With Optical Shield Or Mask Means Patents (Class 257/435)
  • Publication number: 20140264702
    Abstract: An integrated circuit device includes an active semiconductor substrate comprising an array of photodiodes. The integrated circuit device also includes a dielectric layer disposed adjacent to the active semiconductor substrate proximate to the array of photodiodes. The dielectric layer has a first side adjacent to the active semiconductor substrate and a second side opposite from the active semiconductor substrate. The dielectric layer includes a layer of at least substantially opaque material. The layer of at least substantially opaque material defines an aperture configured to permit electromagnetic radiation incident upon the second side of the dielectric layer to reach the array of photodiodes.
    Type: Application
    Filed: June 28, 2013
    Publication date: September 18, 2014
    Inventor: Vitali Souchkov
  • Publication number: 20140264703
    Abstract: To provide a solid-state image sensing device or a semiconductor display device, which can easily obtain the positional data of an object without contact. Included are a plurality of first photosensors on which light with a first incident angle is incident from a first incident direction and a plurality of second photosensors on which light with a second incident angle is incident from a second incident direction. The first incident angle of light incident on one of the plurality of first photosensors is larger than that of light incident on one of the other first photosensors. The second incident angle of light incident on one of the plurality of second photosensors is larger than that of light incident on one of the other second photosensors.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA
  • Publication number: 20140264700
    Abstract: Under one aspect of the present invention, a monolithic sun sensor includes a photosensor; a spacer material disposed over the photosensor; and a patterned mask disposed over the spacer material and defining an aperture over the photosensor. The spacer material has a thickness selected such that the patterned mask casts a shadow onto the photosensor that varies as a function of the monolithic sun sensor's angle relative to the sun. The sun sensor may further include a substrate in which the photosensor is embedded or on which the photosensor is disposed. The spacer material may be transparent, and may include a layer of inorganic oxide, or a plurality of layers of inorganic oxide. The patterned mask may include a conductive material, such as a metal. The aperture may be lithographically defined, and may be square. The sun sensor may further include a transparent overlayer disposed over the patterned mask.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: The Aerospace Corporation
    Inventor: Siegfried W. JANSON
  • Publication number: 20140264696
    Abstract: Among other things, one or more image sensors and techniques for forming such image sensors are provided. An image sensor comprises a photodiode array configured to detect light. The image sensor comprises a calibration region configured to detect a color level for image reproduction, such as a black calibration region configured to detect a black level for an image detected by the photodiode array. The image sensor comprises a dielectric film that is formed over the photodiode array and the calibration region. The dielectric film is configured to balance stress between the photodiode and the calibration region in order to improve accuracy of the calibration region.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Che-Min Lin, Shiu-Ko JangJian, Chi-Cherng Jeng, Chih-Mu Huang
  • Patent number: 8836065
    Abstract: According to one embodiment, a solid-state imaging device includes a semiconductor substrate including a pixel area and a peripheral circuit area, an interconnection structure provided on a first principal surface of the semiconductor substrate and including first interconnection layers electrically connected to the peripheral circuit area, a second interconnection layer provided in the peripheral circuit area and on a second principal surface of the semiconductor substrate, a third interconnection layer provided above the second interconnection layer with an insulating layer therebetween, and through electrodes electrically connecting the second interconnection layer to the third interconnection layer.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jiro Hayakawa, Tomoyuki Yoda
  • Patent number: 8829579
    Abstract: A solid-state imaging device includes photoelectric conversion elements on an imaging surface of a substrate, receiving light incident on a light receiving surface and performing photoelectric conversion to produce a signal charge. Electrodes are interposed between the photoelectric conversion elements and light blocking portions are provided above the electrodes and interposed between the photoelectric conversion elements. The light blocking portions include an electrode light blocking portion formed to cover the corresponding electrode, and a pixel isolation and light blocking portion protruding convexly from the upper surface of the electrode light blocking portion. The photoelectric conversion elements are arranged at first pitches on the imaging surface. The electrode light blocking portions and the pixel isolation and light blocking portions are arranged at second and third pitches on the imaging surface.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventor: Yoshiaki Masuda
  • Publication number: 20140246568
    Abstract: An image sensor pixel is disclosed. The pixel may include a photodiode having a first region with a first potential and a second region with a second, higher potential, with the second region being offset in depth from the first region in a semiconductor chip. A storage node may be positioned at substantially the same depth as the second region of the photodiode. A storage gate may be operable to transfer charge between the photodiode and the storage node.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: Apple Inc.
