Insulated Electrode Device Is Combined With Diverse Type Device (e.g., Complementary Mosfets, Fet With Resistor, Etc.) Patents (Class 257/350)
-
Patent number: 12237227Abstract: A device includes a fin on a substrate; a first transistor, including: a drain region and a first source region in the fin; and a first gate structure on the fin between the first source region and the drain region; a second transistor, including: the drain region and a second source region in the fin; and a second gate structure on the fin between the second source region and the drain region; a first resistor, including: the first source region and a first resistor region in the fin; and a third gate structure on the fin between the first source region and the first resistor region; and a second resistor, including: the second source region and a second resistor region in the fin; and a fourth gate structure on the fin between the second source region and the second resistor region.Type: GrantFiled: March 11, 2022Date of Patent: February 25, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kai-Qiang Wen, Shih-Fen Huang, Shih-Chun Fu, Chi-Yuan Shih, Feng Yuan
-
Patent number: 12148750Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first channel structure configured to transport charge carriers within a first transistor device and a first gate electrode layer wrapping around the first channel structure. A second channel structure is configured to transport charge carriers within a second transistor device. A second gate electrode layer wraps around the second channel structure. The second gate electrode layer continuously extends from around the second channel structure to cover the first gate electrode layer. A third channel structure is configured to transport charge carriers within a third transistor device. A third gate electrode layer wraps around the third channel structure. The third gate electrode layer continuously extends from around the third channel structure to cover the second gate electrode layer.Type: GrantFiled: November 16, 2023Date of Patent: November 19, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
-
Patent number: 12125740Abstract: The present technology relates to an imaging device capable of preventing a decrease of sensitivity of the imaging device in a case where a capacitance element is provided in a pixel, a method of manufacturing an imaging device, and an electronic device. The imaging device includes, in a pixel, a photoelectric conversion element and a capacitance element accumulating an electric charge generated by the photoelectric conversion element. The capacitance element includes a first electrode including a plurality of trenches, a plurality of second electrodes each having a cross-sectional area smaller than a contact connected to a gate electrode of a transistor in the pixel, and buried in each of the trenches, and a first insulating film disposed between the first electrode and the second electrode in each of the trenches. The present technology can be applied, for example, to a backside irradiation-type CMOS image sensor.Type: GrantFiled: November 2, 2023Date of Patent: October 22, 2024Assignee: SONY GROUP CORPORATIONInventor: Kyohei Mizuta
-
Patent number: 12074217Abstract: A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.Type: GrantFiled: March 19, 2021Date of Patent: August 27, 2024Assignee: pSemi CorporationInventors: Christopher N. Brindle, Jie Deng, Alper Genc, Chieh-Kai Yang
-
Patent number: 12068238Abstract: A metal oxide metal (MOM) capacitor and methods for fabricating the same are disclosed. The MOM capacitor includes a first metal layer having a first plurality of fingers, each of the first plurality of fingers configured to have alternating polarities. A high resistance (Hi-R) conductor layer is disposed adjacent the first metal layer in a plane parallel to the first metal layer.Type: GrantFiled: April 19, 2021Date of Patent: August 20, 2024Assignee: QUALCOMM IncorporatedInventors: John Jianhong Zhu, Junjing Bao, Haining Yang
-
Patent number: 12010829Abstract: A semiconductor memory device and method for making the same. The semiconductor device includes a transistor laterally extending in a direction parallel to a substrate and including an active layer over the substrate, the active layer having a first end and a second end; bit line contact nodes formed on an upper surface and a lower surface of the first end of the active layer, respectively; a bit line side-ohmic contact vertically extending and connecting to the first end of the active layer and the bit line contact nodes; a bit line extending in a vertical direction to the substrate and connected to the bit line side-ohmic contact; and a capacitor connected to the second end of the active layer.Type: GrantFiled: November 29, 2021Date of Patent: June 11, 2024Assignee: SK hynix Inc.Inventor: Seung Hwan Kim
-
Patent number: 11996403Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a semiconductor substrate and a source. The source has a first conductivity type and a first insulator separates the source from the semiconductor substrate. The semiconductor device further comprises a drain. The drain has a second conductivity type that is opposite from the first conductivity type, and a second insulator separates the drain from the semiconductor substrate. In an embodiment, the semiconductor further comprises a semiconductor body between the source and the drain, where the semiconductor body is spaced away from the semiconductor substrate.Type: GrantFiled: December 13, 2019Date of Patent: May 28, 2024Assignee: Intel CorporationInventors: Nidhi Nidhi, Rahul Ramaswamy, Walid M. Hafez, Hsu-Yu Chang, Ting Chang, Babak Fallahazad, Tanuj Trivedi, Jeong Dong Kim, Ayan Kar, Benjamin Orr
