With Optical Shield Or Mask Means Patents (Class 257/435)
  • Patent number: 9167184
    Abstract: A solid-state image taking device including a pixel section and a scan driving section wherein on each pixel column included in the pixel area determined in advance to serve as a pixel column having the unit pixels laid out in the scan direction, the opto-electric conversion section and the electric-charge holding section are laid out alternately and repeatedly, and on each of the pixel columns in the pixel area determined in advance, two the electric-charge holding sections of two adjacent ones of the unit pixels are laid out disproportionately toward one side of the scan direction with respect to the optical-path limiting section or the opto-electric conversion section.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: October 20, 2015
    Assignee: SONY CORPORATION
    Inventor: Takashi Machida
  • Patent number: 9153707
    Abstract: An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a device region disposed in the semiconductor substrate; a dielectric layer disposed on the first surface of the semiconductor substrate; a conducting pad structure disposed in the dielectric layer and electrically connected to the device region, a carrier substrate disposed on the dielectric layer; and a conducting structure disposed in a bottom surface of the carrier substrate and electrically contacting with the conducting pad structure.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: October 6, 2015
    Assignee: XINTEC INC.
    Inventors: Yen-Shih Ho, Ying-Nan Wen, Tsang-Yu Liu
  • Patent number: 9136409
    Abstract: An optical device includes a first region and an isolating layer which are each provided in a semiconductor substrate. The first region configures a photoelectric converter and includes at least an impurity of a first conductivity type. The isolating layer is configured to inhibit passage of electrons. The isolating layer includes a second region which is below the first region and which includes an impurity of a second conductivity type, a third region which surrounds the first region in plan-view thereof and which includes an impurity of the second conductivity type, and a fourth region which surrounds the second region in plan-view thereof and which is connected to the third region. The fourth region is greater in width than a connecting part of the third region which connects the third region to the fourth region.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: September 15, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Keishi Tachikawa
  • Patent number: 9122007
    Abstract: A spectral filter (150.1-150.4) comprising at least one metallic layer (101) structured by at least one hole (250.1-250.4) passing through two opposite mains faces of the metallic layer and comprising, in a plane parallel to a plane of one of the two main faces, a first rectangular section whereof a first side has a dimension between around 40 nm and 100 nm, and whereof a second side, perpendicular to the first side, has a dimension between around 150 nm and 1000 nm, and a second rectangular section centered relative to the first rectangular section, a first side of the second section being parallel to the second side of the first section and having a dimension between around 40 nm and 100 nm.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: September 1, 2015
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Alexandre Mary, Yohan Desieres
  • Patent number: 9053997
    Abstract: A solid-state image sensor having a pixel region and a peripheral circuit region, includes wiring lines arranged in the pixel region and the peripheral circuit region, dummy patterns arranged in the peripheral circuit region, and a planarizing layer arranged on the wiring lines and containing a resin. The wiring lines in the peripheral circuit region include a plurality of electrically conductive patterns. The dummy patterns are arranged between the plurality of electrically conductive patterns. The dummy patterns are electrically insulated from the wiring lines.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: June 9, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Hirayama, Mariko Furuta
  • Publication number: 20150145090
    Abstract: A sensing element that may include (a) a PIN diode that may include an anode that is coupled to an anode contact; a cathode that is coupled to a cathode contact; a semiconductor portion that has a sensing region; and an insulator that is positioned between the cathode contact and the anode contact; and (b) a shielding element. The insulator, the cathode contact and the anode contact are positioned between the shielding element and the semiconductor portion. The shielding element is shaped and positioned to facilitate radiation to impinge onto the sensing region of the semiconductor portion while at least partially shielding the insulator from electrons that are emitted from the sensing region.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: APPLIED MATERIALS ISRAEL, LTD.