    Inventor: Chung Chun Wan
  • Publication number: 20140246565
    Abstract: A solid-state imaging device includes: a semiconductor substrate provided with an effective pixel region including a light receiving section that photoelectrically converts incident light; an interconnection layer that is provided at a plane side opposite to the light receiving plane of the semiconductor substrate; a first groove portion that is provided between adjacent light receiving sections and is formed at a predetermined depth from the light receiving plane side of the semiconductor substrate; and an insulating material that is embedded in at least a part of the first groove portion.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: SONY CORPORATION
    Inventors: Atsushi Kawashima, Katsunori Hiramatsu, Yasufumi Miyoshi
  • Patent number: 8823122
    Abstract: An integrated device, the device including a first crystalline layer covered by an oxide layer, a second crystalline layer overlying the oxide layer, wherein the first and second crystalline layers are image sensor layers, and the device includes a third crystalline layer, wherein the third crystalline layer includes single crystal transistors.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 2, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar
  • Patent number: 8816457
    Abstract: The present disclosure provides various embodiments of an image sensor device. An exemplary image sensor device includes an image sensing region disposed in a substrate; a multilayer interconnection structure disposed over the substrate; and a color filter formed in the multilayer interconnection structure and aligned with the image sensing region. The color filter has a length and a width, where the length is greater than the width.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyh-Ming Hung, Jen-Cheng Liu, Dun-Nian Yaung, Chun-Chieh Chuang
  • Patent number: 8803062
    Abstract: A photoelectric conversion device includes a photoelectric conversion unit which is arranged in a semiconductor substrate, a charge holding portion which is arranged in the semiconductor substrate and temporarily holds a charge generated by the photoelectric conversion unit, a first transfer electrode which is arranged at a position above the semiconductor substrate to transfer a charge generated by the photoelectric conversion unit to the charge holding portion, a charge-voltage converter which is arranged in the semiconductor substrate and converts a charge into a voltage, and a second transfer electrode which is arranged at a position above the semiconductor substrate to transfer a charge held by the charge holding portion to the charge-voltage converter, and the first transfer electrode is arranged to cover the charge holding portion, and not to overlap the second transfer electrode when viewed from a direction perpendicular to the upper surface of the semiconductor substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatsugu Itahashi
  • Patent number: 8803270
    Abstract: A light sensor is described that includes an IR interference filter and at least one color interference filter integrated on-chip. The light sensor comprises a semiconductor device (e.g., a die) that includes a substrate. Photodetectors are disposed proximate to the surface of the substrate. An IR interference filter is disposed over the photodetectors. The IR interference filter is configured to filter infrared light from light received by the light sensor to at least substantially block infrared light from reaching the photodetectors. At least one color interference filter is disposed proximate to the IR interference filter. The color interference filter is configured to filter visible light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to at least one of the photo detectors.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: August 12, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Prashanth Holenarsipur, Zhihai Wang, Nicole D. Kerness
  • Patent number: 8803271
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed on the front side of the semiconductor substrate. A dielectric layer is disposed on the backside of the semiconductor substrate, wherein the dielectric layer is over a back surface of the semiconductor substrate. A metal shield is over the dielectric layer and overlapping the photo-sensitive device. A metal plug penetrates through the dielectric layer, wherein the metal plug electrically couples the metal shield to the semiconductor substrate.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhe-Ju Liu, Chih-Cherng Jeng, Kuo-Cheng Lee, Szu-Hung Yang, Po-Zen Chen, Chi-Chin Hsu
  • Publication number: 20140218574
    Abstract: There is provided a solid-state imaging device including a semiconductor substrate having an effective region in which a photodiode performing a photoelectric conversion is formed and, an optical black region shielded by a light shielding film; a first film which is formed on the effective region and in which at least one layer or more of layers having a negative fixed charge are laminated; and a second film which is formed on the light shielding region and in which at least one layer or more of layers having a negative fixed charge are laminated, in which the number of layers formed in the first film is different from the number of layers formed in the second film.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Sony Corporation
    Inventor: Kai Yoshitsugu
  • Patent number: 8796714
    Abstract: A light emitting diode includes a semiconductor body including an active region that produces radiation, a carrier body fastened to the semiconductor body on an upper side of the semiconductor body, the carrier body including a luminescence conversion material consisting of a ceramic luminescence conversion material, a mirror layer applied to the semiconductor body on an underside of the semiconductor body remote from the upper side, and two contact layers, a first contact layer of the contact layers connected electrically conductively to an n-conducting region of the semiconductor body and a second contact layer of the contact layers connected electrically conductively to a p-conducting region of the semiconductor body.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: August 5, 2014