-
Patent number: 11980068Abstract: A display panel and a display device are provided in the present disclosure. The display panel includes a first display region and a second display region which are adjacently arranged. A light transmittance of the first display region is greater than a light transmittance of the second display region. The display panel further includes a plurality of scan lines and a plurality of data lines extending along the second direction. One first sub-pixel row is electrically connected to at least two of the plurality of scan lines. The plurality of data lines includes first data lines, where one of the first data lines is electrically connected to the first sub-pixel column, and at least a part of the first data lines is made of a transparent conductive material. In the first display region, at least two of the first data lines are connected through a connection line.Type: GrantFiled: February 10, 2021Date of Patent: May 7, 2024Assignee: Xiamen Tianma Micro-Electronics Co., Ltd.Inventors: Bingping Liu, Junyi Li, Guozhao Chen
-
Patent number: 11974486Abstract: A display device and a mobile terminal device including the same are provided, wherein the display device includes a display panel including a display area in which a plurality of display pixels are disposed, and a sensing area in which a plurality of display pixels and a plurality of sensor pixels are disposed. The display pixels of the display area and the display pixels of the first sensing area emit light by receiving a data voltage of an input image in a display mode. The sensor pixels in the first sensing area generate an electric currents according to light reflected from a fingerprint in a fingerprint recognition mode. A resolution of the display pixel is lower than a resolution of the sensor pixel in the first sensing area.Type: GrantFiled: July 15, 2021Date of Patent: April 30, 2024Assignee: LG Display Co., Ltd.Inventors: Man Hyeop Han, In Hyuk Song, Seung Taek Oh
-
Patent number: 11961849Abstract: A display device includes a base layer; a first pattern disposed on the base layer; an insulating layer disposed on the first pattern and including layers; and a second pattern disposed on the insulating layer. At least two of the layers of the insulating layer include a same material.Type: GrantFiled: June 8, 2021Date of Patent: April 16, 2024Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Keum Hee Lee, Dong Hoon Shin, June Whan Choi, Seung Sok Son, Woo Geun Lee
-
Patent number: 11901459Abstract: A method and apparatus are disclosed for use in improving gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit includes a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.Type: GrantFiled: December 13, 2021Date of Patent: February 13, 2024Assignee: pSemi CorporationInventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae-Youn Kim
-
Patent number: 11901413Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device including a gate electrode over a semiconductor substrate. An epitaxial source/drain layer is disposed on the semiconductor substrate and is laterally adjacent to the gate electrode. The epitaxial source/drain layer comprises a first dopant. A diffusion barrier layer is between the epitaxial source/drain layer and the semiconductor substrate. The diffusion barrier layer comprises a barrier dopant that is different from the first dopant.Type: GrantFiled: July 21, 2022Date of Patent: February 13, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
-
Patent number: 11888062Abstract: Structures for an extended-drain metal-oxide-semiconductor device and methods of forming a structure for an extended-drain metal-oxide-semiconductor device. The structure includes a semiconductor substrate containing a first semiconductor material, a source region and a drain region in the semiconductor substrate, a gate electrode positioned in a lateral direction between the source region and the drain region, and a semiconductor layer positioned on the semiconductor substrate. The semiconductor layer contains a second semiconductor material that differs in composition from the first semiconductor material. The gate electrode includes a first section positioned in a vertical direction over the semiconductor layer and a second section positioned in the vertical direction over the semiconductor substrate.Type: GrantFiled: October 1, 2021Date of Patent: January 30, 2024Assignee: GlobalFoundries U.S. Inc.Inventors: Felix Holzmüller, Ruchil K. Jain, Peter Baars
-
Patent number: 11862633Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first transistor having a first conductivity type arranged over a substrate. The first transistor includes a first gate electrode layer having a first work function and extending from a first source/drain region to a second source/drain region, and a first channel structure embedded in the first gate electrode layer and extending from the first source/drain region to the second source/drain region. A second transistor having the first conductivity type is arranged laterally beside the first transistor. The second transistor includes a second gate electrode layer having a second work function that is different than the first work function and extending from a third source/drain region to a fourth source/drain region. A second channel structure is embedded in the second gate electrode layer and extends from the third source/drain region to the fourth source/drain region.Type: GrantFiled: February 21, 2022Date of Patent: January 2, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