    Inventor: Pavel Margulis
  • Patent number: 9041135
    Abstract: Under one aspect of the present invention, a monolithic sun sensor includes a photosensor; a spacer material disposed over the photosensor; and a patterned mask disposed over the spacer material and defining an aperture over the photosensor. The spacer material has a thickness selected such that the patterned mask casts a shadow onto the photosensor that varies as a function of the monolithic sun sensor's angle relative to the sun. The sun sensor may further include a substrate in which the photosensor is embedded or on which the photosensor is disposed. The spacer material may be transparent, and may include a layer of inorganic oxide, or a plurality of layers of inorganic oxide. The patterned mask may include a conductive material, such as a metal. The aperture may be lithographically defined, and may be square. The sun sensor may further include a transparent overlayer disposed over the patterned mask.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 26, 2015
    Assignee: The Aerospace Corporation
    Inventor: Siegfried W. Janson
  • Publication number: 20150137299
    Abstract: There is provided a solid state imaging device according to the embodiment. The solid state imaging device includes an imaging area and an element isolation unit having a light shielding effect. In the imaging area, a plurality of photoelectric conversion elements is two-dimensionally arranged in a matrix in a semiconductor layer. The element isolation unit is embedded so as to surround a light-receiving region of each photoelectric conversion element. A center position of an opening region surrounding the light-receiving region is positioned on the center side of the imaging area than a corresponding center position of the light-receiving region.
    Type: Application
    Filed: September 2, 2014
    Publication date: May 21, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tetsuya YAMAGUCHI
  • Patent number: 9029968
    Abstract: An optical sensor element is mounted in a package which includes a glass substrate having a cavity, and a glass lid substrate bonded to the other substrate to close the cavity. The glass substrate with the cavity has metalized wiring patterns on front and rear surfaces thereof, and a through hole filled with metal to form a through-electrode interconnecting the wiring patterns on the front and rear surfaces. A metalized wiring pattern on the rear surface of the glass lid substrate is electrically connected to the wiring pattern on the front surface of the other substrate with an adhesive containing conductive particles. The glass lid substrate is made either of glass having a filter function or glass having a light shielding property with an opening therethrough filled with glass having a filter function.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Koji Tsukagoshi, Hitoshi Kamamori, Sadao Oku, Hiroyuki Fujita, Keiichiro Hayashi
  • Patent number: 9029969
    Abstract: There is provided an imaging element including a transmission channel region provided in an optical black pixel region shielded from light from an outside of a semiconductor substrate by a light shielding film, for transmitting a charge existing inside the semiconductor substrate of the optical black pixel region to an outside of the optical black pixel region.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: May 12, 2015
    Assignee: Sony Corporation
    Inventor: Suzunori Endo
  • Patent number: 9024405
    Abstract: A solid-state image sensor including an effective pixel portion in which a plurality of pixels including photodiodes formed on a semiconductor substrate are arranged, and a peripheral portion arranged around the effective pixel portion, includes a plurality of metal wiring layers arranged above the semiconductor substrate, and a planarizing film covering a patterned metal wiring layer that is a top layer among the plurality of metal wiring layers, wherein in the effective pixel portion, the plurality of metal wiring layers have openings configured to guide light to the photodiodes, and in the peripheral portion, an opening is provided in the top layer, and at least one metal wiring layer between the top layer and the semiconductor substrate has a pattern which blocks light incident on the photodiodes via the opening in the top layer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 5, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeshi Aoki
  • Patent number: 9025060
    Abstract: A solid-state image sensor which comprises a pixel group in which unit pixels each including a microlens and a plurality of photo-electric converters are arrayed two-dimensionally, wherein a shielding unit that shields part of all of a plurality of photo-electric converters corresponding to a single microlens is provided in a portion of the unit pixels.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: May 5, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akihiro Nishio, Ichiro Onuki, Koichi Fukuda, Ryo Yamasaki, Hideaki Yamamoto, Makoto Oikawa
  • Patent number: 9024369
    Abstract: A backside illumination image sensor structure comprises an image sensor formed adjacent to a first side of a semiconductor substrate, wherein an interconnect layer is formed over the first side of the semiconductor substrate, a backside illumination film formed over a second side of the semiconductor substrate, a metal shielding layer formed over the backside illumination film and a via embedded in the backside illumination film and coupled between the metal shielding layer and the semiconductor substrate.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Chi-Cherng Jeng, Volume Chien, Ying-Lang Wang
