With Antiblooming Means Patents (Class 257/445)
  • Patent number: 7642614
    Abstract: Channel stop sections are formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: January 5, 2010
    Assignee: Sony Corporation
    Inventor: Kiyoshi Hirata
  • Patent number: 7619269
    Abstract: A semiconductor device including a pixel region in which one or more pixels are formed and a DRAM cell region in which one or more DRAM cells for storing output signals from the pixels are formed, characterized in that the layers constituting the pixel region and the DRAM cell region are formed in the same semiconductor process.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 17, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Narumi Ohkawa
  • Publication number: 20090273696
    Abstract: An image sensor of various embodiments includes a pixel array. The pixel array includes a pixel having a photodiode and a transfer gate. The pixel array in various embodiments further includes an antiblooming channel extending from the photodiode to either (i) a pixel output area, or (ii) a drain of a source follower transistor. A method of some embodiments includes (i) driving from a first row driver one or more control signals over one or more control lines to one or more pixels, and (ii) driving from a second row driver the one or more control signals over the one or more control lines to the one or more pixels.
    Type: Application
    Filed: March 17, 2009
    Publication date: November 5, 2009
    Inventor: Alexander Krymski
  • Patent number: 7601999
    Abstract: Circuits, methods, and systems are disclosed in which a current is provided to compensate for spurious current while receiving signals through a line. For example, the spurious current can be sensed and the compensating current can be approximately equal to the sensed spurious current. The spurious current could include photocurrent from a bright light, and the compensating current can prevent bright light effects.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: October 13, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Sandor L. Barna, Giuseppe Rossi
  • Patent number: 7595519
    Abstract: An image sensor includes a first type semiconductor layer, a second type semiconductor layer and a first type well. The first type semiconductor layer is formed on a semiconductor substrate and includes a plurality of pixels which receive external light and convert optical charges into an electrical signal. The second type semiconductor layer is supplied with a drain voltage to have a potential different from that of the first semiconductor layer, and the first type well controls a power source voltage (VDD) using the drain voltage.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Jin Lee, Yo-Han Sun, Tae-Seok Oh, Sung-Jae Joo, Bum-Suk Kim, Yun-Ho Jang, Sae-Young Kim, Keun-Chan Yuk
  • Patent number: 7586172
    Abstract: The photodiode comprises an upper pn junction (D1) formed between an upper layer and an intermediate layer supported by one portion of a semiconductor substrate. A lower junction is formed between the intermediate layer and the substrate portion. The forward bias voltage of the upper junction (D1) is lower than the forward bias voltage of the lower junction (D2). The charges are permitted to be stored in the photodiode until the said upper junction is forward-biased so as to favor (A1) the recombination of the carriers coming from the intermediate layer with the carriers of the upper layer.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 8, 2009
    Assignee: STMicroelectronics SA
    Inventor: Francois Roy
  • Patent number: 7557390
    Abstract: A solid image capturing element comprising a plurality of vertical shift registers arranged to each correspond to a column of a plurality of light receiving pixels in a matrix arrangement, a horizontal shift register provided on an output side of the plurality of vertical shift registers, and an output section provided on an output side of the horizontal shift register. In this solid image capturing element, a reverse conductive semiconductor region is formed over one major surface of one conductive semiconductor substrate, the plurality of light receiving pixels, the plurality of vertical shift registers, the horizontal shift register, and the output section are formed in the semiconductor region, and a portion of the semiconductor region where the output section is formed has a higher dopant concentration than the portion of the semiconductor region where the horizontal shift register is formed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 7, 2009
    Assignee: Sanyo Electric co., Ltd.
