Antireflection Coating Patents (Class 257/437)
  • Patent number: 10224450
    Abstract: A semiconductor device, silicon photomultiplier, and sensor are described. The disclosed semiconductor device is disclosed to include a substrate, a photosensitive area provided on the substrate, the photosensitive area corresponding to an area in which an electrical signal is generated in response to light impacting the photosensitive area, at least one trench substantially surrounding the photosensitive area, the at least one trench extending at least partially into the substrate, and a resistor confined by the at least one trench and in electrical communication with the active area such that the resistor is configured to carry electrical signals generated by the photosensitive area to a metal contact.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 5, 2019
    Assignee: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED
    Inventors: Claudio Piemonte, Alberto Giacomo Gola, Giovanni Paternoster, Fabio Acerbi
  • Patent number: 10211314
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate structure on a substrate, forming a contact etch stop layer (CESL) on the gate structure, forming an interlayer dielectric (ILD) layer around the gate structure, performing a curing process so that an oxygen concentration of the CESL is different from the oxygen concentration of the ILD layer, and then performing a replacement metal gate process (RMG) process to transform the gate structure into a metal gate.
    Type: Grant
    Filed: October 22, 2017
    Date of Patent: February 19, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Te-Chang Hsu, Chun-Chia Chen, Yao-Jhan Wang
  • Patent number: 10186346
    Abstract: A transparent conductive film 1 includes, in this order, a transparent substrate 2, a first optical adjustment layer 4, an inorganic layer 5, and a transparent conductive layer 6. The first optical adjustment layer 4 has refractive index nC lower than refractive index nA of the transparent substrate 2, and thickness TC of 10 nm or more and 35 nm or less. The inorganic layer 5 has refractive index nD that is lower than the absolute value |nC×1.13| of a value obtained by multiplying the refractive index nC of the first optical adjustment layer 4 by 1.13.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 22, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Daiki Kato, Rie Kawakami, Nozomi Fujino, Tomotake Nashiki
  • Patent number: 10177189
    Abstract: A method of manufacturing a semiconductor structure includes receiving a substrate and an interlayer dielectric (ILD) over the substrate; bonding the substrate and the ILD over a carrier substrate; forming a recessed portion extended through the substrate and the ILD; disposing a conductive material into the recessed portion; and removing the carrier substrate, wherein the conductive material is in contact with the ILD and is separated from the substrate.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: January 8, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Yu Wei, Chin-Hsun Hsiao, Yi-Hsing Chu, Yen-Liang Lin, Yung-Lung Hsu, Hsin-Chi Chen
  • Patent number: 10032950
    Abstract: An avalanche photodiode, and related method of manufacture and method of use thereof, that includes a first contact layer; a multiplication layer, wherein the multiplication layer includes AlInAsSb; a charge, wherein the charge layer includes AlInAsSb; an absorption, wherein the absorption layer includes AlInAsSb; a blocking layer; and a second contact layer.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: July 24, 2018
    Assignee: University of Virginia Patent Foundation
    Inventors: Joe C. Campbell, Min Ren, Madison Woodson, Yaojia Chen, Seth Bank, Scott Maddox
  • Patent number: 9978801
    Abstract: In various embodiments, image sensors and methods of making images sensors are disclosed. In an embodiment, an image sensor includes a first pixel region having a pixel electrode, an optically sensitive material of a first thickness, and a counterelectrode. The images sensor also includes a second pixel region comprising a pixel electrode, an optically sensitive material of a second thickness, and a counterelectrode. The first pixel region is configured to detect light in a first spectral band and the second pixel region is configured to detect light in a second spectral band. The first and second spectral bands include an overlapping spectral range. The second spectral band also includes a spectral range that is substantially undetectable by the first pixel region. Other image sensors and methods of making images sensors are also disclosed.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 22, 2018
    Assignee: INVISAGE TECHNOLOGIES, INC.