-
Patent number: 11864377Abstract: A semiconductor structure includes: a substrate, a first conductive layer disposed on the substrate, a second conductive layer disposed on a surface of the first conductive layer away from the substrate, and third conductive layers covering side walls of the first conductive layer and in contact with the second conductive layer. Contact resistance between the third conductive layers and the second conductive layer is less than contact resistance between the first conductive layer and the second conductive layer.Type: GrantFiled: September 17, 2021Date of Patent: January 2, 2024Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.Inventor: Chih-Cheng Liu
-
Patent number: 11855073Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of first semiconductor layers and a plurality of second semiconductor layers. The first and second semiconductor layers are alternatingly stacked over the semiconductor substrate and between the first and second epitaxy regions. A first conductive feature is formed over the first epitaxy region and outside an oxide diffusion region. A second conductive feature is formed over the second epitaxy region and outside the oxide diffusion region. The oxide diffusion region is disposed between the first and second conductive features.Type: GrantFiled: September 30, 2022Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun-Chia Hsu, Tung-Heng Hsieh, Yung-Feng Chang, Bao-Ru Young, Jam-Wem Lee, Chih-Hung Wang
-
Patent number: 11848664Abstract: In a semiconductor device capable of product-sum operation, variations in transistor characteristics are reduced. The semiconductor device includes a first circuit including a driver unit, a correction unit, and a holding unit, and an inverter circuit. The first circuit has a function of generating an inverted signal of a signal input to an input terminal of the first circuit and outputting the inverted signal to an output terminal of the first circuit. The driver unit includes a p-channel first transistor and an n-channel second transistor having a back gate. The correction unit has a function of correcting the threshold voltage of one or both of the first transistor and the second transistor. The holding unit has a function of holding the potential of the back gate of the second transistor. The output terminal of the first circuit is electrically connected to an input terminal of the inverter circuit.Type: GrantFiled: August 9, 2022Date of Patent: December 19, 2023Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hajime Kimura, Yoshiyuki Kurokawa, Tatsunori Inoue
-
Patent number: 11817345Abstract: Semiconductor-on-insulator (SOI) field effect transistors (FETs) including body regions having different thicknesses may be formed on an SOI substrate by selectively thinning a region of a top semiconductor layer while preventing thinning of an additional region of the top semiconductor layer. An oxidation process or an etch process may be used to thin the region of the top semiconductor layer, and a patterned oxidation barrier mask or an etch mask may be used to prevent oxidation or etching of the additional portion of the top semiconductor layer. Shallow trench isolation structures may be formed prior to, or after, the selective thinning processing steps. FETs having different depletion region configurations may be formed using the multiple thicknesses of the patterned portions of the top semiconductor layer. For example, partially depleted SOT FETs and fully depleted SOI FETs may be provided.Type: GrantFiled: June 27, 2022Date of Patent: November 14, 2023Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Gulbagh Singh, Po-Jen Wang, Kun-Tsang Chuang
-
Patent number: 11810926Abstract: Improving a reliability of a semiconductor device. A resistive element is comprised of a semiconductor layer of the SOI substrate and an epitaxial semiconductor layer formed on the semiconductor layer. The epitaxial semiconductor layer EP has two semiconductor portions formed on the semiconductor layer and spaced apart from each other. The semiconductor layer has a region on where one of the semiconductor portion is formed, a region on where another of the semiconductor portion is formed, and a region on where the epitaxial semiconductor layer is not formed.Type: GrantFiled: October 29, 2021Date of Patent: November 7, 2023Assignee: RENESAS ELECTRONICS CORPORATIONInventor: Yoshiki Yamamoto
-