    Inventors: Yoshihiro Okada, Yuzo Otsuru
  • Patent number: 7542085
    Abstract: A CMOS imaging system with increased charge storage capacitance of pixels yet decreased physical size, kTC noise and active area. A capacitor is linked to the transfer gate and provides a storage node for a pixel, allowing for kTC noise reduction prior to readout. The pixel may be operated with the shutter gate on during the integration period to increase the amount of time for charge storage by a pixel.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: June 2, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Peter P. Altice, Jr., Jeffrey A. McKee
  • Patent number: 7541571
    Abstract: An image sensor includes a photoelectric converter formed in a semiconductor substrate to generate and integrate charges resulting from incident light, a first charge transmitter transmitting integrated charges to a charge detector, an overflow drain region discharging excess charges generated by the photoelectric converter, and a second charge transmitter transmitting the excess charges to the overflow drain region and having a width which is at least half of a span of the photoelectric converter.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics., Co., Ltd.
    Inventor: Jun-Taek Lee
  • Publication number: 20090108174
    Abstract: Embodiments of the present invention provide pixel cells with increased storage capacity, which are capable of anti-blooming operations. In an exemplary embodiment a pixel cell has an electronic shutter that transfers charge generated by a photo-conversion device to a storage node before further transferring the charge to the pixel cell's floating diffusion node. Each pixel cell also includes an anti-blooming transistor for directing excess charge out of each respective pixel cell, thus preventing blooming. Additionally, two or more pixel cells of an array may share a floating diffusion node and reset and readout circuitry.
    Type: Application
    Filed: November 24, 2008
    Publication date: April 30, 2009
    Inventors: Peter P. Altice, JR., Jeffrey A. McKee
  • Patent number: 7508017
    Abstract: A source region and drain region are formed in a surface region of a first semiconductor region. Moreover, a second semiconductor region connected to the drain region is formed in the surface region of the first semiconductor region. A third semiconductor region is formed in the first semiconductor region under the second semiconductor region, connected to the second semiconductor region, and accumulates signal charges in accordance with an incident light. A fourth semiconductor region is formed in the surface region of the first semiconductor region between the drain region and source region. Moreover, these source region, drain region, second semiconductor region, and third semiconductor region constitute a pixel, and different voltages are supplied to the drain region in an accumulation period of the signal charges in the pixel, signal readout period, and discharge period of the signal charges.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: March 24, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshige Goto
  • Patent number: 7492404
    Abstract: An image sensor includes a substrate; a plurality of pixels on the substrate, one or more of the pixels comprises (i) first and second charge-storage regions having at least one photosensitive area; (ii) a lateral overflow drain; (iii) a first lateral overflow gate adjacent the first charge-storage regions that passes substantially all charges from the first charge-storage region to the lateral overflow drain; and (iv) a second lateral gate adjacent the second charge-storage region that passes excess photo-generated charge into the lateral overflow drain for blooming control.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: February 17, 2009
    Assignee: Eastman Kodak Company
    Inventors: Eric G. Stevens, John P. Shepherd, David N. Nichols
  • Patent number: 7453130
    Abstract: A semiconductor apparatus comprises: a light input/output portion provided in an upper portion of a semiconductor substrate, the light input/output portion having an opening region for light associated to the light input/output portion to pass through; a transparent film covering the opening region; and an interlayer lens provided on the transparent film, the interlayer lens positioned such that an optical axis of the interlayer lens is parallel to a central axis of the opening region.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: November 18, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Junichi Nakai
  • Patent number: 7449732
    Abstract: The substrate with electrodes is formed of a transparent material onto which is deposited a film (1) of a transparent conductive material of thickness e1 and of refractive index n1, said film being structured to form a set of electrodes (1a) whose contours (8) delimit insulating spaces (3), wherein the insulating spaces (3) are filled with a transparent dielectric material of thickness e2 and of refractive index n2 so that the respective thicknesses of the conductive material and the dielectric material are inversely proportional to the values of the refractive indices of said materials and said dielectric material forms neither depressions nor beads at the contour (8) of the electrodes. A hardcoating layer (7) may be disposed between the substrate (5) and the electrodes and a protective film (9) added. The substrate with electrodes is obtained by UV irradiation through a single mask.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: November 11, 2008
    Assignee: Asulab S.A.