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Vincent Grolier, Magnus Ahlstedt, Mikael Ahlstedt, Dieter Eissler
  • Patent number: 8785924
    Abstract: Disclosed are a high-sensitivity transparent gas sensor and a method for manufacturing the same. The transparent gas sensor includes a transparent substrate, a transparent electrode formed on the transparent substrate and a transparent gas-sensing layer formed on the transparent electrode. The transparent gas-sensing layer has a nanocolumnar structure having nanocolumns formed on the transparent electrode and gas diffusion pores formed between the nanocolumns.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: July 22, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Ho Won Jang, Seok Jin Yoon, Jin Sang Kim, Chong Yun Kang, Ji Won Choi, Hi Gyu Moon
  • Patent number: 8786041
    Abstract: A solid-state imaging apparatus includes: a solid-state imaging device photoelectrically converting light taken by a lens; and a light shielding member shielding part of light incident on the solid-state imaging device from the lens, wherein an angle made between an edge surface of the light shielding member and an optical axis direction of the lens is larger than an incident angle of light to be incident on an edge portion of the light shielding member.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 22, 2014
    Assignee: Sony Corporation
    Inventors: Toshiaki Iwafuchi, Masahiko Shimizu, Hirotaka Kobayashi
  • Patent number: 8785994
    Abstract: An X-ray detector including: a substrate that is divided into a light detection area and a non-detection area and includes a plurality of pixels; a photodiode disposed on the light detection area; a thin film transistor that is disposed on the non-detection area and is electrically connected to a lower portion of the photodiode; a plurality of wires that are electrically connected to the thin film transistor and are positioned on the non-detection area; at least one insulating layer disposed so as to cover at least the thin film transistor and the plurality of wires; a scintillator layer disposed on the at least one insulating layer over an entire surface of the substrate; and a shielding part disposed between the at least one insulating layer and the scintillator layer to shield the non-detection area.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Dong-Hyuk Kim
  • Publication number: 20140197513
    Abstract: Provided is a semiconductor image sensor device. The image sensor device includes a semiconductor substrate that includes an array region and a black level correction region. The array region contains a plurality of radiation-sensitive pixels. The black level correction region contains one or more reference pixels. The substrate has a front side and a back side. The image sensor device includes a first compressively-stressed layer formed on the back side of the substrate. The first compressively-stressed layer contains silicon nitride. The image sensor device includes a metal shield formed on the compressively-stressed layer. The metal shield is formed over at least a portion of the black level correction region. The image sensor device includes a second compressively-stressed layer formed on the metal shield and the first compressively-stressed layer. The second compressively-stressed layer contains silicon oxide. A sidewall of the metal shield is protected by the second compressively-stressed layer.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 17, 2014
    Inventors: Wei-Chih Weng, Hsun-Ying Huang, Yung-Cheng Chang, Jin-Hong Cho
  • Publication number: 20140191353
    Abstract: A solid state imaging device including a semiconductor layer comprising a plurality of photodiodes, a first antireflection film located over a first surface of the semiconductor layer, a second antireflection film located over the first antireflection film, a light shielding layer having side surfaces which are adjacent to at least one of first and the second antireflection film.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: Sony Corporation
    Inventors: Susumu Hiyama, Kazufumi Watanabe
  • Patent number: 8772893
    Abstract: A pixel structure including an active device, a capacitor electrode line, a light shielding layer, a color filter pattern and a pixel electrode is provided. The active device and the capacitor electrode line are disposed on a substrate. The light shielding layer is disposed on the substrate, and the dielectric constant of the light shielding layer is less than 6. The light shielding layer defines a unit area on the substrate, and a contact hole is formed in the light shielding layer above the active device. A color filter pattern is disposed in the unit area, wherein the dielectric constant of the color filter pattern is less than 6, and the color filter pattern does not fill into the contact hole. The pixel electrode is disposed on the color filter pattern, in which the pixel electrode fills into the contact hole so as to electrically connect with the active device.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 8, 2014
    Assignee: Au Optronics Corporation
    Inventors: Yen-Heng Huang, Chung-Kai Chen, Chia-Hui Pai
  • Patent number: 8772812
    Abstract: A curable organopolysiloxane composition can be used as a sealant or a bonding agent for optical semiconductor elements. The composition comprises at least the following components: (A) a multi-constituent, alkenyl-containing organopolysiloxane; (B) an organopolysiloxane that contains silicon-bonded hydrogen atoms and comprises constituent (B-1) containing at least 0.5 wt. % of silicon-bonded hydrogen atoms and constituent (B-2) containing at least 0.5 wt. % of silicon-bonded hydrogen atoms, and, if necessary, constituent (B-3), an organopolysiloxane; and (C) a hydrosilylation-reaction catalyst. The composition can form a cured body that possesses long-lasting properties of light transmittance and bondability, and relatively high hardness.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: July 8, 2014
    Assignee: Dow Corning Toray Co., Ltd.
