystallographic orientation that is vertically separated from a second active region having a second crystallographic orientation different than the first crystallographic orientation. A first field effect device having a first gate electrode is located and formed within and upon the first active region and a second field effect device having a second gate electrode is located and formed within and upon the second active region. Upper surfaces of the first gate electrode and the second gate electrode are coplanar. The structure and method allow for avoidance of epitaxial defects generally encountered when using hybrid orientation technology substrates that include coplanar active regions.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 9, 2012
    Applicant: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Publication number: 20120199909
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. A complimentary metal oxide semiconductor (CMOS) device includes a PMOS transistor having at least two first gate electrodes comprising a first parameter, and an NMOS transistor having at least two second gate electrodes comprising a second parameter, wherein the second parameter is different than the first parameter. The first parameter and the second parameter may comprise the thickness or the dopant profile of the gate electrode materials of the PMOS and NMOS transistors. The first and second parameter of the at least two first gate electrodes and the at least two second gate electrodes establish the work function of the PMOS and NMOS transistors, respectively.
    Type: Application
    Filed: April 19, 2012
    Publication date: August 9, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Schulz, Hongfa Luan
  • Patent number: 8232599
    Abstract: An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Shreesh Narasimha, Ning Su, Huiling Shang
  • Patent number: 8232604
    Abstract: A transistor is provided that includes a silicon layer including a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, and a sidewall spacer disposed on sidewalls of the gate stack. The gate stack includes a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The sidewall spacer includes a high dielectric constant material and covers the sidewalls of at least the second and third layers of the gate stack. Also provided is a method for fabricating such a transistor.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8232598
    Abstract: To provide a display device which can realize high performance of a field-effect transistor which forms a pixel of the display device and which can achieve improvement in an aperture ratio of a pixel, which has been reduced due to increase in the number of field-effect transistors, and reduction in the area of the field-effect transistor which occupies the pixel, without depending on a microfabrication technique of the field-effect transistor, even when the number of field-effect transistors in the pixel is increased. A display device is provided with a plurality of pixels in which a plurality of field-effect transistors including a semiconductor layer which is separated from a semiconductor substrate and is bonded to a supporting substrate having an insulating surface are stacked with a planarization layer interposed therebetween.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: July 31, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Ikuko Kawamata, Atsushi Miyaguchi
  • Patent number: 8232603
    Abstract: A gated diode structure and a method for fabricating the gated diode structure use a relaxed liner that is derived from a stressed liner that is typically used within the context of a field effect transistor formed simultaneously with the gated diode structure. The relaxed liner is formed incident to treatment, such as ion implantation treatment, of the stressed liner. The relaxed liner provides improved gated diode ideality in comparison with the stressed liner, absent any gated diode damage that may occur incident to stripping the stressed liner from the gated diode structure while using a reactive ion etch method.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Gregory G. Freeman, Kevin McStay, Shreesh Narasimha
  • Patent number: 8232148
    Abstract: An electrical device is provided with a p-type semiconductor device having a first gate structure that includes a gate dielectric on top of a semiconductor substrate, a p-type work function metal layer, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An n-type semiconductor device is also present on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric is present over the semiconductor substrate. The interlevel dielectric includes interconnects to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Michael P. Chudzik, Unoh Kwon, Filippos Papadatos, Andrew H. Simon, Keith Kwong Hon Wong
  • Patent number: 8227302
    Abstract: To provide a semiconductor device in which resistance of a source region and a drain region of a thin film transistor is reduced and a short channel effect is suppressed, and a manufacturing method thereof. The semiconductor device includes a gate electrode which is formed over a first semiconductor layer with a gate insulating film interposed therebetween; sidewalls which are formed on side surfaces of the gate electrode; and second semiconductor layers which are in contact with and stacked over end portions of the sidewalls and the first semiconductor layer, wherein the second semiconductor layers cover at least a part of the end portions of the sidewalls.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideto Ohnuma
  • Patent number: 8227806
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: July 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Publication number: 20120181610
    Abstract: Techniques for combining transistors having different threshold voltage requirements from one another are provided. In one aspect, a semiconductor device comprises a substrate having a first and a second nFET region, and a first and a second pFET region; a logic nFET on the substrate over the first nFET region; a logic pFET on the substrate over the first pFET region; a SRAM nFET on the substrate over the second nFET region; and a SRAM pFET on the substrate over the second pFET region, each comprising a gate stack having a metal layer over a high-K layer. The logic nFET gate stack further comprises a capping layer separating the metal layer from the high-K layer, wherein the capping layer is further configured to shift a threshold voltage of the logic nFET relative to a threshold voltage of one or more of the logic pFET, SRAM nFET and SRAM pFET.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicant: International Business Machines Corporation
    Inventors: Martin M. Frank, Arvind Kumar, Vijay Narayanan, Vamsi K. Paruchuri, Jeffrey Sleight
  • Publication number: 20120181609
    Abstract: The present invention relates to a method for the manufacture of a semiconductor device by providing a first substrate; providing a doped layer in a surface region of the first substrate; providing a buried oxide layer on the doped layer; providing a semiconductor layer on the buried oxide layer to obtain a semiconductor-on-insulator (SeOI) wafer; removing the buried oxide layer and the semiconductor layer from a first region of the SeOI wafer while maintaining the buried oxide layer and the semiconductor layer in a second region of the SeOI water; providing an upper transistor in the second region by forming a back gate in or by the doped layer; and providing a lower transistor in the first region by forming source and drain regions in or by the doped layer.