    Inventors: Joachim Grupp, Gian-Carlo Poli, Pierre-Yves Baroni, Estelle Wagner, Patrik Hoffmann
  • Publication number: 20080272455
    Abstract: An n/p semiconductor substrate is formed in such a manner that an n type semiconductor layer is deposited on a p+ semiconductor substrate. An imaging area including a plurality of n type semiconductor regions making photoelectric conversion and a plurality of p type semiconductor region for isolation formed around the n type semiconductor regions, is formed in the n/p semiconductor substrate. The n type semiconductor layer is divided into an upper layer and a lower layer. A second n type semiconductor region is formed to connect to the p+ type semiconductor substrate from a surface of the n/p semiconductor substrate in a peripheral region of the imaging area.
    Type: Application
    Filed: October 18, 2007
    Publication date: November 6, 2008
    Inventor: Ikuko Inoue
  • Patent number: 7427740
    Abstract: An image sensor comprises an active pixel region that includes a plurality of unit pixels arranged in a matrix pattern, a first optical black region formed adjacent to the active pixel region, wherein a plurality of shaded unit pixels are arranged therein, a drain region formed adjacent to the first optical black region, the drain region discharging excess electrons generated in the active pixel region, and a second optical black region formed adjacent to the drain region, wherein another plurality of the shaded unit pixels are arranged therein.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: September 23, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Yong Park, Jun-Taek Lee
  • Patent number: 7378635
    Abstract: A method of operating an imager pixel that includes the act of applying a relatively small voltage on the gate of a transfer transistor during a charge acquisition period. If a small positive voltage is applied, a depletion region is created under the transfer transistor gate, which creates a path for dark current electrons to be transferred to a pixel floating diffusion region. The dark electrons are subsequently removed by a pixel reset operation. If a small negative voltage is applied to the transfer gate, electrons that would normally create dark current problems will instead recombine with holes thereby substantially reducing dark current.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: May 27, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Gennadiy Agranov, Xiangli Li, Peter Parker Altice, Rick Mauritzson
  • Patent number: 7332786
    Abstract: Embodiments of the present invention provide pixel cells with increased storage capacity, which are capable of anti-blooming operations. In an exemplary embodiment a pixel cell has an electronic shutter that transfers charge generated by a photo-conversion device to a storage node before further transferring the charge to the pixel cell's floating diffusion node. Each pixel cell also includes an anti-blooming transistor for directing excess charge out of each respective pixel cell, thus preventing blooming. Additionally, two or more pixel cells of an array may share a floating diffusion node and reset and readout circuitry.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Peter P. Altice, Jr., Jeffrey A. McKee
  • Patent number: 7205523
    Abstract: The solid state image pickup device includes a pixel, the pixel including: a photoelectric conversion region for generating carrier by photoelectric conversion and accumulating the carrier; a carrier holding region for accumulating carrier flowing out from the photoelectric conversion region during the photoelectric conversion region generates and accumulates carrier; a source follower amplifier SF-MOS for amplifying carrier; a transfer MOS transistor Tx-MOS for transferring the carrier accumulated in the photoelectric conversion region to the source follower amplifier SF-MOS; and a transfer MOS transistor Ty-MOS for transferring the carrier accumulated in the carrier holding region to the source follower amplifier SF-MOS. The carrier holding region is formed so as to have a trench structure.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: April 17, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryuichi Mishima, Seiichi Tamura, Koichi Tazoe
  • Patent number: 7061028
    Abstract: A new method to form an image sensor device is achieved. The method comprises forming an image sensing array in a substrate comprising a plurality of light detecting diodes with spaces between the diodes. A first dielectric layer is formed overlying the diodes but not the spaces. The first dielectric layer has a first refractive index. A second dielectric layer is formed overlying the spaces but not the diodes. The second dielectric layer has a second refractive index that is larger than the first refractive index. A new image sensor device is disclosed.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: June 13, 2006
    Assignee: Taiwan Semiconductor Manufacturing, Co., Ltd.