    Inventors: Jae Park, Emanuele Mandelli
  • Patent number: 9870938
    Abstract: A semiconductor element producing method is disclosed. In the method, a surface protective tape including a base layer and an adhesive layer (including an intermediate layer) is attached to the front surface of a wafer that has unevenness caused by a polyimide passivation. The wafer is placed on a stage, with the surface protective tape facing the stage. The surface protective tape is heated while being drawn to the stage to flatten the surface of the surface protective tape. A grinding process is performed on the rear surface of the wafer to reduce the thickness of the wafer. A rear surface element structure is formed on the rear surface of the wafer, and the wafer is diced into chips.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: January 16, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Akira Tamenori
  • Patent number: 9836144
    Abstract: A touch panel according to the embodiment includes a substrate having a first surface and a second surface opposite to the first surface; an intermediate layer on the first surface of the substrate; and a transparent electrode on the intermediate layer. A touch panel according to another embodiment includes a substrate having a first surface and a second surface opposite to the first surface; a transparent electrode on the first surface of the substrate; and an anti-reflective layer on the transparent electrode.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 5, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Keun Sik Lee, Byung Soo Kim, Sun Hwa Lee, Chung Won Seo
  • Patent number: 9818747
    Abstract: A number of first hard mask portions are formed on a dielectric layer to vertically shadow a respective one of a number of underlying gate structures. A number of second hard mask filaments are formed adjacent to each side surface of each first hard mask portion. A width of each second hard mask filament is set to define an active area contact-to-gate structure spacing. A first passage is etched between facing exposed side surfaces of a given pair of neighboring second hard mask filaments and through a depth of the semiconductor wafer to an active area. A second passage is etched through a given first hard mask portion and through a depth of the semiconductor wafer to a top surface of the underlying gate structure. An electrically conductive material is deposited within both the first and second passages to respectively form an active area contact and a gate contact.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 14, 2017
    Assignee: Tela Innovations, Inc.
    Inventor: Michael C. Smayling
  • Patent number: 9773829
    Abstract: A method of image sensor fabrication includes providing a semiconductor material, an insulation layer, and a logic layer, where the semiconductor material includes a plurality of photodiodes. A through-semiconductor-via is formed which extends from the semiconductor material, through the insulation layer, and into the logic layer. The through-semiconductor-via is capped with a capping layer. A metal pad is disposed in a first trench in the semiconductor material. Insulating material is deposited on the capping layer, and in the first trench in the semiconductor material. A resist is deposited in a second trench in the insulating material, and the second trench in the insulating material is aligned with the metal pad. The insulating material is removed to expose the capping layer, and a portion of the capping layer disposed proximate to the plurality of photodiodes is also removed. A metal grid is formed proximate to the plurality of photodiodes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 26, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai
  • Patent number: 9748298
    Abstract: A backside illumination image sensor with an array of image sensor pixels is provided. Each pixel may include a photodiode, a storage diode, and associated circuitry formed in a front side of a semiconductor substrate. In accordance with an embodiment, a trench isolation structure may be formed directly over the storage diode but not over the photodiode from a back side of the substrate. The backside trench isolation structure may be filled with absorptive material and can optionally be biased to a ground or negative voltage level. A light shielding layer may also be formed over the backside trench isolation structure on the back side of the substrate. The light shielding layer may be formed from absorptive material or reflective material, and may also be biased to a ground or negative voltage level.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 29, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Victor Lenchenkov, Sergey Velichko
  • Patent number: 9717418
