Combined With Heavily Doped Channel Stop Portion Patents (Class 257/398)
-
Patent number: 11018235Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to semiconductor devices having a stacked arrangement, and further relates to methods of fabricating such devices. In one aspect, a semiconductor device comprises a first memory device and a second memory device formed over a substrate and at least partly stacked in a vertical direction. Each of the first and second memory devices has a plurality of vertical transistors, wherein each vertical transistor has a vertical channel extending in the vertical direction.Type: GrantFiled: November 11, 2016Date of Patent: May 25, 2021Assignees: IMEC vzw, Vrije Universiteit BrusselInventors: Trong Huynh Bao, Anabela Veloso, Julien Ryckaert
-
Patent number: 10658292Abstract: A semiconductor device or structure includes a first pattern metal layer disposed between a first supply metal tract and a second supply metal tract, the first pattern metal layer comprising an internal route and a power route. A follow pin couples the first supply metal to the power route. The second supply metal tract is wider than the first supply metal tract. The first supply metal tract has a thickness substantially same as the first pattern metal layer. The first supply metal tract comprises a first metal and a follow pin comprises a second metal.Type: GrantFiled: August 31, 2017Date of Patent: May 19, 2020Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Shih-Wei Peng, Chih-Liang Chen, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Wei-Cheng Lin
-
Patent number: 10629640Abstract: A MOS field-effect transistor according to the present disclosure includes: an element isolation region that defines an active region; a source region and a drain region formed in the active region; a gate insulating film provided on a channel region between the source region and the drain region; and a gate electrode provided on the gate insulating film, in which the gate electrode has an electrode shape in which a potential at a border between the element isolation region and the active region becomes shallower than a potential at a channel center part.Type: GrantFiled: August 9, 2016Date of Patent: April 21, 2020Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATIONInventor: Masaaki Bairo
-
Patent number: 10312258Abstract: A semiconductor device includes a semiconductor substrate with a first surface. The device further includes one or more semiconductor devices formed or the first surface in an active area. The device further includes a plurality of cavities in the semiconductor substrate beneath the first surface. The device further includes dielectric support structures between each of the cavities and spaced apart from the first surface. The dielectric support structures support a part of the semiconductor substrate between the active area and the cavities. The dielectric support structures include an oxide.Type: GrantFiled: July 13, 2016Date of Patent: June 4, 2019Assignee: Infineon Technologies AGInventors: Johannes Laven, Matteo Dainese, Hans-Joachim Schulze
-
Patent number: 9653543Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.Type: GrantFiled: December 3, 2014Date of Patent: May 16, 2017Assignee: INFINEON TECHNOLOGIES AGInventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
-
Patent number: 8884378Abstract: A semiconductor device and a method for forming a semiconductor device are provided. The semiconductor device includes a semiconductor body with a first semiconductor region and a second semiconductor region spaced apart from each other. A first metallization is in contact with the first semiconductor region. A second metallization is in contact with the second semiconductor region. An insulating region extends between the first semiconductor region and the second semiconductor region. A semi-insulating region having a resistivity of about 103 Ohm cm to about 1014 Ohm cm is arranged on the insulating region and forms a resistor between the first metallization and the second metallization.Type: GrantFiled: November 3, 2010Date of Patent: November 11, 2014Assignee: Infineon Technologies AGInventors: Gerhard Schmidt, Daniel Schloegl
-
Patent number: 8803247Abstract: A fin-type field effect transistor including at least one fin-type semiconductor structure, a gate strip and a gate insulating layer is provided. The fin-type semiconductor structure is doped with a first type dopant and has a block region with a first doping concentration and a channel region with a second doping concentration. The first doping concentration is larger than the second doping concentration. The blocking region has a height. The channel region is configured above the blocking region. The gate strip is substantially perpendicular to the fin-type semiconductor structure and covers above the channel region. The gate insulating layer is disposed between the gate strip and the fin-type semiconductor structure.Type: GrantFiled: December 15, 2011Date of Patent: August 12, 2014Assignee: United Microelectronics CorporationInventors: Chih-Jung Wang, Tong-Yu Chen