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chein-Hsien Tseng
  • Patent number: 7002231
    Abstract: Embodiments of the invention provide a barrier region for isolating devices of an image sensor. The barrier region comprises a charge accumulation region of a particular conductivity type in a substrate electrically connected to a voltage source terminal. The charge accumulation region is adjacent to at least one pixel cell of a pixel array. The charge accumulation region accumulates charge and prevents charge transference from a pixel cell or peripheral circuitry on one side of the barrier region to a pixel cell on another side of the barrier region.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: February 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Howard E. Rhodes, Richard A. Mauritzson, William T. Quinlin
  • Patent number: 6963092
    Abstract: A pixel of a semiconductor-based image detector includes a photodetector, at least one switching device serially connected to the photodetector and a bypass device interposed between the photodetector and a power supply voltage. Accordingly, even though excess charges may be generated in the photodetector, the excess charges flow into the power supply through the bypass device. Blooming can thereby be reduced or suppressed.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: November 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seok-Ha Lee
  • Patent number: 6927434
    Abstract: Circuits, methods, and systems are disclosed in which a current is provided to compensate for spurious current while receiving signals through a line. For example, the spurious current can be sensed and the compensating current can be approximately equal to the sensed spurious current. The spurious current could include photocurrent from a bright light, and the compensating current can prevent bright light effects.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: August 9, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Sandor L. Barna, Giuseppe Rossi
  • Patent number: 6888573
    Abstract: An anti-blooming charge accumulation pixel using an anti-blooming element coupled to the pixel prevents blooming by ensuring that a voltage of a charge accumulation device of the pixel is always returned to a clamping voltage following comparison events. The anti-blooming element is used to return the voltage across a photodiode to the supply voltage when both a low voltage comparison and a high voltage comparison have occurred. A control block is used to determine an input signal to the anti-blooming element based upon the result of a low voltage comparison and a high voltage comparison. The input signal can be used to drive the anti-blooming element to a desired logic level, thereby causing the voltage across the charge accumulation device to be the clamping voltage. The use of the anti-blooming element eliminates blooming to adjacent pixels, independent of an integration time of the pixel.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 3, 2005
    Assignee: Motorola, Inc.
    Inventor: Barry W. Herold
  • Patent number: 6760073
    Abstract: There is provided a solid-state image sensor including (a) a plurality of first charge transfer sections each for vertically transferring electric charges, formed on a surface of a semiconductor layer, (b) a second charge transfer section for horizontally transferring electric charges, formed adjacent to one ends of the first charge transfer sections, the second charge transfer section including a charge barrier region and a charge accumulating region, (c) a first potential barrier section located adjacent to the second charge transfer section, (d) an excessive charge exhausting section located adjacent to the first potential barrier section, and (e) a plurality of second potential barrier sections located in the first potential barrier section, the second potential barrier section being spaced away from adjacent ones. The solid-state image sensor makes it possible to prevent signal charges from leaking into the excessive charge exhausting section, which ensures enhancement in a charge transfer efficiency.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: July 6, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 6501109
    Abstract: A structure of a new active pixel sensor cell formed in a semiconductor substrate is disclosed. An n-type region is formed in the substrate extending to the surface. Two p+ regions are formed in the n-type region, both extending to the surface and covering almost all the active area of the new active pixel sensor cell. The p+ region forming the p+ node of the photodiode has a substantially larger surface area than the p+ region forming the p+ node of the output diode. Isolation regions are formed over those portions of the new active pixel cell periphery that will not be adjacent to other new active pixel sensor cells. A polysilicon floating gate is disposed over a dielectric layer formed over the surface. The floating gate overlaps portions of both p+ regions and the floating gate is connected to photodiode p+ region by a conducting region passing through the dielectric layer.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: December 31, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Min-Hwa Chi
  • Patent number: 6489642
    Abstract: An image sensor, includes a semiconductor substrate; a photosensor having, a first photosensing region including a first stack of one or more layers of transparent materials overlying the substrate, the first photosensing region having a spectral response having peaks and valleys, and a second photosensing region including a second stack of one or more layers of transparent materials overlying the substrate, the second photosensing region having a spectral response having peaks and valleys; and wherein at least one peak or valley of the spectral response of the first region is matched to at least one valley or peak respectively of the spectral response of the second region such that the average spectral response of the photosensor is smoother than the individual spectral response of either the first or second photosensing regions.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: December 3, 2002
    Assignee: Eastman Kodak Company
    Inventors: William G. America, Christopher R. Hoople, Loretta R. Fendrock, Stephen L. Kosman
  • Patent number: 6369853
    Abstract: A storage pixel sensor disposed on a semiconductor substrate comprises a capacitive storage element having a first terminal connected to a fixed potential and a second terminal. A photodiode has an anode connected to a first potential and a cathode. A semiconductor reset switch has a first terminal connected to the cathode and a second terminal connected to a reset potential. A semiconductor transfer switch has a first terminal connected to the cathode and a second terminal connected to the second terminal of the capacitive storage element. A semiconductor amplifier has an input connected to the capacitive storage element and an output. The semiconductor reset switch and the semiconductor transfer switch each have a control element connected to a control circuit for selectively activating the semiconductor reset switch and the semiconductor transfer switch.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: April 9, 2002
    Assignee: Foveon, Inc.