    Abstract: A micro-camera catheter device is disclosed having at least one light source disposed on a distal end of a catheter. The light source is capable of propagating a predetermined wavelength of light with a wavelength greater than approximately 700 nanometers onto a target. The device further includes a lens system disposed on the distal end of the catheter, said lens system configured to receive light reflected from the target. The device further includes a non-linear optical media disposed about the lens system configured to reduce the wavelength of light reflected from the target. The device also includes a silicon-based solid state imaging device disposed behind the non-linear optical media configured to receive light from the non-linear optical media.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 1, 2017
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, David P. Marceau
  • Patent number: 9673239
    Abstract: A system and method for forming pixels in an image sensor is provided. In an embodiment, a semiconductor device includes an image sensor including a first pixel region and a second pixel region in a substrate, the first pixel region being adjacent to the second pixel region. A first anti-reflection coating is over the first pixel region, the first anti-reflection coating reducing reflection for a first wavelength range of incident light. A second anti-reflection coating is over the second pixel region, the second anti-reflection coating reducing reflection for a second wavelength range of incident light that is different from the first wavelength range.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Chang Chu, Yeur-Luen Tu, Cheng-Yuan Tsai
  • Patent number: 9520432
    Abstract: Channel stop sections formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 13, 2016
    Assignee: Sony Corporation
    Inventor: Kiyoshi Hirata
  • Patent number: 9520435
    Abstract: An image sensor including a semiconductor layer; a stack of insulating layers resting on the back side of the semiconductor layer; a conductive layer portion extending along part of the height of the stack and flush with the exposed surface of the stack; laterally-insulated conductive fingers extending through the semiconductor layer from its front side and penetrating into said layer portion; laterally-insulated conductive walls separating pixel areas, these walls extending through the semiconductor layer from its front side and having a lower height than the fingers; and an interconnection structure resting on the front side of the semiconductor layer and including vias in contact with the fingers.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: December 13, 2016
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Nayera Ahmed, Michel Marty
  • Patent number: 9508774
    Abstract: There are provided a highly reliable semiconductor device capable of suppressing occurrence of cracks as well as securing flatness and a manufacturing method therefor. The semiconductor device includes: a semiconductor substrate; an element region; and a non-element region. The non-element region includes: a top-layer metal wiring in a top layer of metal wirings formed in the non-element region; a flattening film covering an upper surface of the top-layer metal wiring; and a protecting film formed over the flattening film. A removed part where the protecting film is removed is formed in at least part of the non-element region.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: November 29, 2016
    Assignee: Renesas Electronics Corporation
    Inventor: Koji Iizuka
  • Patent number: 9490289
    Abstract: An image sensing device includes a plurality of photoelectric conversion portions. The device further includes a semiconductor substrate having a first surface for receiving incident light and a second surface on an opposite side to the first surface, the photoelectric conversion portions being provided therein, a first non-metal region arranged on a second surface side and arranged at a position at least partially overlapping with the photoelectric conversion portions, a second non-metal region arranged to be in contact with a side surface of the first non-metal region, and a reflection layer arranged on an opposite side of the first non-metal region to the semiconductor substrate. A refractive index of the first non-metal region is higher than a refractive index of the second non-metal region.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: November 8, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takehiko Soda
  • Patent number: 9437700
    Abstract: A semiconductor device is provided with a silicon layer, an upper surface side aluminum layer containing silicon and an insulation film. The upper surface side aluminum layer contacts and is layered on a part of a surface of the silicon layer. The insulation film contacts and is layered on another part of the surface of the silicon layer. The insulation film is adjacent to and contacts the upper surface side aluminum layer. The insulation film includes an insulation film body and a plurality of first nodule segregated portions projecting from the insulation film body toward the upper surface side aluminum layer as seen along a vertical direction relative to the surface of the silicon layer. A corner is formed by a side surface of the insulation film body and a side surface of each of the first nodule segregated portions as seen along the vertical direction.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: September 6, 2016