  • Patent number: 9018722
    Abstract: A method for manufacturing a solid-state image pickup device that includes a pixel portion and a peripheral circuit portion, includes: forming a first insulating film in the pixel portion and the peripheral circuit portion, forming a second insulating film above the first insulating film, etching the second insulating film in photoelectric conversion elements, forming a metal film on the etched second insulating film in the photoelectric conversion elements and on the second insulating film in the peripheral circuit portion, and removing the metal film in the peripheral circuit portion and forming light-shielding films from the metal film in the photoelectric conversion elements.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kouhei Hashimoto, Masatsugu Itahashi
  • Patent number: 9006850
    Abstract: A motion sensing device for sensing infrared rays includes a substrate; an optical module, including a first spacer layer, coupled to the substrate; a first glass layer, formed on the first spacer layer; a second spacer layer, formed on the first glass layer; a second glass layer, formed on the second spacer layer; a third spacer layer, formed on the second glass layer; a first lens, bonding on a first side of the second glass layer; and a second layer, bonding on a second side relative to the first side of the second glass layer; and a coating layer, covered on the optical layer for shielding the infrared rays, wherein the coating layer does not cover the first lens.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: April 14, 2015
    Assignee: Dyna Image Corporation
    Inventor: Ming-Hsun Hsieh
  • Patent number: 9006852
    Abstract: Disclosed herein is a solid-state imaging element including: a transfer section configured to transfer charge generated simultaneously by a photoelectric conversion section in all pixels to a memory section and have a metal gate; and a light-shielding section formed by filling a metal into a groove portion formed by digging an interlayer insulating film around the transfer section.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Sony Corporation
    Inventor: Shinichi Arakawa
  • Patent number: 9006566
    Abstract: A photoelectric conversion device comprising: an inorganic photoelectric conversion film; and an organic photoelectric conversion film, wherein an insulating film between the inorganic photoelectric conversion film and the organic photoelectric conversion film has a thickness of from 1 to 6 ?m, wherein the organic photoelectric conversion film has a multilayer structure comprising four or more layers, or wherein a protective film having a multilayer structure comprising three or more layers is provided on the organic photoelectric conversion film.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: April 14, 2015
    Assignee: FUJIFILM Corporation
    Inventor: Mikio Ihama
  • Patent number: 9000549
    Abstract: Thin film photovoltaic devices are provided. The device includes a transparent substrate; a transparent conductive oxide layer on the transparent substrate; an n-type window layer on the transparent conductive oxide layer, an absorber layer on the n-type window layer, and a back contact layer on the absorber layer. The n-type window layer includes a plurality of nanoparticles spatially distributed within a medium, with the nanoparticles comprising cadmium sulfide. In one embodiment, the medium has an optical bandgap that is greater than about 3.0 eV (e.g., includes a material other than cadmium sulfide). Methods are also provided for such thin film photovoltaic devices.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 7, 2015
    Assignee: First Solar, Inc.
    Inventors: Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Bastiaan Arie Korevaar
  • Publication number: 20150076646
    Abstract: A backside illumination semiconductor image sensing device includes a semiconductor substrate. The semiconductor substrate includes a radiation sensitive diode and a peripheral region. The peripheral region is proximal to a sidewall of the backside illumination semiconductor image sensing device. The backside illumination semiconductor image sensing device further includes a first anti reflective coating (ARC) on a backside of the semiconductor substrate and a dielectric layer on the first anti reflective coating. Additionally, a radiation shielding layer is disposed on the dielectric layer. Moreover, the backside illumination semiconductor image sensing device has a photon blocking layer on the sidewall of the of the backside illumination semiconductor image sensing device. The at least a portion of a sidewall of the radiation shielding layer is not covered by the photon blocking layer and the photon blocking layer is configured to block photons penetrating into the semiconductor substrate.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: HUNG-WEN HSU, JUNG-I LIN, CHING-CHUNG SU, JIECH-FUN LU, YEUR-LUEN TU, CHIA-SHIUNG TSAI
  • Patent number: 8981514
    Abstract: A semiconductor package includes a light transmissive cover having a conductive pattern, a substrate having a cavity, a semiconductor chip in the cavity of the substrate and electrically connected to the conductive pattern arranged on the light transmissive cover, and a blocking pattern between the light transmissive cover and the substrate.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Sung Ryu, Byoung-Rim Seo, In-Won O
  • Patent number: 8969879