-
Patent number: 8742564Abstract: An embodiment of the invention provides a chip package which includes a substrate having a first surface and a second surface; a conducting pad structure located on the first surface; a dielectric layer located on the first surface of the substrate and the conducting pad structure, wherein the dielectric layer has an opening exposing a portion of the conducting pad structure; and a cap layer located on the dielectric layer and filled into the opening.Type: GrantFiled: January 13, 2012Date of Patent: June 3, 2014Inventors: Bai-Yao Lou, Tsang-Yu Liu, Chia-Sheng Lin, Tzu-Hsiang Hung
-
Patent number: 8344462Abstract: A power amplifying semiconductor element is mounted in a package 13, having a heat dissipating surface acting as high frequency ground as well. The package 13 is mounted upside down with flip-chip mounting method in a concave portion 12 formed on a housing 11 having a high frequency ground acting as a heat dissipating surface as well. A cooling mechanism 14 thermally independent from that of the housing 11 is arranged on a heat dissipating base surface of the package 13 facing upward. The cooling mechanism 14 is composed of a heat dissipating fin 15 and a heat pipe 16. The present invention can prevent thermal influence upon other electronic components and can improve greatly the degree of freedom on the designing of the cooling system, because the cooling mechanism of the power amplifying semiconductor element is made independent from that of the housing 11.Type: GrantFiled: September 6, 2007Date of Patent: January 1, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Kazutaka Takagi
-
Patent number: 8264015Abstract: A semiconductor device in which a first insulated gate field effect transistor (1) is connected in series with a second field effect transistor, FET, (2), wherein the second field effect transistor (2) has a heavily doped source region (19A) which is electrically connected to a heavily doped drain contact region (191) of the first insulated gate field effect transistor, and further that the breakthrough voltage of the first insulated gate field effect transistor (1) is higher than the pinch voltage, Vp, of the second field effect transistor (2).Type: GrantFiled: April 3, 2009Date of Patent: September 11, 2012Inventor: Klas-Håkan Eklund
-
Patent number: 8242573Abstract: There are provided a semiconductor device and a method of forming the same. The semiconductor device may include a semiconductor substrate including a digital circuit region and an analog circuit region, a device isolation layer on the boundary between the digital circuit region and the analog circuit region, a conductive region adjacent to the side surface and the bottom surface of the isolation layer, and a ground pad which is electrically connected to the conductive region and to which a ground voltage is applied.Type: GrantFiled: January 8, 2008Date of Patent: August 14, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Han-Su Kim, Jin-Sung Lim
-
Patent number: 8138581Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.Type: GrantFiled: September 21, 2010Date of Patent: March 20, 2012Assignee: Infineon Technologies Austria AGInventor: Franz Hirler
-
Patent number: 8125036Abstract: The Examiner objected to the abstract of the disclosure because it contains the phrase “comprising.” The Abstract does not include the phrase “comprising,” however, please amend the abstract as follows: An integrated circuit having a semiconductor component arrangement and production method is disclosed. The integrated circuit as described includes an oxide layer region is provided as a protection against oxidation in the edge region on the surface region of an underlying semiconductor material region.Type: GrantFiled: March 14, 2007Date of Patent: February 28, 2012Assignee: Infineon Technologies Austria AGInventor: Gerhard Schmidt
-
Patent number: 8013381Abstract: A semiconductor device has a semiconductor substrate of a first conductivity type; first to third high-voltage insulated-gate field effect transistors formed on a principal surface of the semiconductor substrate; a first device isolation insulating film that is formed in the semiconductor substrate and isolates the first high-voltage insulated-gate field effect transistor and the second high-voltage insulated-gate field effect transistor from each other; a second device isolation insulating film that is formed in the semiconductor substrate and isolates the first high-voltage insulated-gate field effect transistor and the third high-voltage insulated-gate field effect transistor from each other; a first impurity diffusion layer of the first conductivity type that is formed below the first device isolation insulating film; and a second impurity diffusion layer of the first conductivity type that is formed below the second device isolation insulating film.Type: GrantFiled: January 28, 2009Date of Patent: September 6, 2011Assignee: Kabushiki Kaisha ToshibaInventors: Norio Magome, Toshifumi Minami, Tomoaki Hatano, Norihisa Arai