Patent number: 11715735Abstract: A resistor includes a substrate including an active region protruding from an upper surface of the substrate and extending in a first horizontal direction, a doped region extending in the first horizontal direction on the active region and comprising a semiconductor layer with n-type impurities, a plurality of channel layers spaced apart from each other in a vertical direction on the active region and connected to the doped region, a first gate electrode and a second gate electrode extending in the second horizontal direction intersecting the first horizontal direction and surrounding the plurality of channel layers, a first contact plug and a second contact plug in contact with an upper surface of the doped region. The first contact plug is adjacent to the first gate electrode. The second contact plug is adjacent to the second gate electrode.Type: GrantFiled: December 29, 2021Date of Patent: August 1, 2023Assignee: Samsung Electronics Co., Ltd.Inventors: Woocheol Shin, Myunggil Kang
-
Patent number: 11710666Abstract: A technique relates to a semiconductor device. A source/drain layer is formed. Fins with gate stacks are formed in a fill material, a dummy fin template including at least one fin of the fins and at least one gate stack of the gate stacks, the fins being formed on the source/drain layer. A trench is formed through the fill material by removing the dummy fin template, such that a portion of the source/drain layer is exposed in the trench. A source/drain metal contact is formed on the portion of the source/drain layer in the trench.Type: GrantFiled: June 30, 2021Date of Patent: July 25, 2023Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Junli Wang, Brent Alan Anderson, Albert Young
-
Patent number: 11705458Abstract: Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.Type: GrantFiled: January 26, 2021Date of Patent: July 18, 2023Assignee: STMICROELECTRONICS, INC.Inventor: John H. Zhang
-
Patent number: 11700025Abstract: A wireless single-phase AC-to-AC conversion circuit based on a 2.4G microwave includes a receiving antenna unit, a RF switch unit, a positive voltage rectification unit, a negative voltage rectification unit and an AC synthesis unit. An output port of the receiving antenna unit is connected to the common input port of the RF switch unit. A first microwave output end of the RF switch unit and a second microwave output end of the RF switch unit are correspondingly connected to a microwave input end of the positive voltage rectification unit and a microwave input end of the negative voltage rectification unit, respectively. A DC output end of the positive voltage rectification unit and a DC output end of the negative voltage rectification unit are correspondingly connected to a positive voltage input port of the AC synthesis unit and a negative voltage input port of the AC synthesis unit, respectively.Type: GrantFiled: December 21, 2021Date of Patent: July 11, 2023Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINAInventors: Xiaoning Li, Wei Zhou, Zidong Zhang, Xin Fang, Shijun Shen, Dawei Gong, Dejie Li
-
Patent number: 11652150Abstract: Provided are a charge trap evaluation method and semiconductor device including, in an embodiment, a step for applying an initialization voltage that has the same sign as a threshold voltage and is greater than or equal to the threshold voltage between the source electrode 15 and drain electrode 16 of a semiconductor device 1 having an HEMT structure and the substrate 10 of the semiconductor device 1 and initializing a trap state by forcing out trapped charge from a trap level and a step for monitoring the current flowing between the source electrode 15 and drain electrode 16 after the trap state initialization and evaluating at least one from among charge trapping, current collapse, and charge release.Type: GrantFiled: August 6, 2018Date of Patent: May 16, 2023Assignee: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Kuniyuki Kakushima, Takuya Hoshii, Hitoshi Wakabayashi, Kazuo Tsutsui, Hiroshi Iwai, Taiki Yamamoto
-
Patent number: 11624941Abstract: Semiconductor optical modulators are described that utilize bipolar junction transistor (BJT) structure within the optical modulator. The junctions within the BJT can be designed and biased to increase modulator efficiency and speed. An optical mode may be located in a selected region of the BJT structure to improve modulation efficiency. The BJT structure can be included in optical waveguides of interferometers and resonators to form optical modulators.Type: GrantFiled: April 12, 2021Date of Patent: April 11, 2023Assignee: Massachusetts Institute of TechnologyInventors: Rajeev J. Ram, Marc De Cea Falco, Jin Xue
-
Patent number: 11621342Abstract: In an embodiment, a method includes: performing a self-limiting process to modify a top surface of a wafer; after the self-limiting process completes, removing the modified top surface from the wafer; and repeating the performing the self-limiting process and the removing the modified top surface from the wafer until a thickness of the wafer is decreased to a predetermined thickness.Type: GrantFiled: October 12, 2020Date of Patent: April 4, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih Hung Chen, Kei-Wei Chen, Ying-Lang Wang
-
Patent number: 11538803Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment the semiconductor device comprises a first semiconductor layer, where first transistors are fabricated in the first semiconductor layer, and a back end stack over the first transistors. In an embodiment the back end stack comprises conductive traces and vias electrically coupled to the first transistors. In an embodiment, the semiconductor device further comprises a second semiconductor layer over the back end stack, where the second semiconductor layer is a different semiconductor than the first semiconductor layer. In an embodiment, second transistors are fabricated in the second semiconductor layer.Type: GrantFiled: December 14, 2018Date of Patent: December 27, 2022Assignee: Intel CorporationInventors: Gilbert Dewey, Telesphor Kamgaing, Aleksandar Aleksov, Gerogios Dogiamis, Hyung-Jin Lee