    Abstract: Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Nobuo Nakamura, Keiji Mabuchi, Tomoyuki Umeda, Hiroaki Fujita, Eiichi Funatsu, Hiroki Sato
  • Publication number: 20150054110
    Abstract: Provided are a semiconductor device in which a solid-state image sensing element having a backside-illuminated structure and capacitor elements storing therein some of the charges supplied from light receiving elements has further improved reliability and a manufacturing method thereof. In the solid-state image sensing element of the semiconductor device, first and second substrates are joined together at a junction surface. The first substrate is formed with photodiodes. The second substrate is formed with the capacitor elements. The photodiodes and the capacitor elements are placed to be opposed to each other. In the first substrate, first coupling portions for coupling to the second substrate are placed. In the second substrate, second coupling portions for coupling to the first substrate are placed. A first gap portion between the first coupling portions and a second gap portion between the second coupling portions are placed to overlap a first light blocking film.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventor: Keiichiro KASHIHARA
  • Patent number: 8963271
    Abstract: In a solid-state imaging device, a photoelectric conversion unit, a transfer transistor, and at least a part of electric charge holding unit, among pixel constituent elements, are disposed on a first semiconductor substrate. An amplifying transistor, a signal processing circuit other than a reset transistor, and a plurality of common output lines, to which signals are read out from a plurality of pixels, are disposed on a second semiconductor substrate.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuo Yamazaki, Tetsuya Itano, Nobuyuki Endo, Kyouhei Watanabe
  • Patent number: 8963270
    Abstract: A method for fabricating thin film solar cells for a concentrated photovoltaic system uses three shadow masks. The first mask, used to deposit a back contact layer, has multiple horizontal and vertical lines defining columns and rows of cells, and multiple tabs each located in a cell along a center of a vertical border. The second mask, used to deposit a CIGS absorption layer, a window layer and a transparent contact layer, is similar to the first mask except the tabs are located along the opposite vertical border of the cells. The third mask, used to deposit a metal grid layer, has multiple bus bar openings and finger openings. Each bus bar opening is located along a horizontal center line of a cell and overlaps the second tab of a neighboring cell. The cells in a horizontal row are connected in series, forming a linear solar receiver.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 24, 2015
    Assignee: Pu Ni Tai Neng (HangZhou) Co., Limited
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li
  • Patent number: 8963272
    Abstract: A photoelectric converter according to the present invention includes a substrate, a lower electrode layer arranged on the substrate, a compound semiconductor layer of a chalcopyrite structure arranged on the lower electrode layer to cover the lower electrode layer and partitioned into a plurality of pixels, a transparent electrode layer arranged on the compound semiconductor layer, and a shielding layer arranged around each of the pixels on the compound semiconductor layer.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 24, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Takuji Maekawa, Osamu Matsushima, Toshihisa Maeda
  • Publication number: 20150035028
    Abstract: A pixel in an image sensor can include a photodetector and a storage region disposed in one substrate, or a photodetector disposed in one substrate and a storage region in another substrate. A buried light shield is disposed between the photodetector and the storage region. A sense region, such as a floating diffusion, can be adjacent to the storage region, with the buried light shield disposed between the photodetector and the storage and sense regions. When the photodetector and the storage region are disposed in separate substrates, a vertical gate can be formed through the buried light shield and used to initiate the transfer of charge from the photodetector and the storage region. A transfer channel formed adjacent to, or around the vertical gate provides a channel for the charge to transfer from the photodetector to the storage region.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Apple Inc.
    Inventors: Xiaofeng Fan, Philip H. Li, Chung Chun Wan, Anup K. Sharma, Xiangli Li
  • Publication number: 20150035100
    Abstract: A solid state imaging device includes a semiconductor layer, and a light shielding portion. The semiconductor layer has multiple photoelectric conversion elements. The light shielding portion is provided in the semiconductor layer, and has a light shielding member whose interface with the semiconductor layer is covered by an insulating film. The light shielding portion includes a light shielding region and an element isolation region. The light shielding region is provided in the semiconductor layer on the side close to the light receiving surface of the photoelectric conversion element for shielding light incident on the photoelectric conversion element from a specific direction. The element isolation region is formed to project in the depth direction of the semiconductor layer from the light shielding region toward a portion between the multiple photoelectric conversion elements in order to electrically and optically isolate the multiple photoelectric conversion elements from one another.