-
Patent number: 7995356Abstract: A power semiconductor module is disclosed including a housing for receiving at least one essentially board-type circuit carrier, the circuit carrier being provided with a metallization on at least one part of its surface and being populated with and electrically connected to at least one power semiconductor, rigid, integral and essentially straight load connection elements being applied on the metallized part of the metallized surface of the circuit carrier, which load connection elements are electrically and mechanically fixedly connected to the circuit carrier by one of their ends and project essentially perpendicularly into the housing interior, separate connection terminal elements for electrical conduct-making being placed onto the free end of the load connection elements.Type: GrantFiled: August 26, 2005Date of Patent: August 9, 2011Assignee: Siemens AktiengesellschaftInventors: Rainer Kreutzer, Karl-Heinz Schaller
-
Patent number: 7847329Abstract: A vertical MOSFET transistor is formed in a body of semiconductor material having a surface. The transistor includes a buried conductive region of a first conductivity type; a channel region of a second conductivity type, arranged on top of the buried conductive region; a surface conductive region of the first conductivity type, arranged on top of the channel region and the buried conductive region; a gate insulation region, extending at the sides of and contiguous to the channel region; and a gate region extending at the sides of and contiguous to the gate insulation region.Type: GrantFiled: April 26, 2006Date of Patent: December 7, 2010Inventors: Fabio Pellizzer, Agostino Pirovano
-
Patent number: 7834406Abstract: The present invention pertains to a high-voltage MOS device. The high-voltage MOS device includes a substrate, a first well, a first field oxide layer enclosing a drain region, a second field oxide enclosing a source region, and a third field oxide layer encompassing the first and second field layers with a device isolation region in between. A channel region is situated between the first and second field oxide layers. A gate oxide layer is provided on the channel region. A gate is stacked on the gate oxide layer. A device isolation diffusion layer is provided in the device isolation region.Type: GrantFiled: May 24, 2007Date of Patent: November 16, 2010Assignee: United Microelectronics Corp.Inventor: Chin-Lung Chen
-
Patent number: 7829420Abstract: A semiconductor device has a channel termination region for using a trench 30 filled with field oxide 32 and a channel stopper ring 18 which extends from the first major surface 8 through p-well 6 along the outer edge 36 of the trench 30, under the trench and extends passed the inner edge 34 of the trench. This asymmetric channel stopper ring provides an effective termination to the channel 10 which can extend as far as the trench 30.Type: GrantFiled: August 12, 2008Date of Patent: November 9, 2010Assignee: NXP B.V.Inventor: Royce Lowis
-
Patent number: 7816229Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.Type: GrantFiled: September 30, 2008Date of Patent: October 19, 2010Assignee: Infineon Technologies Austria AGInventor: Franz Hirler
-
Patent number: 7795675Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.Type: GrantFiled: September 21, 2005Date of Patent: September 14, 2010Assignee: Siliconix IncorporatedInventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
-
Patent number: 7777294Abstract: On a semiconductor substrate, a well is formed. In the well, one MOS transistor including a gate electrode, a source region, a source field limiting layer and a source/drain region, and another MOS transistor including a gate electrode, a drain electrode, a drain field limiting layer and a source/drain region are formed. The one and another MOS transistors are connected in series through the source/drain region common to the two transistors. Accordingly, a semiconductor device can be provided in which increase in pattern layout area is suppressed when elements including a high-breakdown voltage MOS transistor are to be connected in series.Type: GrantFiled: October 7, 2005Date of Patent: August 17, 2010Assignee: Renesas Technology Corp.Inventor: Masatoshi Taya
-