-
Patent number: 11515162Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region in a gate space, one or more conductive layers are formed over the gate dielectric layer, a seed layer is formed over the one or more conductive layers, an upper portion of the seed layer is treated by introducing one or more elements selected from the group consisting of oxygen, nitrogen and fluorine, and a W layer is selectively formed on a lower portion of the seed layer that is not treated to fully fill the gate space with bottom-up filling approach.Type: GrantFiled: August 31, 2020Date of Patent: November 29, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Chun Hsiung Tsai
-
Patent number: 11495677Abstract: A semiconductor device includes a first active fin structure and a second active fin structure extending along a first lateral direction. The semiconductor device includes a dummy fin structure, also extending along the first lateral direction, that is disposed between the first active fin structure and the second fin structure. The dummy fin structure includes a material that is configured to induce mechanical deformation of a first source/drain structure coupled to an end of the first active fin structure and a second source/drain structure coupled to an end of the second active fin structure.Type: GrantFiled: July 10, 2020Date of Patent: November 8, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yi-Ruei Jhan, Kuan-Ting Pan, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
-
Patent number: 11489009Abstract: A semiconductor structure that includes a metal layer in a first interlayer dielectric that is above a semiconductor device. The semiconductor structure includes an embedded memory device on the metal layer. The embedded memory device has a first metal contact surrounded by a second interlayer dielectric. Additionally, the semiconductor structure includes a thin film transistor on the first metal contact. The thin film transistor is surrounded by a third interlayer dielectric. The third interlayer dielectric is over a portion of the embedded memory device and a portion of the second interlayer dielectric. The semiconductor structure includes a first portion of a channel of the thin film transistor covered a gate structure, where the channel is a layer of indium tin oxide.Type: GrantFiled: March 18, 2020Date of Patent: November 1, 2022Assignee: International Business Machines CorporationInventors: Heng Wu, Julien Frougier, Bruce B. Doris, Chen Zhang, Ruilong Xie
-
Patent number: 11482521Abstract: Embodiments of the disclosure provide an integrated circuit (IC) structure, including: a p-type substrate, a p-well region within the p-type substrate, and an n-type barrier region between the p-type substrate and the p-well region. The n-type barrier region physically isolates the p-type substrate from the p-well region. A field effect transistor (FET) is positioned above the p-well region, and a buried insulator layer on the upper surface of the p-well region separates the transistor from the p-well region. A first voltage source electrically coupled to the p-well region induces a P-N-P junction across the p-well region, the n-type barrier region, and the p-type substrate.Type: GrantFiled: February 6, 2020Date of Patent: October 25, 2022Assignee: GlobalFoundries U.S. Inc.Inventors: Don R. Blackwell, Peter P. Hang, Van Ton-That, Timothy S. Miller
-
Patent number: 11430814Abstract: A stacked device structure includes a first device structure including a first body that includes a semiconductor material, and a plurality of terminals coupled with the first body. The stacked device structure further includes an insulator between the first device structure and a second device structure. The second device structure includes a second body such as a fin structure directly above the insulator. The second device structure further includes a gate coupled to the fin structure, a spacer including a dielectric material adjacent to the gate, and an epitaxial structure adjacent to a sidewall of the fin structure and between the spacer and the insulator. A metallization structure is coupled to a sidewall surface of the epitaxial structure, and further coupled with one of the terminals of the first device.Type: GrantFiled: March 5, 2018Date of Patent: August 30, 2022Assignee: Intel CorporationInventors: Aaron D. Lilak, Anh Phan, Patrick Morrow, Willy Rachmady, Gilbert Dewey, Jessica M. Torres, Kimin Jun, Tristan A. Tronic, Christopher J. Jezewski, Hui Jae Yoo, Robert S. Chau, Chi-Hwa Tsang
-
Patent number: 11372292Abstract: Included are: a semiconductor layer including a drain region, a channel region, and a second LDD region between the drain region and the channel region; a gate electrode disposed overlapping the channel region; a gate wiring line electrically coupled to the gate electrode; and a second light shielding portion disposed between the second LDD region and the gate wiring line and overlapping the second LDD region and the gate wiring line in plan view.Type: GrantFiled: June 15, 2021Date of Patent: June 28, 2022Assignee: SEIKO EPSON CORPORATIONInventors: Satoshi Ito, Shotaro Izawa