    Inventors: Richard B. Merrill, Richard M. Turner, Carver A. Mead, Richard F. Lyon
  • Patent number: 6278487
    Abstract: A solid-state image sensing device includes photoelectric conversion portions, vertical charge transfer portions, a horizontal charge transfer portion, an unwanted charge removing portion, and a potential barrier portion. The photoelectric conversion portions are arranged on an n-type semiconductor substrate. The vertical charge transfer portions are respectively arranged adjacent to the photoelectric conversion portions, and have a first p-type well layer and a first n-type semiconductor region. The horizontal charge transfer portion is arranged adjacent to one end side of the vertical charge transfer portions, and has a second p-type well layer and a second n-type semiconductor region. The unwanted charge removing portion is arranged adjacent to the horizontal charge transfer portion to remove an unwanted charge overflowing from the horizontal charge transfer portion. The unwanted charge removing portion has a third p-type well layer and a third n-type semiconductor region.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: August 21, 2001
    Assignee: NEC Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 6169318
    Abstract: An improved pixel design for a CMOS image sensor with a small feature size is described. In conventional image sensors of this type, the quantum efficiency is typically reduced as a result of the decreased thickness of the top n-type layer of the photodiode and the presence of an intervening p-type layer which is higher doped than the substrate. In the pixel design of the invention, the higher doped p-type layer underneath the photodiode is omitted while barrier regions channel the carriers generated by the impinging radiation towards the top n-layer of the photodiode. A high quantum efficiency is thereby attained in spite of a shrinking feature size. The novel pixel design can also incorporate anti-blooming protection.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: January 2, 2001
    Assignee: Polaroid Corporation
    Inventor: Robert Daniel McGrath
  • Patent number: 5998818
    Abstract: The amplification type solid-state imaging device of this invention includes amplification type photoelectric converting elements arranged in a matrix.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: December 7, 1999
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuya Kumagai, Hiroaki Kudo
  • Patent number: 5986297
    Abstract: An active pixel sensor architecture comprising a semiconductor substrate having a plurality of pixels formed, thereon, incorporating microlens and lightshields into the pixel architecture. Each of the pixels further comprising: a photodetector region upon which incident light will form photoelectrons to be collected as a signal charge; a device for transferring the signal charge from the photodetector region to a charge storage region that is covered by a light shield; a sense node that is an input to an amplifier; the sense node being operatively connected to the signal storage region. The pixel architecture facilitates symmetrical design of pixels which allows for incorporation of light shield and microlens technology into the design.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: November 16, 1999
    Assignee: Eastman Kodak Company
    Inventors: Robert M. Guidash, Paul P. Lee, Teh-Hsuang Lee
  • Patent number: 5942774
    Abstract: A photoelectric conversion element includes a photoelectric conversion portion for generating and storing a charge according to incident light, an amplifying portion having a control region for generating a signal output according to the charge received in the control region from the photoelectric conversion portion, a transfer control portion for transferring the charge generated and stored in the photoelectric conversion portion to the control region of the amplifying portion, a reset-purpose charge draining region for draining the charge transferred to the control region of the amplifying portion, and a reset-purpose control region for controlling the reset-purpose charge draining region. A reset operation can be performed without operating the amplifying portion. Also, a photoelectric conversion apparatus having high sensitivity and low dissipation power can be obtained.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: August 24, 1999
    Assignee: Nikon Corporation
    Inventors: Tadao Isogai, Atsushi Kamashita, Satoshi Suzuki
  • Patent number: 5903021