Patent number: 7679130Abstract: Deep trench isolation structures and methods of formation thereof are disclosed. Several methods of and structures for increasing the threshold voltage of a parasitic transistor formed proximate deep trench isolation structures are described, including implanting a channel stop region into the bottom surface of the deep trench isolation structures, partially filling a bottom portion of the deep trench isolation structures with an insulating material, and/or filling at least a portion of the deep trench isolation structures with a doped polysilicon material.Type: GrantFiled: March 3, 2006Date of Patent: March 16, 2010Assignee: Infineon Technologies AGInventors: Armin Tilke, Danny Pak-Chum Shum, Laura Pescini, Ronald Kakoschke, Karl Robert Strenz, Martin Stiftinger
-
Patent number: 7632744Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.Type: GrantFiled: April 14, 2008Date of Patent: December 15, 2009Assignee: Renesas Technology Corp.Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
-
Patent number: 7541627Abstract: The invention describes in detail the structure of a CMOS image sensor pixel that senses color of impinging light without having absorbing filters placed on its surface. The color sensing is accomplished by having a vertical stack of three-charge detection nodes placed in the silicon bulk, which collect electrons depending on the depth of their generation. The small charge detection node capacitance and thus high sensitivity with low noise is achieved by using fully depleted, potential well forming, buried layers instead of undepleted junction electrodes. Two embodiments of contacting the buried layers without substantially increasing the node capacitances are presented.Type: GrantFiled: March 8, 2004Date of Patent: June 2, 2009Assignee: Foveon, Inc.Inventors: Jaroslav Hynecek, Richard B. Merrill, Russel A. Martin
-
Patent number: 7528442Abstract: In this invention, the semiconductor device is provided with a gate electrode formed on a gate insulating film in a region sectioned by an element isolation formed on a semiconductor layer of the first conduction type, and a source region and a drain region of the second conduction type. At least one of the source region and the drain region has a first low concentration region and a high concentration region. Also, the semiconductor device of the present invention is provided with a second low concentration region of the second conduction type between a channel stopper region formed below the element isolation and the source region, and between the channel stopper region and the drain region. The semiconductor layer immediately below the gate electrode projects to the channel stopper region side along the gate electrode, and the semiconductor layer and the channel stopper region make contact with each other.Type: GrantFiled: April 7, 2006Date of Patent: May 5, 2009Assignee: Panasonic CorporationInventors: Akira Fukumoto, Rie Watanabe
-
Patent number: 7518512Abstract: A transponder device comprises an integrated CMOS circuit with a semiconductor substrate. A first rectifying diode (DS) is formed by the substrate diode of the CMOS circuit. A first MOS transistor structure (DR1) and a second MOS transistor structure (DR2) have their channels connected in series such that they function as a second rectifying diode, the cathode of the first rectifying diode being connected to the anode of the second rectifying diode. The first MOS transistor structure (DR1) and the second MOS transistor structure (DR2) are spaced from each other such that a distance between the two MOS transistor structures is large enough that a parasitic npn-structure formed within the substrate by the first and the second MOS structures has a negligible current gain.Type: GrantFiled: May 1, 2006Date of Patent: April 14, 2009Assignee: Texas Instruments IncorporatedInventor: Ruediger Ganz
-
Patent number: 7425752Abstract: A semiconductor device has a channel termination region for using a trench (30) filled with field oxide (32) and a channel stopper ring (18) which extends from the first major surface (8) through p-well (6) along the outer edge (36) of the trench (30), under the trench and extends passed the inner edge (34) of the trench. This asymmetric channel stopper ring provides an effective termination to the channel (10) which can extend as far as the trench (30).Type: GrantFiled: October 30, 2003Date of Patent: September 16, 2008Inventor: Royce Lowis
-