    Type: Application
    Filed: November 28, 2011
    Publication date: July 19, 2012
    Inventors: Gerhard Enders, Wolfgang Hoenlein, Franz Hofman, Carlos Mazure
  • Publication number: 20120168866
    Abstract: A structure, method and system for complementary strain fill for integrated circuit chips. The structure includes a first region of an integrated circuit having multiplicity of n-channel and p-channel field effect transistors (FETs); a first stressed layer over n-channel field effect transistors (NFETs) of the first region, the first stressed layer of a first stress type; a second stressed layer over p-channel field effect transistors (PFETs) of the first region, the second stressed layer of a second stress type, the second stress type opposite from the first stress type; and a second region of the integrated circuit, the second region not containing FETs, the second region containing first sub-regions of the first stressed layer and second sub-regions of the second stressed layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Publication number: 20120146148
    Abstract: A bulk & SOI hybrid CMIS device, in which an I/O bulk part and a core logic SOI part are mounted, needs a number of gate stacks to optimize threshold voltage control and causes a problem that the process and structure become complicated. The present invention adjusts the threshold voltage of MISFET at the corresponding part by introducing impurities into any of back gate semiconductor regions, in an SOI semiconductor CMISFET integrated circuit device having a high-k gate insulating film and a metal gate electrode.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 14, 2012
    Inventor: Toshiaki IWAMATSU
  • Publication number: 20120146147
    Abstract: Butted p-n junctions interconnecting back gates in an SOI process, methods for making butted p-n junctions, and design structures. The butted junction includes an overlapping region formed in the bulk substrate by overlapping the mask windows of the ion-implantation masks used to form the back gates. A damaged region may be selectively formed to introduce mid-gap energy levels in the semiconductor material of the overlapping region employing one of the implantation masks used to form the back gates. The damage region causes the butted junction to be leaky and conductively couples the overlapped back gates to each other and to the substrate. Other back gates may be formed that are floating and not coupled to the substrate.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Terence B. Hook
  • Publication number: 20120146149
    Abstract: A semiconductor device includes two Dt-MOS transistors each having insulation regions respectively under the source and drain regions, the two Dt-MOS transistors sharing a diffusion region as a source region of one Dt-MOS transistor and a drain region of the other Dt-MOS transistor, wherein the insulation regions have respective bottom edges located lower than bottom edges of respective body regions of the Dt-MOS transistors, and wherein the bottom edges of the respective body regions are located deeper than respective bottom edges of the source and drain regions of the Dt-MOS transistors.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 14, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Youichi Momiyama
  • Patent number: 8198682
    Abstract: A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20120139050
    Abstract: A three-dimensional integrated circuit device includes a first substrate having a first crystal orientation comprising at least one or more PMOS devices thereon and a first dielectric layer overlying the one or more PMOS devices. The three-dimensional integrated circuit device also includes a second substrate having a second crystal orientation comprising at least one or more NMOS devices thereon; and a second dielectric layer overlying the one or more NMOS devices. An interface region couples the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 7, 2012
    Applicant: MCube Inc.