    Abstract: A pixelated image sensor having comprising a partially pinned photodiode which is formed a semiconductor of a first conductivity type formed on a surface of the sensor with at least one photodiode formed, within the semiconductor near the surface, the photodiode being formed from a second conductivity type opposite the first conductivity type; a pinning layer formed on the surface over at least a portion of the photodiode creating a pinned photodiode region, the pinning layer being formed from the first conductivity type; and an unpinned region formed near the surface in an area outside the portion used to form the pinning layer, the unpinned region is formed as a floating region that is employed as a capacitor. The partially pinned photodiode is useful in expanding the fill factor of photodetectors employing photodiode technology.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: May 11, 1999
    Assignee: Eastman Kodak Company
    Inventors: Teh-Hsuang Lee, Robert M. Guidash, Paul P. Lee
  • Patent number: 5898195
    Abstract: A solid-state imaging device of a vertical overflow drain system according to the present invention includes a first conductive type semiconductor substrate, a second conductive type semiconductor well region formed on the first conductive type semiconductor substrate, and a first conductive type, second conductive type or intrinsic high-resistance semiconductor region formed on the second conductive semiconductor well region and having a lower concentration as compared with the second conductive semiconductor well region and a width enough for infrared ray to be sufficiently absorbed. A light receiving portion is formed on a surface of the first conductive type, second conductive type or intrinsic high-resistance semiconductor region.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: April 27, 1999
    Assignee: Sony Corporation
    Inventor: Kouichi Harada
  • Patent number: 5872371
    Abstract: In an active pixel sensor having a plurality of pixels, each of the pixels having a photodetector for accumulating charge from incident light, a transfer gate for removing charge from the photodetector, a floating diffusion that acts as a sense node to an amplifier input, and a drain the improvement comprising the provision of a reset mechanism for each pixel by application of a potential adjacent the floating diffusion such that the area between the floating diffusion and the drain becomes depleted.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: February 16, 1999
    Assignee: Eastman Kodak Company
    Inventors: Robert M. Guidash, Paul P. Lee
  • Patent number: 5867055
    Abstract: A semiconductor device and a method of inspecting the same are described. The semiconductor device does not need voltage adjustment of an external driver circuit, since it contains a voltage generator to inspect and memorize the best value of voltage by controlling from outside. The voltage generator has a plurality of capacitors whose electrodes of one side are connected to a common node, a potential changing circuit to change the potential to which the other electrodes of these capacitors are connected respectively, and a buffer amplifier whose input power is the voltage generated in the common node. The output power of the buffer amplifier is connected to a semiconductor integrated circuit. The potential changing circuit is provided to change the potential to which the electrode of each capacitor is connected to a source potential or to a ground potential depending on the connection of the fuse connected between the source and each of the capacitors.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: February 2, 1999
    Assignee: Matsushita Electronics Corporation
    Inventors: Masaji Asaumi, Yuji Matsuda
  • Patent number: 5861645
    Abstract: An amplifying type solid-state imaging device having a transistor formed on a semiconductor base and a charge release portion which stores a signal charge which is generated by light incident on the transistor and outputs a change of an electrical signal in accordance with the stored charge. The transistor includes: a first gate region including a portion for storing the signal charge therein and a first gate electrode formed on the semiconductor base surface; and a source and a drain formed of impurity layers of a higher concentration than the semiconductor base concentration. The charge release portion includes: a second gate region including a portion in the vicinity of the semiconductor base surface, and a second gate electrode formed via an insulating film on the semiconductor base surface; and a drain for charge discharge formed of an impurity layer of a higher concentration than the semiconductor base concentration.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: January 19, 1999
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroaki Kudo, Takashi Watanabe
  • Patent number: 5859462