Patent number: 7402482Abstract: A memory array has memory elements of identical topology or footprint arranged in rows and columns. Some of the memory elements are EEPROM cells and other memory elements are read only memory cells but all are made using a mask set having the same length and width dimensions. In the mask set for EEPROMs a principal mask is used for formation of a depletion implant. In the case of one type of read-only memory element, this mask is mainly blocked, leading to formation of a transistor with a non-conductive channel between source and drain. In the case of another read only memory element, the same mask is unblocked, leading to formation of a transistor with a highly conductive or almost shorted channel between source and drain. These two read only memory elements are designated as logic one and logic zero. By having rows of read-only memory elements with rows of EEPROMs on the same chip, a more versatile memory array chip may be built without sacrificing chip space.Type: GrantFiled: February 15, 2006Date of Patent: July 22, 2008Assignee: Atmel CorporationInventor: Albert S. Weiner
-
Patent number: 7400018Abstract: A method for incorporating carbon into a wafer at the interstitial a-c silicon interface of the halo doping profile is achieved. A bulk silicon substrate is provided. A carbon-doped silicon layer is deposited on the bulk silicon substrate. An epitaxial silicon layer is grown overlying the carbon-doped silicon layer to provide a starting wafer for the integrated circuit device fabrication. An integrated circuit device is fabricated on the starting wafer by the following steps. A gate electrode is formed on the starting wafer. LDD and source and drain regions are implanted in the starting wafer adjacent to the gate electrode.Type: GrantFiled: August 7, 2006Date of Patent: July 15, 2008Assignee: Chartered Semiconductor Manufacturing Ltd.Inventors: Chung Foong Tan, Jinping Liu, Hyeok Jae Lee, Bangun Indajang, Eng Fong Chor, Shiang Yang Ong
-
Patent number: 7071531Abstract: A method of fabricating an integrated circuit includes forming an isolation trench in a semiconductor substrate and partially filling the trench with a dielectric material so that at least the sidewalls of the trench are coated with the dielectric material. Ions are implanted into the substrate in regions directly below the isolation trench after partially filling the trench with the dielectric material. The dielectric along the sidewalls of the trenches can serve as a mask so that substantially all of the ions implanted below the isolation trenches are displaced from the active regions. After the ions are implanted in the substrate below the trenches, the remainder of the trench can be filled with the same or another dielectric material. The trench isolation technique can be used to fabricate memory, logic and imager devices which can exhibit reduced current leakage and/or reduced optical cross-talk.Type: GrantFiled: May 19, 2004Date of Patent: July 4, 2006Assignee: Micron Technology, Inc.Inventor: Howard E. Rhodes
-
Patent number: 7053459Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.Type: GrantFiled: October 31, 2001Date of Patent: May 30, 2006Assignee: Renesas Technology Corp.Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
-
Patent number: 7034361Abstract: A semiconductor device includes a fin, a source region formed adjacent the fin and having a height greater than that of the fin, and a drain region formed adjacent the a second side of the fin and having a height greater than that of the fin. A metal gate region is formed at a top surface and at least one side surface of the fin. A width of the source and drain region may be greater than that of the fin. The semiconductor device may exhibit a reduced series resistance and an improved transistor drive current.Type: GrantFiled: September 3, 2003Date of Patent: April 25, 2006Assignee: Advanced Micro Devices, Inc.Inventors: Bin Yu, Shibly S. Ahmed, Haihong Wang
-
Patent number: 7030498Abstract: A semiconductor device with p-channel MOS transistor having: a gate insulating film of nitrogen-containing silicon oxide; a gate electrode of boron-containing silicon; side wall spacers on side walls of the gate electrode, comprising silicon oxide; an interlayer insulating film having a planarized surface; a wiring trench and a contact via hole formed in the interlayer insulating film; a copper wiring pattern including an underlying barrier layer and an upper level copper region, and filled in the wiring trench; and a silicon carbide layer covering the copper wiring pattern. A semiconductor device has the transistor structure capable of suppressing NBTI deterioration.Type: GrantFiled: September 20, 2004Date of Patent: April 18, 2006Assignee: Fujitsu LimitedInventors: Katsumi Kakamu, Yoshihiro Takao
-
Patent number: 7019379Abstract: A semiconductor device includes a heavily doped layer 25 of p-type formed in the surface of an n-type well 21, an intermediately doped layer 26 of p-type formed to adjoin and surround the heavily p-doped layer 25, and an isolation region 22 formed to surround the heavily p-doped layer 25 and the intermediately p-doped layer 26. The heavily p-doped layer 25 has a higher dopant concentration than the well 21. The intermediately p-doped layer 26 has a higher dopant concentration than the well 21 and a lower dopant concentration than the heavily p-doped layer 25.Type: GrantFiled: November 12, 2003Date of Patent: March 28, 2006Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Hirotsugu Honda