-
Patent number: 11348913Abstract: A semiconductor device includes a substrate including a first region and a second region, memory transistors on the first region, a first interconnection layer on the memory transistors and including first interconnection lines, and a second interconnection layer on the first interconnection layer and including second interconnection lines. The second interconnection lines on the first region include a first line extending along a first direction and spaced from the second region by a first distance along the first direction, and a second line extending along the first direction, spaced from the first line along a second direction intersecting the first direction, and having a width smaller than that of the first line. The first line includes a protrusion extending along a third direction toward the substrate. The protrusion is spaced from the second region by a second distance along the first direction greater than the first distance.Type: GrantFiled: January 29, 2020Date of Patent: May 31, 2022Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Lakgyo Jeong, Seolun Yang, Yongrae Cho, Hee Bum Hong
-
Patent number: 11315783Abstract: A method of fabricating a display substrate is provided. The method includes forming a conductive layer on a base substrate; and performing a chemical vapor deposition process to form an oxide layer on a side of an exposed surface of the conductive layer away from the base substrate, the exposed surface of the conductive layer including copper, the oxide layer formed to include an oxide of a target element M. The chemical vapor deposition process is performed using a mixture of a first reaction gas including oxygen and a second reaction gas including the target element M, at a reaction temperature in a range of 200 Celsius degrees to 280 Celsius degrees. A mole ratio of oxygen element to the target element M in the mixture of the first reaction gas and the second reaction gas is in a range of 40:1 to 60:1.Type: GrantFiled: February 20, 2019Date of Patent: April 26, 2022Assignees: Hefei Xinsheng Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.Inventors: Yuankui Ding, Heekyu Kim, Liangchen Yan, Ce Zhao, Bin Zhou, Yingbin Hu, Wei Song, Dongfang Wang
-
Patent number: 11264457Abstract: Semiconductor structures with electrical isolation and methods of forming a semiconductor structure with electrical isolation. A shallow trench isolation region, which contains a dielectric material, is positioned in a semiconductor substrate. A trench extendes through the shallow trench isolation region and to a trench bottom in the semiconductor substrate beneath the shallow trench isolation region. A dielectric layer at least partially fills the trench. A polycrystalline region, which is arranged in the semiconductor substrate, includes a portion that is positioned beneath the trench bottom.Type: GrantFiled: November 20, 2020Date of Patent: March 1, 2022Assignee: GlobalFoundries U.S. Inc.Inventors: Mark Levy, Siva P. Adusumilli, Steven M. Shank, Alvin J. Joseph, Anthony K. Stamper
-
Patent number: 11257815Abstract: In some embodiments, the present disclosure relates to an integrated chip including first, second, and third nanosheet field effect transistors (NSFETs) arranged over a substrate. The first NSFET has a first threshold voltage and includes first nanosheet channel structures embedded in a first gate electrode layer. The first nanosheet channel structures extend from a first source/drain region to a second source/drain region. The second NSFET has a second threshold voltage different than the first threshold voltage and includes second nanosheet channel structures embedded in a second gate electrode layer. The second nanosheet channel structures extend from a third source/drain region to a fourth source/drain region. The third NSFET has a third threshold voltage different than the second threshold voltage and includes third nanosheet channel structures embedded in a third gate electrode layer. The third nanosheet channel structures extend from a fifth source/drain region to a sixth source/drain region.Type: GrantFiled: May 15, 2020Date of Patent: February 22, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
-
Patent number: 11217578Abstract: A resistor includes a substrate including an active region protruding from an upper surface of the substrate and extending in a first horizontal direction, a doped region extending in the first horizontal direction on the active region and comprising a semiconductor layer with n-type impurities, a plurality of channel layers spaced apart from each other in a vertical direction on the active region and connected to the doped region, a first gate electrode and a second gate electrode extending in the second horizontal direction intersecting the first horizontal direction and surrounding the plurality of channel layers, a first contact plug and a second contact plug in contact with an upper surface of the doped region. The first contact plug is adjacent to the first gate electrode. The second contact plug is adjacent to the second gate electrode.Type: GrantFiled: June 25, 2020Date of Patent: January 4, 2022Assignee: Samsung Electronics Co., Ltd.Inventors: Woocheol Shin, Myunggil Kang
-