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoru Machida, Yusuke Yamashita, Koichi Nishikawa, Masaru Senoo, Jun Okawara, Yoshifumi Yasuda, Hiroshi Hosokawa, Yasuhiro Hirabayashi
  • Patent number: 9406830
    Abstract: A semiconductor light-receiving device includes: a substrate; a p-type conductive layer, a light absorption layer having a smaller bandgap than that of incident light, a multiplication layer producing avalanche multiplication, and an n-type window layer laminated in that order on the substrate; an n-type conductive layer in a region of part of the n-type window layer; and a first p-type conductive region in a region of the n-type window layer that is not in contact with the n-type conductive layer, wherein the first p-type conductive region does not reach the multiplication layer and is not in contact with any electrode to which power is supplied from outside.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: August 2, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Ryota Takemura, Masaharu Nakaji, Kazuki Yamaji
  • Patent number: 9385156
    Abstract: Some embodiments of the present disclosure provide a method of manufacturing a back side illuminated (BSI) image sensor. The method includes receiving a semiconductive substrate; forming a transistor coupled to a photosensitive element at a front side of the semiconductive substrate; forming a deep trench isolation (DTI) at a back side of the semiconductive substrate; forming a doped layer conformally over the DTI; performing a microwave anneal over the back side; forming a non-transparent material inside the DTI; and forming a color filter over the doped layer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 5, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tsung-Han Tsai, Yun-Wei Cheng, Kuo-Cheng Lee, Chun-Hao Chou, Yung-Lung Hsu
  • Patent number: 9331110
    Abstract: A semiconductor device includes a gate electrode formed on a substrate with a gate insulating layer in between, an insulating layer of property and thickness that allow for a silicide block formed in a first region of the substrate so as to cover the gate electrode, a sidewall formed to at least partly include the insulating layer at a side of the gate electrode, a first impurity region formed by implantation of a first impurity in a peripheral region of the gate electrode formed in the first region of the substrate before the insulating layer is formed, a second impurity region formed by implantation of a second impurity in a peripheral region of the sidewall of the gate electrode formed in a second region of the substrate after the sidewall is formed, and a silicide layer formed on a surface of the second impurity region of the substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 3, 2016
    Assignee: SONY CORPORATION
    Inventor: Keiji Tatani
  • Patent number: 9281347
    Abstract: A display device integrated with a touch screen panel may include a display device and an anti-reflection layer. The display device may include a plurality pixels arranged therein. The anti-reflection layer may include a plurality of metal layers and a plurality of dielectric layers that are sequentially laminated on an upper surface of the display device. In the display device, one or more metal layers among the plurality of metal layers constituting the anti-reflection layer may be operated as sensing electrodes of the touch screen panel.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: March 8, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Chung-Sock Choi, Jin-Koo Kang, Soo-Youn Kim, Seung-Hun Kim, Hyun-Ho Kim, Seung-Yong Song, Cheol Jang, Sang-Hwan Cho, Sang-Hyun Park
  • Patent number: 9159855
    Abstract: Channel stop sections formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 13, 2015
    Assignee: SONY CORPORATION
    Inventor: Kiyoshi Hirata
  • Patent number: 9142578
    Abstract: Provided is a semiconductor integrated circuit device having pixel regions in a photodiode array region and having, in each of the pixel regions, a waveguide holding hole having a substantially perpendicular sidewall above the photodiode and embedded with a silicon oxide-based sidewall insulating film reaching the bottom surface of the hole and two or more silicon nitride-based insulating films having a higher refractive index on the inner side of the hole. This structure makes it possible to prevent deterioration of pixel characteristics of an imaging device, such as CMOS sensor, which is rapidly decreasing in size.