    Inventors: Makoto Yoshitake, Mieko Yamakawa
  • Patent number: 8772898
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element. The trench is positioned to impede a light path between the light emitting element and the light sensing element when the light path is internal to the semiconductor layer.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 8, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Patent number: 8766388
    Abstract: A polymerizable composition contains (A) a polymerization initiator that is an acetophenone-based compound or an acylphosphine oxide-based compound, (B) a polymerizable compound, (C) at least either a tungsten compound or a metal boride, and (D) an alkali-soluble binder.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 1, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Kimi Ikeda, Yoshinori Tamada, Makoto Kubota
  • Patent number: 8754493
    Abstract: A solid-state imaging device includes light receiving sections which are arranged in an image area on a semiconductor substrate at the same pitch and which light exiting from an imaging optical system enters, condensing lenses respectively arranged above the light receiving sections, and light shielding sections each of which is provided at one end of each of the light receiving sections. The condensing lenses are arranged in a peripheral portion in a first direction in the image area at a first pitch, and arranged in a peripheral portion in a second direction opposite the first direction at a second pitch which is smaller than the first pitch.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 17, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nagataka Tanaka
  • Patent number: 8754967
    Abstract: A solid-state imaging device includes a color filter array based on a checkered pattern array and in which two pixels adjacent to each other in at least one of upper/lower and right/left directions have the same color. The color filter array is a color filter array in which a spatial sampling point (x, y) is approximately arranged in at least one of (x=3*(2n?1+oe)+1±2 and y=3m?2 (n and m are an integer, oe has a value of 0 when m is an odd number and 1 when m is an even number)) and (x=3*(2n?1+oe)+1 and y=3m?2±2 (n and m denote an integer, and oe has a value of 0 when m is an odd number and 1 when m is an even number)).
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: June 17, 2014
    Assignee: Sony Corporation
    Inventor: Isao Hirota
  • Patent number: 8754494
    Abstract: According to one embodiment, a solid-state image sensing device includes a semiconductor substrate on which a plurality of pixels are arranged, a transparent substrate including a first through via provided in an opening formed in advance to extend through, an adhesive including a second through via connected to the first through via and configured to bond the semiconductor substrate and the transparent substrate while exposing the pixels, and an imaging lens unit arranged on the transparent substrate.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 17, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Kawasaki, Kenichiro Hagiwara, Hirokazu Sekine
  • Publication number: 20140159186
    Abstract: A semiconductor apparatus includes a first semiconductor chip, a second semiconductor chip, and a flare prevention plate. On the first semiconductor chip, a photoelectric conversion unit configured to perform photoelectric conversion on light received in a light receiving area is formed. The second semiconductor chip is electrically connected to the first semiconductor chip, the second semiconductor chip being disposed on a surface of the first semiconductor chip on a side of the light receiving area. The flare prevention plate is disposed on the second semiconductor chip, the flare prevention plate being configured to block light, the flare prevention plate being in contact with the second semiconductor chip.