    Inventor: XIAO (CHARLES) YANG
  • Publication number: 20120132993
    Abstract: Methods and systems for monolithic integration of photonics and electronics in CMOS processes are disclosed and may include fabricating photonic and electronic devices on two CMOS wafers with different silicon layer thicknesses for the photonic and electronic devices bonded to at least a portion of each of the wafers together, where a first of the CMOS wafers includes the photonic devices and a second of the CMOS wafers includes the electronic devices. The electrical devices may be coupled to optical devices utilizing through-silicon vias. The different thicknesses may be fabricated utilizing a selective area growth process. Cladding layers may be fabricated utilizing oxygen implants and/or utilizing CMOS trench oxide on the CMOS wafers. Silicon may be deposited on the CMOS trench oxide utilizing epitaxial lateral overgrowth. Cladding layers may be fabricated utilizing selective backside etching. Reflective surfaces may be fabricated by depositing metal on the selectively etched regions.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 31, 2012
    Inventors: Thierry Pinguet, Steffen Gloeckner, Peter De Dobbelaere, Sherif Abdalla, Daniel Kucharski, Gianlorenzo Masini, Kosei Yokoyama, John Guckenberger, Attila Mekis
  • Patent number: 8183635
    Abstract: A technique to be applied to a semiconductor device for achieving low power consumption by improving a shape at a boundary portion of a shallow trench and an SOI layer of an SOI substrate. A position (SOI edge) at which a main surface of a silicon substrate and a line extended along a side surface of an SOI layer are crossed is recessed away from a shallow-trench isolation more than a position (STI edge) at which a line extended along a sidewall of a shallow trench and a line extended along the main surface of the silicon substrate are crossed, and a corner of the silicon substrate at the STI edge has a curved surface.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 22, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Sugii, Ryuta Tsuchiya, Shinichiro Kimura, Takashi Ishigaki, Yusuke Morita, Hiroyuki Yoshimoto
  • Patent number: 8183636
    Abstract: One or more embodiments relate to a static random access memory cell comprising: a first inverter including a first n-channel pull-down transistor coupled between a first node and a ground voltage; a second inverter including a second n-channel pull-down transistor coupled between a second node and the ground voltage; a first n-channel access transistor coupled between a first bit line and the first node of the first inverter, a fin of the first n-channel access transistor having a lower charge carrier mobility than a fin of the first n-channel pull-down transistor; and a second n-channel access transistor coupled between a second bit line and the second node of the second inverter, a fin of the second n-channel access transistor having a lower charge carrier mobility than a fin of the second n-channel pull-down transistor.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 22, 2012
    Assignee: Infineon Technologies AG
    Inventors: Joerg Berthold, Christian Pacha, Klaus Arnim Von
  • Patent number: 8178902
    Abstract: A CMOS device with transistors having different gate dielectric materials and a method of manufacture thereof. A CMOS device is formed on a workpiece having a first region and a second region. A first gate dielectric material is deposited over the second region. A first gate material is deposited over the first gate dielectric material. A second gate dielectric material comprising a different material than the first gate dielectric material is deposited over the first region of the workpiece. A second gate material is deposited over the second gate dielectric material. The first gate material, the first gate dielectric material, the second gate material, and the second gate dielectric material are then patterned to form a CMOS device having a symmetric Vt for the PMOS and NMOS FETs.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: May 15, 2012
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 8178924
    Abstract: A semiconductor device having a floating body element and a bulk body element and a manufacturing method thereof are provided. The semiconductor device includes a substrate having a bulk body element region and floating body element regions. An isolation region defining an active region of the bulk body element region of the substrate and defining first buried patterns and first active patterns, which are sequentially stacked on a first element region of the floating body element regions of the substrate is provided. A first buried dielectric layer interposed between the first buried patterns and the substrate and between the first buried patterns and the first active patterns is provided.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: May 15, 2012
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Chang-Woo Oh, Dong-Gun Park
  • Publication number: 20120112284
    Abstract: A structure and method of fabricating the structure. The structure includes a first region of a semiconductor substrate separated from a second region of the semiconductor substrate by trench isolation formed in the substrate; a first stressed layer over the first region; a second stressed layer over second region; the first stressed layer and second stressed layer separated by a gap; and a passivation layer on the first and second stressed layers, the passivation layer extending over and sealing the gap.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Publication number: 20120112207