-
Patent number: 7019377Abstract: An integrated circuit includes a high voltage Schottky barrier diode and a low voltage device. The Schottky barrier diode includes a lightly doped p-well as guard ring while the low voltage devices are built using standard, more heavily doped p-wells. By using a process including a lightly doped p-well and a standard p-well, high voltage and low voltage devices can be integrated onto the same integrated circuit. In one embodiment, the lightly doped p-well and the standard p-well are formed by performing ion implantation using a first dose to form the lightly doped p-well, masking the lightly doped p-well, and performing ion implantation using a second dose to form the standard p-well. The second dose is the difference of the dopant concentrations of the lightly doped p-well and the standard p-well. In other embodiments, other high voltage devices can also be built by incorporating the lightly doped p-well structure.Type: GrantFiled: December 17, 2002Date of Patent: March 28, 2006Assignee: Micrel, Inc.Inventor: Hideaki Tsuchiko
-
Patent number: 7002210Abstract: On a semiconductor substrate, a well is formed. In the well, one MOS transistor including a gate electrode, a source region, a source field limiting layer and a source/drain region, and another MOS transistor including a gate electrode, a drain electrode, a drain field limiting layer and a source/drain region are formed. The one and another MOS transistors are connected in series through the source/drain region common to the two transistors. Accordingly, a semiconductor device can be provided in which increase in pattern layout area is suppressed when elements including a high-breakdown voltage MOS transistor are to be connected in series.Type: GrantFiled: July 3, 2003Date of Patent: February 21, 2006Assignee: Renesas Technology Corp.Inventor: Masatoshi Taya
-
Patent number: 6953961Abstract: A dynamic random access memory (DRAM) structure and a fabricating process thereof are provided. In the fabricating process, a channel region is formed with a doped region having identical conductivity as the substrate in a section adjacent to an isolation structure. The doped region is formed in a self-aligned process by conducting a tilt implantation implanting ions into the substrate through the upper portion of the capacitor trench adjacent to the channel region after forming the trench but before the definition of the active region.Type: GrantFiled: September 29, 2004Date of Patent: October 11, 2005Assignee: Promos Technologies Inc.Inventors: Yueh-Chuan Lee, Shih-Lung Chen
-
Patent number: 6894354Abstract: An isolation trench in a semiconductor includes a first isolation trench portion having a first depth and having a first sidewall intersecting a surface of the semiconductor at a first angle. A second isolation trench portion extends within and below the first isolation trench portion. The second isolation trench portion has a second depth and includes a second sidewall. The second sidewall intersects the first sidewall at an angle with respect to the surface that is greater than the first angle. A dielectric material fills the first and second isolation trench portions.Type: GrantFiled: November 8, 2001Date of Patent: May 17, 2005Assignees: Micron Technology, Inc., KMT Semiconductor, LTDInventors: Keiji Jono, Hirokazu Ueda, Hiroyuki Watanabe
-
Patent number: 6856001Abstract: A method of fabricating an integrated circuit includes forming an isolation trench in a semiconductor substrate and partially filling the trench with a dielectric material so that at least the sidewalls of the trench are coated with the dielectric material. Ions are implanted into the substrate in regions directly below the isolation trench after partially filling the trench with the dielectric material. The dielectric along the sidewalls of the trenches can serve as a mask so that substantially all of the ions implanted below the isolation trenches are displaced from the active regions. The dielectric along the sidewalls of the trenches serves as a mask so that substantially all of the ions implanted below the isolation trenches are displaced from the active regions. After the ions are implanted in the substrate below the trenches, the remainder of the trench can be filled with the same or another dielectric material.Type: GrantFiled: May 25, 1999Date of Patent: February 15, 2005Assignee: Micron Technology, Inc.Inventor: Howard E. Rhodes
-