    Abstract: An image sensor comprising a semiconductor of a first conductivity type having a plurality of pixels formed thereon; and a region heavily doped with the first conductivity type semiconductor beneath the pixels formed such that there is a gradient formed within the semiconductor below the pixels that is capable of directing photogenerated electrons toward the pixels and away from the heavily doped region. The gradient is formed by having a more lightly doped layer formed upon the heavily doped layer and allowing a gradient to from around the junction of the two layers.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: January 12, 1999
    Assignee: Eastman Kodak Company
    Inventors: Timothy J. Tredwell, Teh H. Lee, James P. Lavine
  • Patent number: 5710447
    Abstract: Disclosed is a solid state image device which has a plurality of photosensitive units which are disposed in parallel with each other and each of which includes a row of a plurality of photosensitive devices each of which includes a first N(or P)-type impurity region which is selectively formed on the surface of a P(or N)-type semiconductor region at the surface of a semiconductor substrate, a CCD register for executing electronic scanning which is disposed in parallel to the row of photosensitive devices, and a read-out gate in which a signal charge is transferred from the photosensitive device to the CCD register, wherein a transparent Schottky electrode is formed on the first N(or P)-type impurity region except a portion adjacent to the read-out gate region, the Schottky electrode is electrically connected to a P.sup.+ (or N.sup.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: January 20, 1998
    Assignee: NEC Corporation
    Inventor: Shigeru Tohyama
  • Patent number: 5587596
    Abstract: The size of an active pixel sensor cell is reduced by utilizing a single MOS transistor formed in a well to perform the functions conventionally performed by a photogate/photodiode, a sense transistor, and an access transistor. Light energy striking the well varies the potential of the well which, in turn, varies the threshold voltage of the transistor. As a result, the current sourced by the transistor is proportional to the received light energy.
    Type: Grant
    Filed: September 20, 1995
    Date of Patent: December 24, 1996
    Assignee: National Semiconductor Corporation
    Inventors: Min-Hwa Chi, Albert Bergemont, Hosam Haggag
  • Patent number: 5567974
    Abstract: A photo IC having a plurality of photodiodes is disclosed. A semiconductor region to absorb stray carriers is provided between the photodiodes. Stray carriers generated by incidence of light are absorbed by the semiconductor region. As a result, crosstalk between the photodiodes is reduced.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: October 22, 1996
    Assignee: Sony Corporation
    Inventors: Nobuyuki Yoshitake, Shinji Takakura
  • Patent number: 5404039
    Abstract: A solid state imaging device of the present invention includes: a semiconductor substrate of one conductive type; a well layer made of a semiconductor of the other conductive type formed on the semiconductor substrate; a photodetecting portion made of a semiconductor of one conductive type formed in an upper portion of the well layer; a high concentration semiconductor layer made of the other conductive type formed in an upper portion of the photodetecting portion; a first region of one conductive type formed in an upper portion of the semiconductor substrate, being in contact with the well layer and positioned at least below the photodetecting portion, having higher concentration than the semiconductor substrate; and a second region of the other conductive type formed in a lower portion of the well layer, being in contact with the semiconductor substrate and positioned on the first region.
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: April 4, 1995
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Takashi Watanabe
  • Patent number: 5349216
    Abstract: A CCD image sensor comprising: a semiconductor substrate of a first conductivity type connected to a ground; an impurity region of a second conductivity type formed in the surface of the semiconductor substrate of the first conductivity type, to serve as a blooming prevention layer; an impurity region of the first conductivity type formed in the surface of the semiconductor substrate, so that it encloses the impurity region of the second conductivity type serving as a blooming prevention layer, to serve as a potential barrier layer; an impurity region of the second conductivity type formed in the surface of the semiconductor substrate of the first conductivity type so that it encloses the impurity region of the first conductivity type serving as a potential barrier layer, to serve as a light receiving region; an insulation film which is formed on the surface of the semiconductor substrate of the first conductivity type and has contact holes at both edges of the impurity region of the second conductivity type,
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: September 20, 1994
    Assignee: Gold Star Electron Co., Ltd.