    Type: Grant
    Filed: June 15, 2014
    Date of Patent: September 22, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuo Tomita, Takeshi Kawamura
  • Patent number: 9087952
    Abstract: A method of forming an integrated photonic semiconductor structure having a photonic device and a CMOS device may include depositing a first silicon nitride layer having a first stress property over the photonic device, depositing an oxide layer having a stress property over the deposited first silicon nitride layer, and depositing a second silicon nitride layer having a second stress property over the oxide layer. The deposited first silicon nitride layer, the oxide layer, and the second silicon nitride layer encapsulate the photonic device.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Tymon Barwicz, Swetha Kamlapurkar, Marwan H. Khater, Steven M. Shank, Yurii A. Vlasov
  • Patent number: 9088008
    Abstract: Provided is a display panel device including a pixel unit including a luminescent layer, and a lens that covers a luminescent region of the luminescent layer placed above the pixel unit and that transmits light emitted from the luminescent layer. The height between a luminescent face of the luminescent region and an apex of the lens is uniform along the straight line in the long axis direction of the luminescent region. Furthermore, at both end parts of the lens, a cross-section of the light emitting side corresponding to the long axis direction of the luminescent region has a shape of an elliptic arc having a predetermined curvature.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: July 21, 2015
    Assignee: JOLED INC.
    Inventors: Masahiro Kasano, Takashi Ohta
  • Patent number: 9082915
    Abstract: Described herein is a low-voltage unidirectional bypass element connected across a solar cell and operable to allow current to flow when the operation of the solar cell is suspended. The bypass element includes a single field effect transistor connected between first and second terminals as a switch, and a detection circuit for detecting suspension of the solar cell's operation and activating the switch to bypass the solar cell in the event of its operation suspension. Diodes are connected in parallel with the normally-open switch and receive current, when the solar cell's operation is suspended, to trigger operation of the detection circuit. The detection circuit includes a charge pump, a timer circuit, a control generation unit and a switch control circuit. The switch control circuit generates a control signal to close the switch and to allow current to bypass the solar cell.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: July 14, 2015
    Assignees: IMEC, Universiteit Gent
    Inventors: Jan Doutreloigne, Pieter Bauwens
  • Patent number: 9024369
    Abstract: A backside illumination image sensor structure comprises an image sensor formed adjacent to a first side of a semiconductor substrate, wherein an interconnect layer is formed over the first side of the semiconductor substrate, a backside illumination film formed over a second side of the semiconductor substrate, a metal shielding layer formed over the backside illumination film and a via embedded in the backside illumination film and coupled between the metal shielding layer and the semiconductor substrate.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Chi-Cherng Jeng, Volume Chien, Ying-Lang Wang
  • Patent number: 8987854
    Abstract: A microelectronic device is provided, including: a substrate including a first semiconductor layer positioned on a dielectric layer and a second semiconductor layer; and an isolation trench disposed through the first semiconductor layer, the dielectric layer, and a part of the thickness of the second semiconductor layer, including a dielectric material and delimiting, in the first semiconductor layer, a roughly rectangular active area of the device, wherein in said part of the thickness of the second semiconductor layer, at least one portion of the dielectric material is positioned under the active area delimited by at least four side walls of the trench, and two of the at least four side walls are roughly parallel with one another and are positioned under the active area, and the other two of the at least four side walls are orthogonal to said two walls and are not positioned under the active area.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 24, 2015
    Assignee: Commissariat a l 'energie atomique et aux energies alternatives
    Inventors: Maud Vinet, Laurent Grenouillet, Yannick Le Tiec, Romain Wacquez
  • Patent number: 8981510
    Abstract: Provided is an image sensor device. The image sensor device includes a substrate having a front side and a back side. The image sensor includes first and second radiation-detection devices that are disposed in the substrate. The first and second radiation-detection devices are operable to detect radiation waves that enter the substrate through the back side. The image sensor also includes an anti-reflective coating (ARC) layer. The ARC layer is disposed over the back side of the substrate. The ARC layer has first and second ridges that are disposed over the first and second radiation-detection devices, respectively. The first and second ridges each have a first refractive index value. The first and second ridges are separated by a substance having a second refractive index value that is less than the first refractive index value.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Keng-Yu Chou, Wen-De Wang, Pao-Tung Chen