    Abstract: The present disclosure, which is directed to ultra-thin-body-and-BOX and Double BOX fully depleted SOI devices having an epitaxial diffusion-retarding semiconductor layer that slows dopant diffusion into the SOI channel, and a method of making these devices. Dopant concentrations in the SOI channels of the devices of the present disclosure having an epitaxial diffusion-retarding semiconductor layer between the substrate and SOI channel are approximately 50 times less than the dopant concentrations measured in SOI channels of devices without the epitaxial diffusion-retarding semiconductor layer.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20120112285
    Abstract: The present invention relates to methods and devices for reducing the threshold voltage difference between an n-type field effect transistor (n-FET) and a p-type field effect transistor (p-FET) in a complementary metal-oxide-semiconductor (CMOS) circuit located on a silicon-on-insulator (SOI) substrate. Specifically, a substrate bias voltage is applied to the CMOS circuit for differentially adjusting the threshold voltages of the n-FET and the p-FET. For example, a positive substrate bias voltage can be used to reduce the threshold voltage of the n-FET but increase that of the p-FET, while a negative substrate bias voltage can be used to increase the threshold voltage of the n-FET but reduce that of the p-FET. Further, two or more substrate bias voltages of different magnitudes and/or directions can be used for differentially adjusting the n-FET and p-FET threshold voltages in two or more different CMOS circuits or groups of CMOS circuits.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Wilfried E. Haensch, Tak H. Ning
  • Patent number: 8173496
    Abstract: A stack including at least an insulating layer, a first electrode, and a first impurity semiconductor layer is provided over a supporting substrate; a first semiconductor layer to which an impurity element imparting one conductivity type is added is formed over the first impurity semiconductor layer; a second semiconductor layer to which an impurity element imparting the one conductivity type is added is formed over the first semiconductor layer under a condition different from that of the first semiconductor layer; crystallinity of the first semiconductor layer and crystallinity of the second semiconductor layer are improved by a solid-phase growth method to form a second impurity semiconductor layer; an impurity element imparting the one conductivity type and an impurity element imparting a conductivity type different from the one conductivity type are added to the second impurity semiconductor layer; and a gate electrode layer is formed via a gate insulating layer.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: May 8, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sho Kato, Satoshi Toriumi, Fumito Isaka, Hideto Ohnuma
  • Publication number: 20120104498
    Abstract: A method of forming a transistor device includes forming a dummy gate stack structure over an SOI starting substrate, comprising a bulk layer, a global BOX layer over the bulk layer, and an SOI layer over the global BOX layer. Self-aligned trenches are formed completely through portions of the SOI layer and the global BOX layer at source and drain regions. Silicon is epitaxially regrown in the source and drain regions, with a local BOX layer re-established in the epitaxially regrown silicon, adjacent to the global BOX layer. A top surface of the local BOX layer is below a top surface of the global BOX layer. Embedded source and drain stressors are formed in the source and drain regions, adjacent a channel region. Silicide contacts are formed on the source and drain regions. The dummy gate stack structure is removed, and a final gate stack structure is formed.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FREESCALE SEMICONDUCTOR CORPORATION, ADVANCED MICRO DEVICES CORPORATION
    Inventors: Amlan Majumdar, Robert J. Miller, Muralidhar Ramachandran
  • Patent number: 8169026
    Abstract: A semiconductor device including: a silicon dioxide layer; an n-type field effect transistor (NFET) including at least one recessed source/drain trench and located over a portion of the silicon dioxide layer; a p-type field effect transistor (PFET) including at least one recessed source/drain trench and located over a portion of the silicon dioxide layer; a nitride stress liner over the NFET and the PFET, the nitride stress liner filling the at least one recessed source/drain trench of the NFET and the at least one recessed source/drain trench of the PFET; and a first contact formed in the silicon dioxide layer, the first contact abutting one of the NFET or the PFET.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Zhijiong Luo, QingQing Liang, Haizhou Yin, Huilong Zhu
  • Patent number: 8169025
    Abstract: A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20120098067
    Abstract: A semiconductor structure is provided. The structure includes an n-type field-effect-transistor (NFET) being formed directly on top of a strained silicon layer, and a p-type field-effect-transistor (PFET) being formed on top of the same stained silicon layer but via a layer of silicon-germanium (SiGe). The strained silicon layer may be formed on top of a layer of insulating material or a silicon-germanium layer with graded Ge content variation. Furthermore, the NFET and PFET are formed next to each other and are separated by a shallow trench isolation (STI) formed inside the strained silicon layer. Methods of forming the semiconductor structure are also provided.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haizhou Yin, Dae-Gyu Park, Oleg Gluschenkov, Zhijiong Luo, Dominic Schepis, Jun Yuan
  • Patent number: 8164099