Patent number: 11211467Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first insulator; a first oxide provided over the first insulator; a second oxide provided over the first oxide; a first conductor and a second conductor provided apart from each other over the second oxide; a third oxide provided over the second oxide, the first conductor, and the second conductor; a second insulating film provided over the third oxide; and a third conductor provided over the second oxide with the third oxide and the second insulating film positioned therebetween. The third oxide contains a metal element and nitrogen, and the metal element is bonded to nitrogen.Type: GrantFiled: October 29, 2018Date of Patent: December 28, 2021Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Tomoki Hiramatsu, Yusuke Nonaka, Noritaka Ishihara, Shota Sambonsuge, Yasumasa Yamane, Yuta Endo
-
Patent number: 11189520Abstract: The present technology relates to an imaging device capable of preventing a decrease of sensitivity of the imaging device in a case where a capacitance element is provided in a pixel, a method of manufacturing an imaging device, and an electronic device. The imaging device includes, in a pixel, a photoelectric conversion element and a capacitance element accumulating an electric charge generated by the photoelectric conversion element. The capacitance element includes a first electrode including a plurality of trenches, a plurality of second electrodes each having a cross-sectional area smaller than a contact connected to a gate electrode of a transistor in the pixel, and buried in each of the trenches, and a first insulating film disposed between the first electrode and the second electrode in each of the trenches. The present technology can be applied, for example, to a backside irradiation-type CMOS image sensor.Type: GrantFiled: March 17, 2017Date of Patent: November 30, 2021Assignee: SONY CORPORATIONInventor: Kyohei Mizuta
-
Patent number: 11177255Abstract: Embodiments include a first nanowire transistor having a first source and a first drain with a first channel in between, where the first channel includes a first III-V alloy. A first gate stack is around the first channel, where a portion of the first gate stack is between the first channel and a substrate. The first gate stack includes a gate electrode metal in contact with a gate dielectric. A second nanowire transistor is on the substrate, having a second source and a second drain with a second channel therebetween, the second channel including a second III-V alloy. A second gate stack is around the second channel, where an intervening material is between the second gate stack and the substrate, the intervening material including a third III-V alloy. The second gate stack includes the gate electrode metal in contact with the gate dielectric.Type: GrantFiled: January 5, 2018Date of Patent: November 16, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel, Cheng-Ying Huang, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 11152484Abstract: A semiconductor structure including a substrate, a CMOS device and a BJT is provided. The substrate has a first side and a second side opposite to each other. The CMOS device includes an NMOS transistor and a PMOS transistor. The NMOS transistor includes a first N-type doped region and a second N-type doped region disposed in the substrate. The PMOS transistor includes a first P-type doped region and a second P-type doped region disposed in the substrate. The BJT includes a collector, a base and an emitter. The base is disposed on the first side of the substrate. The emitter is disposed on the base. A first metal silicide layer, a second metal silicide layer, and a third metal silicide layer are respectively located on the second side of the substrate and respectively disposed on the collector, the first N-type doped region, and the first P-type doped region.Type: GrantFiled: March 3, 2020Date of Patent: October 19, 2021Assignee: UNITED MICROELECTRONICS CORP.Inventors: Purakh Raj Verma, Kuo-Yuh Yang
-
Patent number: 11152485Abstract: A semiconductor structure including a substrate, a complementary metal oxide semiconductor (CMOS) device, a bipolar junction transistor (BJT), and a first protection layer is provided. The CMOS device includes an N-type metal oxide semiconductor (NMOS) transistor and a P-type metal oxide semiconductor (PMOS) transistor disposed on the substrate. The BJT includes a collector, a base and an emitter. The collector is disposed in the substrate. The base is disposed on the substrate. The emitter is disposed on the base. A top surface of a channel of the NMOS transistor, a top surface of a channel of the PMOS transistor and a top surface of the collector of the BJT have the same height. The first protection layer is disposed on the substrate and exposes the substrate. The base is disposed on the substrate exposed by the first protection layer. The semiconductor structure can have better overall performance.Type: GrantFiled: March 3, 2020Date of Patent: October 19, 2021Assignee: UNITED MICROELECTRONICS CORP.Inventors: Purakh Raj Verma, Kuo-Yuh Yang
-
Patent number: 11145663Abstract: A method of fabrication of a ferroelectric memory including a first electrode, a second electrode and a layer of active material made of hafnium dioxide HfO2 positioned between the first electrode and the second electrode, where the method includes depositing a first electrode layer; depositing the layer of active material; doping the layer of active material; depositing a second electrode layer; wherein the method includes sub-microsecond laser annealing of the layer of doped active material.Type: GrantFiled: December 18, 2019Date of Patent: October 12, 2021Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Laurent Grenouillet, Christelle Charpin-Nicolle, Jean Coignus, Terry Francois, Sébastien Kerdiles