  • Patent number: 8963064
    Abstract: A photosensor array includes plural photosensor pixels. Each of the photosensor pixels includes a lower electrode, an amorphous silicon film, an n-type amorphous silicon film, and an upper electrode. The photosensor array includes plural scanning lines connected to the upper electrodes, plural read lines connected to the lower electrodes, a scanning circuit that is connected to the plural scanning lines, and sequentially supplies a selection scanning signal of a first voltage to the respective scanning lines, a first unit that inputs a second voltage higher than the first voltage to the plural read lines in a blanking period of one horizontal scanning period, and thereafter puts the plural read lines into the floating state, and a second unit that outputs a voltage change in each of the read lines within one horizontal scanning period as the sensor output voltage of the photosensor pixel.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 24, 2015
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Yonekura, Toshio Miyazawa, Atsushi Hasegawa, Terunori Saitou, Kozo Yasuda
  • Publication number: 20150048239
    Abstract: A plurality of photodiodes arrayed in a one-dimensional form are divided into a plurality of groups. The structure of an antireflection coating is changed for each group so that all the surfaces of the photodiodes belonging to each group are covered with an antireflection coating having a transmittance characteristic which shows a maximum transmittance within a range of wavelengths of light to be received by those photodiodes. In particular, a SiO2 coating layer on the silicon substrate and an Al2O3 coating layer are common to all the photodiodes, while the structure of the upper layers are modified with respect to the wavelength. Within an ultraviolet wavelength region, the coating structure is more finely changed with respect to the wavelength. By such a design, the transmittance can be improved while making the best efforts to avoid a complex manufacturing process.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Applicants: TOHOKU UNIVERSITY, SHIMADZU CORPORATION
    Inventors: Hideki Tominaga, Ryuta Hirose, Kenji Takubo, Shigetoshi Sugawa, Rihito Kuroda
  • Patent number: 8946844
    Abstract: A stack of a first anti-reflective coating (ARC) layer and a titanium layer is formed on a front surface of a semiconductor substrate including a p-n junction, and is subsequently patterned so that a semiconductor surface is physically exposed in metal contact regions of the front surface of the semiconductor substrate. The remaining portion of the titanium layer is converted into a titania layer by oxidation. A metal layer is plated on the metal contact regions, and a copper line is subsequently plated on the metal layer or a metal semiconductor alloy derived from the metal layer. A second ARC layer is deposited over the titania layer and the copper line, and is subsequently patterned to provide electrical contact to the copper line.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Satyavolu S. Papa Rao, Kathryn C. Fisher, Harold J. Hovel, Qiang Huang, Young-hee Kim, Susan Huang
  • Patent number: 8946843
    Abstract: A solid-state image sensing device includes light-receiving regions and a color filter which transmits red light, a color filter which transmits blue light, and a color filter which transmits green light is provided. The color filters are arranged on a one-to-one basis above the light-receiving regions. Above the light-receiving region where the color filter which transmits red or blue light is arranged, a light-transmitting film, an antireflection film, a light-transmitting film, an antireflection film, and a light-transmitting film are arranged, in this order from the light-receiving region, between the light-receiving region and the color filter. Above the light-receiving region where the color filter which transmits green light is arranged, a light-transmitting film, an antireflection film, and a light-transmitting film are arranged, in this order from the light-receiving region, between the light-receiving region and the color filter.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tadashi Sawayama, Takehiko Harada
  • Patent number: 8946711
    Abstract: An organic light-emitting display device including: a substrate; a plurality of pixels each including a first electrode, a second electrode, and an organic emission layer interposed between the first electrode and the second electrode; and a black matrix-containing neutral density (ND) film formed in a direction in which light is emitted from the plurality of pixels.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 3, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jang-Seok Ma
  • Patent number: 8933526
    Abstract: An article including a nanostructured functional coating disposed on a substrate is described. The functional coating is characterized by both anti-reflection properties and down-converting properties. Related optoelectronic devices are also described.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 13, 2015
    Assignee: First Solar, Inc.