    Type: Application
    Filed: November 27, 2013
    Publication date: June 12, 2014
    Applicant: SONY CORPORATION
    Inventor: Takuya Nakamura
  • Patent number: 8748313
    Abstract: A method for making a mask for semiconductor manufacturing. The method includes providing a base layer, forming a conductive layer on the base layer, and forming a photoresist layer on the conductive layer. Additionally, the method includes exposing selectively the photoresist layer to an energy illumination, developing the photoresist layer by removing a first portion of the photoresist layer, and depositing a metal layer by an electroforming process. The electroforming process includes submerging the conductive layer into a chemical bath, and applying a deposition voltage across a negative electrode and a positive electrode. Moreover, the method includes removing a second portion of the photoresist layer, and removing a first portion of the conductive layer.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: June 10, 2014
    Assignees: Semiconductor Manufaturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Hsin Chin Chen
  • Publication number: 20140151531
    Abstract: Imaging sensors, imaging apparatuses, and methods of driving an image sensor are provided. An image sensor can include a semiconductor substrate with a photoelectric conversion element and a charge-conversion element. The sensor can further include a capacitance switch. A charge accumulation element is located adjacent the photoelectric conversion element. At least a portion of the charge accumulation element overlaps a charge accumulation region of the photoelectric conversion element. The charge accumulation element is selectively connected to the charge-voltage conversion element by the capacitance switch.
    Type: Application
    Filed: November 13, 2013
    Publication date: June 5, 2014
    Applicant: Sony Corporation
    Inventor: Kazuyoshi Yamashita
  • Patent number: 8742324
    Abstract: An imaging device support structure includes a master flange having an opening portion through which an optical axis A passes, an imaging device which is attached to the master flange via the attachment plate and is positioned in the opening portion as viewed in an optical axis A direction, and a shielding member which shields a gap between the master flange and the imaging device in the opening portion. The shielding member is pressed against the opening edge of the first opening portion. The opening edge of the first opening portion has a substantially polygonal shape with corner portions which outwardly protrude.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: June 3, 2014
    Assignee: Panasonic Corporation
    Inventor: Hiroyasu Fujinaka
  • Patent number: 8742323
    Abstract: A semiconductor module including a semiconductor chip having a light receiving device formed at a front thereof and a light permeable cover having a front, a back, and a side. The light permeable cover is disposed opposite to the front of the semiconductor chip such that the front of the semiconductor chip is covered by the back of the light permeable cover. The light permeable cover is provided at the outer circumferential region of the front thereof and at the side thereof with a light shielding layer. It is possible to prevent the incidence of unnecessary light from the side of the light permeable cover of a CSP and to easily adjust the distance between a lens and the front of the semiconductor chip within tolerance.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: June 3, 2014
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Yoshinori Shizuno
  • Patent number: 8742523
    Abstract: A semiconductor device contains a photodiode which has a plurality of p-n junctions disposed in a stack. Two contact structures on the semiconductor device are connected across at least one of the junctions to allow electrical connection to an external detection circuit, so that signal current from incident light on the photodiode which generates electron-hole pairs across the connected junction may be sensed by the external detection circuit. At least one of the junctions is electrically shorted at the semiconductor device, so that signal current from the shorted junction may not be sensed by the external detection circuit.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 3, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Dimitar Trifonov Trifonov
  • Publication number: 20140145288
    Abstract: Disclosed herein is a solid-state imaging device including: a laminated semiconductor chip configured to be obtained by bonding two or more semiconductor chip sections to each other and be obtained by bonding at least a first semiconductor chip section in which a pixel array and a multilayer wiring layer are formed and a second semiconductor chip section in which a logic circuit and a multilayer wiring layer are formed to each other in such a manner that the multilayer wiring layers are opposed to each other and are electrically connected to each other; and a light blocking layer configured to be formed by an electrically-conductive film of the same layer as a layer of a connected interconnect of one or both of the first and second semiconductor chip sections near bonding between the first and second semiconductor chip sections. The solid-state imaging device is a back-illuminated solid-state imaging device.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: SONY CORPORATION
    Inventor: Toshihiko Hayashi
  • Patent number: 8736007