    Type: Application
    Filed: December 2, 2013
    Publication date: February 5, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kazumasa TANIDA
  • Patent number: 8947566
    Abstract: The first face of the pad is situated between the front-side face of the second semiconductor substrate and a hypothetical plane including and being parallel to the front-side face, and a second face of the pad that is a face on the opposite side of the first face is situated between the first face and the front-side face of the second semiconductor substrate, and wherein the second face is connected to the wiring structure so that the pad is electrically connected to the circuit arranged in the front-side face of the second semiconductor substrate via the wiring structure.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masahiro Kobayashi, Mineo Shimotsusa
  • Publication number: 20150028442
    Abstract: The present disclosure relates to a solid-state imaging device and a manufacturing method of the same, and an electronic apparatus, capable of more reliably suppressing occurrence of color mixing. A trench is formed between PDs so as to be opened to a light receiving surface side of a semiconductor substrate on which a plurality of the PDs, each of which receives light to generate charges, are formed, an insulating film is embedded in the trench and the insulating film is laminated on a back surface side of the semiconductor substrate. Then, a light shielding portion is formed so as to be laminated on the insulating film and to have a convex shape protruding to the semiconductor substrate at a location corresponding to the trench. The present technology can be applied to a back surface irradiation type CMOS solid-state imaging device.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 29, 2015
    Inventor: Yuki Miyanami
  • Patent number: 8941202
    Abstract: A method for forming an image sensor device is provided. First, a lens is provided and a first sacrificial element is formed thereon. An electromagnetic interference layer is formed on the lens and the first sacrificial element, and the first sacrificial element and electromagnetic interference layer thereon are removed to form an electromagnetic interference pattern having an opening exposing a selected portion of the lens. A second sacrificial element is formed in the opening to cover a center region of the selected portion of the lens. A peripheral region of the selected portion of the lens remains exposed. A light-shielding layer is formed on the electromagnetic interference pattern, second sacrificial element, and peripheral region of the selected portion of the lens. The second sacrificial element and light-shielding pattern are removed to expose the center region of the selected portion of the lens as a light transmitting region.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: January 27, 2015
    Assignees: OmniVision Technologies, Inc., VisEra Technologies Company Limited
    Inventors: Ming-Kai Liu, Tzu-Wei Huang, Jui-Hung Chang, Chia-Hui Huang, Teng-Sheng Chen
  • Patent number: 8941159
    Abstract: Embodiments of an apparatus including a color filter arrangement formed on a substrate having a pixel array formed therein. The color filter arrangement includes a clear filter having a first clear hard mask layer and a second clear hard mask layer formed thereon, a first color filter having the first clear hard mask layer and the second hard mask layer formed thereon, a second color filter having the first clear hard mask layer formed thereon, and a third color filter having no clear hard mask layer formed thereon. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: January 27, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 8941201
    Abstract: In a transparent substrate (10), there are formed a semiconductor layer (14) formed of an oxide semiconductor, the semiconductor layer (14) functioning as a channel portion of a TFT (2); an electrode (16) formed of a transparent conductive material and located over the semiconductor layer (14), and a light-shielding conductor (17) formed on the electrode (16), the light-shielding conductor being formed of a material which has a conductivity higher than that of the transparent conductive material and which has light-shielding property, the light-shielding conductor covering the semiconductor layer (14). This structure can inhibit exposure of the oxide semiconductor which forms the channel portion toward a light, and can lower the resistance of the electrode formed of the transparent conductive material.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: January 27, 2015
    Assignee: Panasonic Liquid Crystal Display Co., Ltd.
    Inventor: Kazuo Kita
  • Patent number: 8933455
    Abstract: To provide a liquid crystal display device having high quality display by obtaining a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a different layer from a gate electrode and the capacitor wiring is arranged so as to be parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of a neighboring pixel can be avoided, whereby obtaining satisfactory display images.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Shibata, Atsuo Isobe
  • Patent number: 8928103
    Abstract: A solid-state imaging element including a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Ohba, Susumu Hiyama, Itaru Oshiyama
  • Patent number: 8921966
    Abstract: An image sensor includes: a photoelectric conversion pixel having a photoelectric conversion element that performs photoelectric conversion, and a light guide formed of a first material in an interlayer insulation film above the photoelectric conversion element; and a light-shielded pixel having a photoelectric conversion element that performs photoelectric conversion, a light guide formed of a second material that is different from the first material in an interlayer insulation film above the photoelectric conversion element, and a light-shielding layer formed above the light guide.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: December 30, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takafumi Kishi