    Abstract: A display device with improved reliability and a manufacturing method of the same with improved yield. A display device according to the invention comprises a display area including a first electrode, an insulating layer covering an edge of the first electrode, a layer containing an organic compound, which is formed on the first electrode, and a second electrode. The first electrode and the insulating layer are doped with an impurity element of one conductivity.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: April 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Osamu Nakamura, Aki Yamamiti, Naoto Yamade
  • Patent number: 8154082
    Abstract: A semiconductor device includes an NMISFET region. The NMISFET region includes a Ge nano wire having a triangular cross section along a direction perpendicular to a channel current direction, wherein two of surfaces that define the triangular cross section of the Ge nano wire are (111) planes, and the other surface that define the triangular cross section of the Ge nano wire is a (100) plane; and an Si layer or an Si1-xGex layer (0<x<0.5) on the (100) plane of the Ge nano wire.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Moriyama, Yoshiki Kamata, Tsutomu Tezuka
  • Patent number: 8134207
    Abstract: In a high breakdown voltage semiconductor element among elements integrated together on an SOI substrate in which its rated voltage is shared between an embedded oxide layer and a drain region formed by an element active layer, both high integration and high breakdown voltage are realized while also securing suitability for practical implementation and practical use. The high breakdown voltage is realized without hampering size reduction of the element by forming an electrically floating layer of a conductivity type opposite to that of the drain region at the surface of the drain region. Further, the thickness of the embedded oxide layer is reduced to a level suitable for the practical implementation and practical use by setting the thickness of the element active layer of the SOI substrate at 30 ?m or more.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Atsuo Watanabe
  • Patent number: 8129215
    Abstract: A method for producing a High Temperature Thin Film Layer On Glass (HTTFLOG) of silicon, which is a precursor component of thin film transistors (TFTs). The invention described here is a superior method of fabricating HTTFLOG precursor structures or components for liquid crystal displays (LCDs) with quicker production time and lower cost of manufacture while enabling a groundbreaking increase in small and large screen resolution. This invention is a new sub-assembly intended for original equipment manufacturer (OEM) consumption and inclusion in display products.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 6, 2012
    Inventors: James P Campbell, Harry R Campbell, Ann B Campbell, Joel F Farber
  • Patent number: 8124975
    Abstract: Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Noda, Toshio Miyazawa, Takuo Kaitoh, Hiroyuki Abe
  • Patent number: 8120110
    Abstract: A first field effect transistor includes a gate dielectric and a gate electrode located over a first portion of a top semiconductor layer in a semiconductor-on-insulator (SOI) substrate. A second field effect transistor includes a portion of a buried insulator layer and a source region and a drain region located underneath the buried insulator layer. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer. The first field effect transistor may be a high performance device and the second field effect transistor may be a high voltage device. A design structure for the semiconductor structure is also provided.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Publication number: 20120037994
    Abstract: A FinFET and nanowire transistor with strain direction optimized in accordance with the sideface orientation and carrier polarity and an SMT-introduced manufacturing method for achieving the same are provided. A semiconductor device includes a pMISFET having a semiconductor substrate, a rectangular solid-shaped semiconductor layer formed at upper part of the substrate to have a top surface parallel to a principal plane of the substrate and a sideface with a (100) plane perpendicular to the substrate's principal plane, a channel region formed in the rectangular semiconductor layer, a gate insulating film formed at least on the sideface of the rectangular layer, a gate electrode on the gate insulator film, and source/drain regions formed in the rectangular semiconductor layer to interpose the channel region therebetween. The channel region is applied a compressive strain in the perpendicular direction to the substrate principal plane. A manufacturing method of the device is also disclosed.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masumi SAITOH, Ken UCHIDA
  • Publication number: 20120032236
    Abstract: An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Atsuo ISOBE, Hiromichi GODO, Yutaka OKAZAKI
  • Patent number: 8110878
    Abstract: There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: February 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Naozumi Morino, Atsushi Hiraiwa, Kazutoshi Oku, Toshiaki Ito, Motoshige Igarashi, Takayuki Sasaki, Masao Sugiyama, Hiroshi Yanagita, Shinichi Watarai
  • Patent number: 8110874
    Abstract: A hybrid substrate circuit on a common substrate is disclosed. A first circuit formed in a first semiconductor material is isolated via a buried oxide layer from a second circuit formed in a second semiconductor material. The first and second circuits may include CMOS, HEMTs, P-HEMTs, HBTs, radio frequency circuits, MESFETs, and various pFETs and nFETs.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Katsura Miyashita