    Inventors: Loucas Tsakalakos, Eric Gardner Butterfield, Alok Mani Srivastava, Bastiaan Arie Korevaar
  • Patent number: 8912617
    Abstract: A semiconductor light detection device fabrication technique is provided in which the cap etch and anti-reflection coating steps are performed in a single, self-aligned lithography module.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: December 16, 2014
    Assignee: Solar Junction Corporation
    Inventors: Lan Zhang, Ewelina N. Lucow, Onur Fidaner, Michael W. Wiemer
  • Patent number: 8907385
    Abstract: A backside illumination image sensor structure comprises an image sensor formed adjacent to a first side of a semiconductor substrate, wherein a first dielectric layer formed over the first side of the semiconductor substrate and an interconnect layer formed over the first dielectric layer. The image sensor structure further comprises a backside illumination film formed over a second side of the semiconductor substrate and a first silicon halogen compound layer formed between the second side of the semiconductor substrate and the backside illumination film.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Chin-Nan Wu, Chun-Che Lin
  • Patent number: 8902348
    Abstract: A solid-state image capture device including: at least one photoelectric converter at an image capture surface of a substrate; at least one on-chip lens at the image capture surface of the substrate and above a light-receiving surface of the photoelectric converter; and an antireflection layer on an upper surface of the on-chip lens. The antireflection layer contains a binder resin having a lower refractive index than that of the on-chip lens and low-refractive-index particles having a lower refractive index than that of the binder resin.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventors: Akiko Ogino, Yukihiro Sayama, Takayuki Shoya, Masaya Shimoji, Yoshikazu Tanaka
  • Patent number: 8884392
    Abstract: Disclosed herein is a method of manufacturing a solid state imaging device, including the steps of: forming a light receiving portion in a light receiving area of a semiconductor substrate; forming a pad portion in a pad area of the semiconductor substrate; forming a microlens material layer over the light receiving portion and the pad portion; providing the microlens material layer with a microlens corresponding to the light receiving portion; forming a low-reflection material layer on the microlens material layer; etching the microlens material layer and the low-reflection material layer over the pad portion to form an opening; and imparting hydrophilicity to a surface of the low-reflection material layer and an inside portion of the opening by a normal temperature oxygen radical treatment.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Yoshinori Toumiya, Ina Hori, Tadayuki Dofuku, Hitomi Kamiya, Atsushi Yamamoto, Taichi Natori
  • Patent number: 8878268
    Abstract: At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Tetsuya Itano, Sakae Hashimoto, Ryuichi Mishima
  • Publication number: 20140312447
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Duli Mao, Dyson H. Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Patent number: 8859889
    Abstract: A solar cell element is disclosed. The solar cell element comprises a semiconductor substrate, a first electrode, a second electrode, a first wiring member and a second wiring member. The semiconductor substrate with a first surface and a second surface comprises a plurality of through-holes. The first electrode comprises a plurality of conduction portions and at least one first output extracting portion. The second electrode has a resistivity of less than 2.5×10-8 ?m (ohm-meter). The first wiring member comprises a first end face in a long direction thereof. The second wiring member comprises a second end face in a long direction thereof facing the first end face.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: October 14, 2014
    Assignee: KYOCERA Corporation
    Inventor: Koutarou Umeda
  • Publication number: 20140299956
    Abstract: An imaging device includes a semiconductor substrate having a photosensitive element for accumulating charge in response to incident image light. The semiconductor substrate includes a light-receiving surface positioned to receive the image light. The imaging device also includes a negative charge layer and a charge sinking layer. The negative charge layer is disposed proximate to the light-receiving surface of the semiconductor substrate to induce holes in an accumulation zone in the semiconductor substrate along the light-receiving surface. The charge sinking layer is disposed proximate to the negative charge layer and is configured to conserve or increase an amount of negative charge in the negative charge layer. The negative charge layer is disposed between the semiconductor substrate and the charge sinking layer.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Chih-Wei Hsiung, Oray Orkun Cellek, Gang Chen, Duli Mao, Vincent Venezia, Hsin-Chih Tai