  • Publication number: 20140374865
    Abstract: The present technology relates to a semiconductor device and electronic equipment in which a semiconductor device that suppresses the occurrence of noise by a leakage of light can be provided. A semiconductor device is configured which includes a light-receiving element 34, an active element for signal processing, and a light shielding structure 40 which is between the light-receiving element 34 and the active element to cover the active element and is formed of wirings 45 and 46. The semiconductor device further includes a first substrate on which the light-receiving element is formed, a second substrate on which the active element is formed, and a wiring layer which has a light shielding structure by the wirings which is formed on the second substrate, and in which the second substrate can be bonded to the first substrate through the wiring layer.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 25, 2014
    Applicant: Sony Corporation
    Inventors: Shoji Kobayashi, Yoshiharu Kudoh, Takuya Sano
  • Patent number: 8911668
    Abstract: A Lab On a Chip (LOC) has a Sample Preparation Module (SPM) coupled to a sample inlet, a microchannel coupled to the SPM, and an optic module optically proximate to the microchannel. The optic module holds multiple lenses, each of which has a different effective focal length, such that all fields of focus within the microchannel are covered as objects suspended within the liquid sample pass through the microchannel.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy Durniak, Robert R. Friedlander, James R. Kraemer
  • Patent number: 8901697
    Abstract: An integrated circuit having an insulated conductor or within a semiconductor substrate and extending perpendicular to a plane of a semiconductor wafer or substrate on which the integrated circuit is fabricated, the conductor comprising a first region of doped semiconductor extending between a first device or a first contact and a second device or a second contact.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: December 2, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Bernard Patrick Stenson
  • Patent number: 8901692
    Abstract: An imaging device includes at least one photosite formed in a semiconducting substrate and fitted with a filtering device for filtering at least one undesired radiation. The filtering device is buried in the semiconducting substrate at a depth depending on the wavelength of the undesired radiation.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 2, 2014
    Assignees: STMicroelectronics (Grenoble 2) SAS, STMicroelectronics (Rousset) SAS, STMicroelectronics SA
    Inventors: David Coulon, Benoit Deschamps, Frédéric Barbier
  • Patent number: 8901696
    Abstract: A solid-state imaging device includes: photoelectric conversion units disposed in the form of matrix in an imaging region and a peripheral region around the imaging region; transfer electrodes provided on a side of the photoelectric conversion units arranged in the vertical direction of the matrix; and first-layer wirings and second-layer wirings in a multi-layer wiring structure disposed to connect the transfer electrodes in the horizontal direction of the matrix, wherein the first-layer wirings and the second-layer wirings are provided as light-shielding patterns for covering the photoelectric conversion units in the peripheral region.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventors: Masashi Takami, Ryoma Yoshinaga, Akira Furukawa
  • Publication number: 20140346631
    Abstract: The present disclosure provides a high electric field radiation detector including a first electrode, a second electrode, a radiation detecting layer, and a soft polymer layer below the radiation detecting layer and in contact with at least the first electrode. The present disclosure provides a method of manufacturing a radiation detector including obtaining a first electrode, depositing a soft polymer layer on the first electrode, depositing a radiation detecting layer above the soft polymer layer, and depositing a second electrode above the amorphous material layer. The present disclosure also provides a method of manufacturing a radiation detector including obtaining a first electrode and a second electrode, depositing a soft polymer layer on the first electrode and the second electrode, and depositing a radiation detecting layer above the soft polymer layer.
    Type: Application
    Filed: December 7, 2012
    Publication date: November 27, 2014
    Inventors: Karim S. KARIM, Shiva ABBASZADEH
  • Patent number: 8890268
    Abstract: An embodiment of the invention provides a chip package, which includes: a semiconductor substrate having a device region; a package layer disposed on the semiconductor substrate; a spacing layer disposed between the semiconductor substrate and the package layer and surrounding the device region; and an auxiliary pattern having a hollow pattern formed in the spacing layer, a material pattern located between the spacing layer and the device region, or combinations thereof.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 18, 2014
    Inventors: Yu-Lung Huang, Tsang-Yu Liu
  • Patent number: 8884347
    Abstract: The present disclosure provides a method of manufacturing a photoelectric conversion device, including, a first step of forming a plurality of photoelectric conversion regions on a surface on one side of a semiconductor wafer, a second step of preparing a light-blocking wafer having insertion openings, a third step of bonding the one-side surface of the semiconductor wafer and a surface on the opposite side to a surface on the one side of the light-blocking wafer to each other to form a bonded wafer body, and a fourth step of dividing the bonded wafer body in peripheries of the photoelectric conversion regions, to obtain bonded-body chips each having the photoelectric conversion region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventor: Yasuhide Nihei