    Abstract: A method and device is disclosed for reducing noise in CMOS image sensors. An improved CMOS image sensor includes a light sensing structure surrounded by a support feature section. An active section of the light sensing structure is covered by no more than optically transparent materials. A light blocking portion includes an opaque layer or a black light filter layer in conjunction with an opaque layer, covering the support feature section. The light blocking portion may also cover a peripheral portion of the light sensing structure. The method for forming the CMOS image sensors includes using film patterning and etching processes to selectively form the opaque layer and the black light filter layer where the light blocking portion is desired, but not over the active section. The method also provides for forming microlenses over the photosensors in the active section.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Chi Wu, Tsung-Yi Lin
  • Patent number: 8736727
    Abstract: A solid-state imaging device includes a photoelectric conversion portion, a charge-receiving portion to which charges are transferred from the photoelectric conversion portion, and a light control film having a reverse tapered opening over the photoelectric conversion portion to reduce the intensity of diffracted light diffusing to regions other than the photoelectric conversion portion.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 27, 2014
    Assignee: Sony Corporation
    Inventor: Atsuhiro Ando
  • Patent number: 8729678
    Abstract: An image sensor includes first pixels, second pixels and a deep trench. The first pixels are formed in an active region of a semiconductor substrate, and configured to measure photo-charges corresponding to incident light. The second pixels are formed in an optical-black region of the semiconductor substrate, and are configured to measure black levels. The deep trench is formed vertically in a boundary region of the optical-black region, where the boundary region is adjacent to the active region, and configured to block leakage light and diffusion carriers from the active region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Sub Shim, Jung-Chak Ahn, Moo-Sup Lim, Hyung-Jin Bae, Min-Seok Oh
  • Publication number: 20140131826
    Abstract: Thin film photovoltaic devices are provided. The device includes a transparent substrate; a transparent conductive oxide layer on the transparent substrate; an n-type window layer on the transparent conductive oxide layer, an absorber layer on the n-type window layer, and a back contact layer on the absorber layer. The n-type window layer includes a plurality of nanoparticles spatially distributed within a medium, with the nanoparticles comprising cadmium sulfide. In one embodiment, the medium has an optical bandgap that is greater than about 3.0 eV (e.g., includes a material other than cadmium sulfide). Methods are also provided for such thin film photovoltaic devices.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Bastiaan Arie Korevaar
  • Patent number: 8723015
    Abstract: A photoelectric conversion device includes a plurality of photoelectric conversion regions disposed over a substrate, and a colored region disposed among the photoelectric conversion regions over the substrate, the colored region forming an image over the substrate.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 13, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Hideki Tanaka, Ichio Yudasaka, Masahiro Furusawa, Tsutomu Miyamoto, Tatsuya Shimoda
  • Publication number: 20140117483
    Abstract: One or more techniques or systems for forming a black level correction (BLC) structure are provided herein. In some embodiments, the BLC structure comprises a first region, a second region above at least some of the first region, and a third region above at least some of the second region. For example, the first region comprises silicon and the third region comprises a passivation dielectric. In some embodiments, the second region comprises a first sub-region, a second sub-region above the first sub-region, and a third sub-region above the second sub-region. For example, the first sub-region comprises a metal-silicide, the second sub-region comprises a metal, and the third sub-region comprises a metal-oxide. In this manner, a BLC structure is provided, such that a surface of the BLC structure is flush, at least because the third region is flush, for example.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 1, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Taiwan Semiconductor Manufacturing Company Limited
  • Patent number: 8710610
    Abstract: A solid-state imaging apparatus including pixels each including a photoelectric conversion element, and a light shielding layer covering the photoelectric conversion element is provided. For each of the photoelectric conversion elements, the light shielding layer includes a light shielding portion which shields a portion of incident light to the photoelectric conversion element, and an aperture which passes another portion of the incident light. The pixels include first and second pixels which have different areas on a planar view of the photoelectric conversion element. The area of the photoelectric conversion element in the first pixel is larger than the area of the photoelectric conversion element in the second pixel on the planar view. An area of the light shielding portion included in the first pixel is larger than an area of the light shielding portion included in the second pixel.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shoji Kono, Shin Kikuchi, Yuichiro Yamashita, Masaru Fujimura, Shinichiro Shimizu, Yu Arishima
  • Patent number: 8710504
    Abstract: The present invention proposes to a flat display panel and a method for forming the same. The flat display panel includes a plurality of rows of scan lines, a plurality of columns of data lines and a plurality of blocking lines which are parallel and overlapped to the data lines. The plurality of blocking lines are placed at one side of pixel electrodes one on one and made of the same metallic layer with the plurality of scan lines. Each blocking line made of the same metallic layer with the scan line is wider than a corresponding data line, so that light not blocked by the data line is blocked by the wider blocking line.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Shyh-Feng Chen, Ming Hung Shih, Haiying He