  • Publication number: 20140239432
    Abstract: An energy conversion and storage device includes an energy storage component (530, 601) including a first electrode (611) having a first plurality of channels (612) formed in a first region (615) of a first material (617), a second electrode (621) adjacent to but electrically isolated from the first electrode and having a second plurality of channels (622) formed in a first region (625) of a second material (627), and an electrolyte (650) within the first and second pluralities of channels. The first electrode forms a first interface (619) with the electrolyte and the second electrode forms a second interface (629) with the electrolyte. The energy conversion and storage device further includes a photovoltaic component (520, 602) formed in a second region of the first material.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Inventors: Donald S. Gardner, Cary L. Pint
  • Patent number: 8816459
    Abstract: An image sensor having a wave guide includes a semiconductor substrate formed with a photodiode and a peripheral circuit region; an anti-reflective layer formed on the semiconductor substrate; an insulation layer formed on the anti-reflective layer; a wiring layer formed on the insulation layer and connected to the semiconductor substrate; at least one interlayer dielectric stacked on the wiring layer; and a wave guide connected to the insulation layer by passing through the interlayer dielectric and the wiring layer which are formed over the photodiode.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 26, 2014
    Assignee: Siliconfile Technologies Inc.
    Inventors: In-Gyun Jeon, Se-Jung Oh, Heui-Gyun Ahn, Jun-Ho Won
  • Publication number: 20140217540
    Abstract: A fully depleted “diode passivation active passivation architecture” (DPAPA) produces a photodiode structure which includes a substrate, a highly-doped buffer layer of a first carrier doping type above the substrate, a low-doped or undoped semiconductor active layer of the first carrier doping type above the buffer layer, a low-doped or undoped passivation layer above the active layer, the passivation layer having a wider band gap than the active layer; and a junction layer of a carrier doping type opposite the first carrier doping type above the passivation layer such that a pn junction is formed between the junction layer and the passivation and active layers, the junction creating a depletion region which expands completely through the passivation and active layers in response to a reverse bias voltage. The fully depleted structure substantially eliminates Auger recombination, reduces dark currents and enables cryogenic level performance at high temperatures.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: WILLIAM E. TENNANT, DONALD L. LEE, ERIC C. PIQUETTE
  • Publication number: 20140210034
    Abstract: A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wu-Song Huang, Martin Glodde, Dario L. Goldfarb, Wai-Kin Li, Sen Liu, Libor Vyklicky
  • Publication number: 20140202530
    Abstract: A light harvesting system employing a photoresponsive layer having a plurality of light input ports that are formed in a light input surface of the layer. Light received by the light input ports is admitted into the photoresponsive layer an incidence angle that is greater than a predetermined critical angle, such as the angle of the total internal reflection (TIR). The admitted light is retained in the photoresponsive layer and is propagated within the layer until it is substantially absorbed.
    Type: Application
    Filed: March 22, 2014
    Publication date: July 24, 2014
    Inventor: Sergiy Vasylyev
  • Patent number: 8772895
    Abstract: Provided is a semiconductor image sensor device that includes a non-scribe-line region and a scribe-line region. The image sensor device includes a first substrate portion disposed in the non-scribe-line region. The first substrate portion contains a doped radiation-sensing region. The image sensor device includes a second substrate portion disposed in the scribe-line region. The second substrate portion has the same material composition as the first substrate portion. Also provided is a method of fabricating an image sensor device. The method includes forming a plurality of radiation-sensing regions in a substrate. The radiation-sensing regions are formed in a non-scribe-line region of the image sensor device. The method includes forming an opening in a scribe-line region of the image sensor device by etching the substrate in the scribe-line region. A portion of the substrate remains in the scribe-line region after the etching. The method includes filling the opening with an organic material.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shou-Shu Lu, Hsun-Ying Huang, Hsin-Jung Huang, Chun-Mao Chiu, Chia-Chi Hsiao, Yung-Cheng Chang