Patent number: 6841837Abstract: A semiconductor device has: a gate insulator film of a transistor formed in a predetermined region on a region of a first conductivity type; a gate electrode of the transistor formed on the gate insulator film; a diffusion layer of a second conductivity type formed on both sides of the gate insulator film on the region of the first conductivity type; and a diffusion layer of the first conductivity type formed on the region of the first conductivity type so as to surround the gate insulator film and the diffusion layer of the second conductivity type. The diffusion layer of the first conductivity type has a higher impurity concentration than the region of the first conductivity type. In such a semiconductor device, the diffusion layer of the first conductivity type is formed so as to be separated from the gate insulator film.Type: GrantFiled: January 25, 2001Date of Patent: January 11, 2005Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Yukihiro Inoue
-
Patent number: 6835988Abstract: A semiconductor device includes an element isolating insulation film having different depths depending on locations where it is formed. A plurality of channel cut layers are formed in one active region in a direction of depth.Type: GrantFiled: August 15, 2002Date of Patent: December 28, 2004Assignee: Renesas Technology Corp.Inventor: Tomohiro Yamashita
-
Patent number: 6806541Abstract: An electronic device architecture is described comprising a field effect device in an active region 22 of a substrate 10. Channel stop implant regions 28a and 28b are used as isolation structures and are spaced apart from the active region 22 by extension zones 27a and 27b. The spacing is established by using an inner mask layer 20 and an outer mask layer 26 to define the isolation structures.Type: GrantFiled: March 1, 2004Date of Patent: October 19, 2004Assignee: Texas Instruments IncorporatedInventors: Lily X. Springer, Binghua Hu, Chin-Yu Tsai, Jozef C. Mitros
-
Publication number: 20040188775Abstract: A device termination structure, and/or a gate bus-bar structure, and/or other end structure is provided for at least one group of cells in a cellular trench-gate semiconductor device, for example a power MOSFET. In this end structure, a conductive layer (11c), for example of polysilicon gate material, extends on an intermediate insulating layer (55) over a higher-doped (P+) end region (150) of the channel-accommodating region (15). This insulating layer (55) comprises an area (51e) of a trench-etch mask (51), preferably comprising silicon nitride, that is of greater thickness than the gate dielectric layer (17). A window (51a) extends through the trench-etch mask (51) at a location where an end trench (20e) extends into the P+ region (150). The end trench (20e) is an extension of the insulated gate trench (20) into the P+ region (150) and accommodates an extension (11e) of the trench-gate (11). The conductive layer (11c) is connected to the trench-gate extension (11e) via the window (51e).Type: ApplicationFiled: April 9, 2004Publication date: September 30, 2004Inventors: Steven T. Peake, Georgios Petkos, Philip Rutter, Raymond J. Grover
-
Publication number: 20040135212Abstract: A MOSFET fabrication methodology and device structure, exhibiting improved gate activation characteristics. The gate doping that may be introduced while the source drain regions are protected by a damascene mandrel to allow for a very high doping in the gate conductors, without excessively forming deep source/drain diffusions. The high gate conductor doping minimizes the effects of electrical depletion of carriers in the gate conductor. The MOSFET fabrication methodology and device structure further results in a device having a lower gate conductor width less than the minimum lithographic minimum image, and a wider upper gate conductor portion width which may be greater than the minimum lithographic image. Since the effective channel length of the MOSFET is defined by the length of the lower gate portion, and the line resistance is determined by the width of the upper gate portion, both short channel performance and low gate resistance are satisfied simultaneously.Type: ApplicationFiled: January 14, 2003Publication date: July 15, 2004Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Omer H. Dokumaci, Bruce B. Doris, Oleg Gluschenkov, Jack A. Mandelman, Carl J. Radens
-