  • Publication number: 20140110581
    Abstract: A photosensor device includes a plurality of first well structures, a light shielding layer, and a plurality of second well structures. The first well structures are disposed in a substrate. The light shielding layer disposed is on the substrate; it covers a portion of the first well structures and exposes the rest portion of the first well structures. The covered first well structures are adjacent to the exposed first well structures exposed. The exposed first well structures generate a first photocurrent according to incident light. The second well structures generate a second photocurrent according to incident light. A total surface area of the second well structures is substantially equal to a total surface area of the exposed first well structures. A method for determining the incident light is also provided.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Inventors: En-Feng Hsu, Chin-Poh Pang
  • Publication number: 20140110809
    Abstract: According to one embodiment, a method of manufacturing a solid-state imaging device includes a trench forming process, a concave portion forming process, a coating process, and a burying process. In the trench forming process, a trench is formed at the position to isolate a plurality of photoelectric conversion elements. In the concave portion forming process, a concave portion is formed at the position to form a light shielding film of shielding at least part of subject light incident on an adjustment photoelectric conversion element used for an image quality adjustment of an imaged image. In the coating process, inner circumferential surfaces of the trench and the concave portion are coated with an insulating film. In the burying process, a light shielding member is buried inside the trench and the concave portion whose inner circumferential surface are coated with the insulating film.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 24, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke KITAMURA, Hisashi AIKAWA, Kazunori KAKEHI
  • Patent number: 8704324
    Abstract: A solid state imaging device including a semiconductor layer comprising a plurality of photodiodes, a first antireflection film located over a first surface of the semiconductor layer, a second antireflection film located over the first antireflection film, a light shielding layer having side surfaces which are adjacent to at least one of first and the second antireflection film.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: April 22, 2014
    Assignee: Sony Corporation
    Inventors: Susumu Hiyama, Kazufumi Watanabe
  • Publication number: 20140103479
    Abstract: A dispensing system includes a dispenser, at least one sensor, and a shroud including at least one aperture. A virtual shield is provided between the sensor and the shroud to reduce background noise.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Inventors: Tai P. Luc, Claudia V. Gamboa, Mark E. Johnson, Daniel J. Hanak
  • Patent number: 8698263
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 8698170
    Abstract: A display apparatus includes a first insulating substrate including a display area in which a first opening is formed, as well as a non-display area. A second insulating substrate faces the first insulating substrate. The second insulating substrate includes a shutter part having a second opening corresponding to the first opening. The shutter part moves between two different positions to transmit or block light according to an overlap between the first opening and the second opening.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yu-Kwan Kim, Junghan Shin, Jae Byung Park
  • Patent number: 8698266
    Abstract: An image sensor with decreased optical interference between adjacent pixels is provided. An image sensor, which is divided into a pixel region and a peripheral region, the image sensor including a photodiode formed in a substrate in the pixel region, first to Mth metal lines formed over the substrate in the pixel region, where M is a natural number greater than approximately 1, first to Nth metal lines formed over a substrate in the peripheral region, where N is a natural number greater than M, at least one layer of dummy metal lines formed over the Mth metal lines but formed not to overlap with the photodiode, and a microlens formed over the one layer of the dummy metal lines to overlap with the photodiode.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 15, 2014
    Assignee: Intellectual Ventures II LLC
    Inventors: Won-Ho Lee, Dong-Heon Cho
  • Patent number: 8698265
    Abstract: Provided are an image sensor and a package including the same. The image sensor may include an interconnection layer comprising a plurality of interconnections that are vertically stacked, a light penetration layer including color filters and microlenses, a semiconductor layer disposed between the interconnection layer and the light penetration layer and including photoelectrical transformation elements and a light shielding pattern disposed between the light penetration layer and the semiconductor layer. A surface of the semiconductor layer adjacent to the light penetration layer defines a recess region recessed toward the interconnection layer. The light shielding pattern is formed in the recess region and at least one of the photoelectrical transformation elements is formed in the semiconductor layer between the light shielding pattern and the interconnection layer.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Junho Yoon