  • Patent number: 8872296
    Abstract: The present invention provides a chip module structure for particles protection. The structure includes a substrate. A chip is configured on the substrate, with a sensing area. A holder is disposed on the substrate, wherein the holder has a first rib. A transparent material is disposed on the holder, substantially aligning to the sensing area. A lens holder is disposed on the holder, and a lens is configured on the lens holder, substantially aligning to the transparent material and the sensing area. The lens has a second rib, wherein the second rib is disposed corresponding to the first rib for blocking particles entering into the chip module structure.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 28, 2014
    Assignee: Lite-On Technology Corporation
    Inventor: Shin-Dar Jan
  • Patent number: 8866205
    Abstract: A photoelectric conversion device is disclosed. The photoelectric conversion device includes a semiconductor substrate having a plurality of photoelectric converters, a multilayer wiring structure arranged on the semiconductor substrate, and a planarized layer arranged on the multilayer wiring structure. The multilayer wiring structure includes a first wiring layer, an interlayer insulation film arranged to cover the first wiring layer, and a second wiring layer serving as a top wiring layer arranged on the interlayer insulation film. The planarized layer covers the interlayer insulation film and the second wiring layer. The second wiring layer is thinner than the first wiring layer.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 21, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Nakata, Shigeru Nishimura, Ryuichi Mishima
  • Patent number: 8853758
    Abstract: There is provided a solid-state imaging device including plural pixel regions, each including a pixel having a photoelectric conversion unit, a color filter, and a microlens that condenses the incident light to the photoelectric conversion unit; a first light shielding portion that has a first end face at the side of the microlens, and a second end face opposite to the first end face, and that is formed at each side portion of each pixel region of the plurality of the pixel regions; and a second light shielding portion that has a first end face at the side of the microlens, and a second end face opposite to the first end face, and that is formed at each corner portion of the pixel region, in which a distance from a surface of the pixel to the first end face is short compared to the first light shielding portion.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 7, 2014
    Assignee: Sony Corporation
    Inventor: Yoichi Ootsuka
  • Publication number: 20140291793
    Abstract: There is provided a solid-state imaging apparatus including a plurality of photoelectric conversion regions which photoelectrically convert light incident from a rear surface side of a semiconductor substrate, element isolation regions formed between the plurality of photoelectric conversion regions arranged in a matrix shape, and shielding members formed on upper surfaces of the element isolation regions. The element isolation regions have high impurity concentration regions of a high impurity concentration connected to at least a part of the shielding members.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 2, 2014
    Applicant: SONY CORPORATION
    Inventor: Yusuke Tanaka
  • Patent number: 8847243
    Abstract: A semiconductor package includes a transmissive support plate and includes at least one elongate hole. An integrated circuit semiconductor device is mounted on a rear face of the support plate. The semiconductor device includes first and second optical elements oriented towards the rear face of the support plate, where the first and second optical elements are placed on either side of the elongate hole. An encapsulation material made of an opaque material encapsulates the semiconductor device and fills the elongate hole so as to form an optical insulation partition between the first and second optical elements. A cavity is left, however, between each optical element and a rear face of the support plate.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 30, 2014
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Romain Coffy, Emmanuelle Vigier-Blanc
  • Patent number: 8847345
    Abstract: An optical element includes a plurality of optical filters having different characteristics. The element includes a first optical filter including a first metal-structure group including first metal structures periodically arranged in an in-plane direction of a substrate surface and a second optical filter including a second metal-structure group including second metal structures periodically arranged in the in-plane direction, the second metal-structure group exhibiting a plasmon resonance condition different from that of the first metal-structure group. The optical distance between the first metal structures adjacent to each other is in a range of 0.75 to 1.25 times the optical distance between the second metal structures adjacent to each other.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 30, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoichiro Handa
  • Publication number: 20140264701
    Abstract: A system and method for blocking light from regions around a photodiode in a pixel of an image sensor is provided. In an embodiment a first optical block layer is formed on a first glue layer and a second glue layer is formed on the first optical block layer. The formation of the first optical block layer and the second glue layer is repeated one or more times to form multiple optical block layers and multiple glue layers. As such, if voids open up in the optical block layers during further processing, there is another optical block layer to block any light that may have penetrated through the void.
    Type: Application
    Filed: May 31, 2013
    Publication date: September 18, 2014
    Inventors: Chih-Ho Tai, Po-Jung Chiang, Bo-Chang Su, Chi-Feng Chen, Jung-I Lin