-
Patent number: 11139307Abstract: A vertical field effect transistor (FET) includes a vertical semiconductor channel having a first end that contacts an upper surface of a substrate and an opposing second end that contacts a source/drain region. An electrically conductive gate encapsulates the vertical semiconductor channel. The vertical FET further includes a split-channel antifuse device between the source/drain region and the electrically conductive gate. The split-channel antifuse device includes a gate dielectric having a thickness that varies between the source/drain region and the electrically conductive gate.Type: GrantFiled: April 9, 2020Date of Patent: October 5, 2021Assignee: Samsung Electronics Co., Ltd.Inventors: Kangguo Cheng, Juntao Li, Geng Wang, Qintao Zhang
-
Patent number: 11133669Abstract: A limiter having a more ideal limiting function, a short response time, and an adjustable limiting threshold. In one embodiment, a self-activating limiter stack is coupled between circuit ground and a signal line between a source and a receiver. The limiter stack limits the power from the source when the voltage on the signal line exceeds the breakdown voltage of the limiter stack. The threshold of the limiter stack is controlled in part by a first control voltage applied to a control input. A rectifying power detector circuit connected between a node on the signal line and the control input of the limiter stack provides a second control voltage as a function of the signal power at the node. The combined first and second control voltages are applied to the control input to modulate the ON resistance of the limiter stack, thereby limiting the leakage power reaching the protected receiver.Type: GrantFiled: September 24, 2019Date of Patent: September 28, 2021Assignee: pSemi CorporationInventors: Jianhua Lu, Hojung Ju
-
Patent number: 11126052Abstract: According to an aspect, an array substrate includes: a substrate; a light-shielding layer; a first gate electrode; a semiconductor layer; a signal line; and an electrode. A first surface of the substrate is provided with, in sequence, the light-shielding layer, the first gate electrode, the semiconductor layer, the signal line, and the electrode. The semiconductor layer includes a first impurity region electrically coupled to the electrode, a first channel region overlapping the first gate electrode, a second impurity region opposite to the first impurity region with respect to the first channel region, and a first lightly doped drain region between the first impurity region and the first channel region. The light-shielding layer has a first end and a second end opposite to each other. The first end overlaps the first channel region. The light-shielding layer overlaps a boundary between the first channel region and the first lightly doped drain region.Type: GrantFiled: December 20, 2018Date of Patent: September 21, 2021Assignee: Japan Display Inc.Inventors: Yoshitaka Ozeki, Gen Koide, Nobutaka Ozaki
-
Patent number: 11101336Abstract: A display device and a method for manufacturing a display device, the device including a semiconductor layer on a substrate; a gate insulation layer and an interlayer insulation layer that overlap the semiconductor layer; contact holes that penetrate the gate insulation layer and the interlayer insulation layer; a source electrode and a drain electrode that are electrically connected with the semiconductor layer through the contact holes; a light emitting diode that is connected with the drain electrode; and first spacers and second spacers between the source electrode and the interlayer insulation layer and between the drain electrode and the interlayer insulation layer in the contact holes.Type: GrantFiled: January 29, 2019Date of Patent: August 24, 2021Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Yu-Gwang Jeong, Su Bin Bae, Joon Geol Lee, Sang Gab Kim, Shin Il Choi
-
Patent number: 11101374Abstract: One or more gated nanosheet diodes are disposed on a substrate and made from a nanosheet structure. A first (second) source/drain (S/D) is disposed on the substrate. The first (second) S/D has a first (second) S/D doping concentration with a first (second) S/D doping type. One or more p-n junctions form one or more respective diodes. There is a first side and a second side of each of the p-n junctions. The first (second) sides of the p-n junctions electrically and physically connect to the first (second) S/Ds and have the same type of doping, respectively. A gate stack, made of a gate dielectric layer and a gate metal, interfaces and surrounds each of the p-n junctions.Type: GrantFiled: June 13, 2020Date of Patent: August 24, 2021Assignee: International Business Machines CorporationInventors: Alexander Reznicek, Bahman Hekmatshoartabari, Karthik Balakrishnan
-
Patent number: RE48965Abstract: A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.Type: GrantFiled: December 11, 2019Date of Patent: March 8, 2022Assignee: pSemi CorporationInventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae Youn Kim