    Inventors: Seo K. Lee, Uja Shinji
  • Patent number: 5343060
    Abstract: The present invention is directed to a solid state imaging deice in which a light sensing region (3), a vertical register (4) and a channel stopper region (5) are formed within a well region (2) on an N-type silicon substrate (1). A positive electric charge storage region (6) is formed on the surface of the light sensing region (3) and a well region (7) is formed beneath the vertical register (4), respectively. Further, a transfer electrode (9) is selectively formed on the vertical register (4) through a gate insulating layer (8) and an Al light-intercepting layer (11) is formed on the transfer electrode (9) through an interlevel insulator (10). A surface protecting layer (12) is formed on the whole surface including the Al light-intercepting layer (11). In this solid state imaging device, a tapered portion (11a) is formed on the Al light-intercepting layer 11 corresponding to a peripheral edge portion of the light sensing region 3.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: August 30, 1994
    Assignee: Sony Corporation
    Inventor: Hideshi Abe
  • Patent number: 5331165
    Abstract: The present invention relates to a charge coupled device CCD X-ray imager for reducing split events during integration. The imager includes a semiconductor material having a photosensitive region for receiving X-ray radiation energy and for generating electrical charges corresponding to the received X-ray radiation, and having a plurality of permanent barriers formed therein to divide the semiconductor material into a plurality of columns. Barrier electrodes are coupled to the semiconductor material for establishing in said semiconductor material a plurality of temporary barriers having a sufficient potential gradient to substantially reduce the occurrence of split events. Collection site electrodes are coupled to the semiconductor material for effecting the collection of the generated electrical charges. The temporary barriers are erected in the columns to form an array of potential wells.
    Type: Grant
    Filed: December 1, 1992
    Date of Patent: July 19, 1994
    Assignee: Ball Corporation
    Inventor: Wayne W. Frame
  • Patent number: 5298778
    Abstract: An application-type solid state imaging device which includes a plurality of picture elements arranged in a two-dimensional matrix. A sensor region is surrounded by a substrate and a gate region is positioned laterally substantially about the sensor region. A source region is formed through one surface of the substrate and aligned vertically with the sensor region, while a drain is formed at an opposing surface of the substrate and is likewise aligned with the sensor region. The sensor region and the gate region together define a channel through which source-drain current flows. Light incident on the substrate passes therethrough to the sensor region where charge accumulates photoelectrically for producing an image signal by controlling the source-drain current in proportion to the magnitude of the photoelectrically accumulated charge. The device is reset after reading by removing charge accumulated in the sensor region through the gate region.
    Type: Grant
    Filed: April 28, 1993
    Date of Patent: March 29, 1994
    Assignee: Sony Corporation
    Inventor: Kazuya Yonemoto
  • Patent number: 5285091
    Abstract: A solid state image sensing device has a plurality of photo sensing elements arranged in a two-dimensional fashion at pixel units pixel unit in the horizontal and vertical directions. Each of the plurality of photo sensing elements is formed of a vertical selection transistor whose gate electrode is connected to a horizontal selection line and whose source electrode is connected to a vertical signal line. A photoelectric conversion element is provided under a channel region of the vertical selection transistor. A high concentration impurity is buried in lower portions of the source electrode and the channel region. When a voltage is applied to the source electrode, a signal charge which is subjected to a photoelectric conversion by the photoelectric conversion element is reset. Reset noise, Vth irregularity, smear component and the surface dark current can be reduced and blooming is suppressed.
    Type: Grant
    Filed: April 9, 1992
    Date of Patent: February 8, 1994
    Assignee: Sony Corporation
    Inventor: Masaharu Hamasaki