Patent number: 6762477Abstract: Provided is a semiconductor device using an SOI substrate which can suppress a leakage current with the potential of a channel formation region fixed. Specifically, by an FTI (26) an SOI substrate (14) is divided into a PMOS formation region and an NMOS formation region. The FTI (26) extends from the upper surface of a silicon layer (17) to the upper surface of a BOX layer (16). A body contact region (9) is selectively formed in an upper surface of the silicon substrate (14). The body contact region (9) and a channel formation region (4p) are isolated from each other, by a PTI (31). An N+ type channel stopper layer (30) is formed in the portion of the silicon layer (14) which is sandwiched between the bottom surface of the PTI (31) and the upper surface of the BOX layer (16). The body contact region (9) and the channel formation region (4p) are electrically connected to each other, through the channel stopper layer (30).Type: GrantFiled: July 10, 2002Date of Patent: July 13, 2004Assignee: Renesas Technology Corp.Inventor: Tatsuya Kunikiyo
-
Patent number: 6690074Abstract: A semiconductor device structure is described for reducing radiation induced current flow caused by incident ionizing radiation. The structure comprises a semiconductor substrate; two or more regions of a first conductivity type in the substrate; and a guard ring of a second conductivity type for obstructing radiation induced parasitic current flow between the two or more regions of the first conductivity type. The structure may be used in a pixel, e.g. in a diode or a transistor, for increasing radiation resistance.Type: GrantFiled: September 3, 2002Date of Patent: February 10, 2004Assignee: FillFactoryInventors: Bart Dierickx, Jan Bogaerts
-
Patent number: 6614078Abstract: CMOS I/O structures are described which are latchup-immune by inserting p+ and n+ diffusion guard-rings into the NMOS and PMOS source side of a semiconductor substrate, respectively. P+ diffusion guard-rings surround individual n-channel transistors and n+ diffusion guard-rings surround individual p-channel transistors. These guard-rings, connected to voltage supplies, reduce the shunt resistances of the parasitic SCRs, commonly associated with CMOS structures, from either the p-substrate to p+ guard-ring or the n-well to n+ guard-ring. In a second preferred embodiment a deep p+ implant is implanted into the p+ guard-ring or p-well pickup to decrease the shunt resistances of the parasitic SCRs. The n+ and p+ guard-rings, like the guard-rings of the first preferred embodiment, are connected to positive and negative voltage supplies, respectively.Type: GrantFiled: May 16, 2002Date of Patent: September 2, 2003Assignee: Taiwan Semiconductor Manufacturing CompanyInventors: Jian-Hsing Lee, Jiaw-Ren Shih, Shui-Hung Chen, Ping-Lung Liao
-
Patent number: 6541807Abstract: A storage node electrically connected to one of source/drain regions of a MOS transistor is formed along the side wall and the bottom wall of an opening provided through a silicon nitride film, a BPTEOS film and a TEOS film. The surface of this storage node is roughened. Thus, a semiconductor device having high reliability and a method of manufacturing the same are obtained.Type: GrantFiled: November 7, 2000Date of Patent: April 1, 2003Assignee: Mitsubishi Denki Kabushiki KaishaInventor: Toshinori Morihara
-
Patent number: 6482708Abstract: A nonvolatile memory device having a lightly doped source and a method for manufacturing the same are provided. In the nonvolatile memory device, a first insulating layer, a floating gate, a second insulating layer and a control gate are sequentially formed on a semiconductor substrate, and a drain, a lightly doped source and a highly doped source are formed around a surface of the semiconductor substrate. At this time, the highly doped source is shallower than the drain without being overlapped by the floating gate. Thus, the integration of the memory cell can be increased, and the trapping of electrons is reduced in the first insulating layer formed between the floating gate and the lightly doped source, to thereby enhance the characteristics of the memory cell.Type: GrantFiled: September 13, 2001Date of Patent: November 19, 2002Assignee: Samsung Electronics Co., Ltd.Inventors: Jeong-hyuk Choi, Jong-han Kim
-
Patent number: 6479875Abstract: The present invention relates to the formation of multiple gettering structures within a semiconductive substrate by ion implantation through recesses in the semiconductive substrate. A preferred embodiment of the present invention includes forming the recesses by using a reactive anisotropic etching medium, followed by implanting a gettering material. The gettering material is implanted by changing the gettering material for the reactive anisotropic etching medium. An advantage of the method of the present invention is that gettering structures are formed without the cost of an extra masking procedure and without the expense of MeV implantation equipment and procedures. As a result, metallic contaminants will not move as freely through the semiconductive substrate in the region of an active area proximal to the gettering structures.Type: GrantFiled: July 31, 2000Date of Patent: November 12, 2002Assignee: Micron Technology, Inc.Inventor: Fernando Gonzalez