Avalanche Diode (e.g., So-called "zener" Diode Having Breakdown Voltage Greater Than 6 Volts) Patents (Class 257/603)
  • Patent number: 7635909
    Abstract: A semiconductor diode has an anode, a cathode and a semiconductor volume provided between anode and cathode. A plurality of semiconductor zones are formed in the semiconductor volume, which semiconductor zones are inversely doped with respect to their immediate surroundings, spaced apart from one another and provided in the vicinity of the cathode. The semiconductor zones are spaced apart from the cathode.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: December 22, 2009
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Pfirsch, Elmar Falck, Josef Lutz
  • Publication number: 20090302424
    Abstract: In one embodiment, a bi-directional diode structure is formed to have a substantially symmetrical current-voltage characteristic.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 10, 2009
    Inventors: Mark Duskin, Suem Ping Loo, Ali Salih
  • Patent number: 7626193
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7576370
    Abstract: The present invention describes ESD apparatus, methods of forming the same, and methods of providing ESD protection. In certain aspects, the invention achieves the desired turn-on voltage and maintains low leakage in the ESD apparatus, and the methods of providing ESD protection. In one aspect, a zener diode that has a positive trigger voltage is used to quickly turn-on a transistor. In another aspect, different zener diodes that have positive and negative trigger voltages, respectively, are used to quickly turn on a transistor. In still another aspect, a linearly graded P-region is used to implement the ESD device of the present invention.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 18, 2009
    Assignee: California Micro Devices
    Inventors: Harry Yue Gee, Umesh Sharma
  • Publication number: 20090185316
    Abstract: The invention relates to an avalanche diode that can be employed as an ESD protection device. An avalanche ignition region is formed at the p-n junction of the diode and includes an enhanced defect concentration level to provide rapid onset of avalanche current. The avalanche ignition region is preferably formed wider than the diode depletion zone, and is preferably created by placement, preferably by ion implantation, of an atomic specie different from that of the principal device structure. The doping concentration of the placed atomic specie should be sufficiently high to ensure substantially immediate onset of avalanche current when the diode breakdown voltage is exceeded. The new atomic specie preferably comprises argon or nitrogen, but other atomic species can be employed. However, other means of increasing a defect concentration level in the diode depletion zone, such as an altered annealing program, are also contemplated.
    Type: Application
    Filed: January 21, 2008
    Publication date: July 23, 2009
    Inventors: Jens Schneider, Kai Esmark, Martin Wendel
  • Publication number: 20090152681
    Abstract: An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.
    Type: Application
    Filed: August 14, 2008
    Publication date: June 18, 2009
    Applicant: California Institute of Technology
    Inventors: Xinyu Zheng, Bedabrata Pain, Thomas J. Cunningham
  • Patent number: 7538367
    Abstract: The present invention provides an avalanche photodiode capable of raising productivity. An n-type InP buffer layer, an n-type GaInAs light absorption layer, an n-type GaInAsP transition layer, an n-type InP electric field adjusting layer, an n-type InP avalanche intensifying layer, an n-type AlInAs window layer and a p-type GaInAs contact layer are grown in order on an n-type InP substrate. Next, Be is ion-injected into an annular area along the outer periphery of a light receiving area which is activated by heat treatment so as to form an inclined joint, to obtain a p-type peripheral area for preventing an edge break down. Further, Zn is selectively diffused thermally into the light receiving area until it reaches the n-type InP avalanche intensifying layer so as to form a p-type conductive area.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: May 26, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventors: Eiji Yagyu, Eitaro Ishimura, Masaharu Nakaji
  • Patent number: 7521774
    Abstract: In a semiconductor system 20 made up of multiple sublayers, a sublayer over the largest part of a cross-sectional area BC in the interior of the semiconductor system borders immediately on the first sublayer, while bordering on a second sublayer only in a comparatively narrow edge region of the cross-sectional area. The semiconductor system is characterized by a low bulk resistance and a high breakdown voltage in the edge region. In addition, a method for manufacturing this semiconductor system is specified.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: April 21, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Richard Spitz, Alfred Goerlach, Dana Keppeler
  • Publication number: 20090085164
    Abstract: There is provided a wiring board. The wiring board includes: a semiconductor substrate having a through hole and covered with an insulating film; a through electrode formed in the through hole; a first wiring connected to one end of the through electrode; and a second wiring connected to the other end of the through electrode. The semiconductor substrate includes: a semiconductor element and a first guard ring formed to surround the through hole. The semiconductor element includes a first conductivity-type impurity diffusion layer having a different conductivity-type from that of the semiconductor substrate and is electrically connected to the first wiring and the second wiring.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 2, 2009
    Applicants: SHINKO ELECTRIC INDUSTRIES CO., LTD., TOKO, INC.
    Inventors: Kei Murayama, Shinji Nakajima
  • Patent number: 7511357
    Abstract: A MOSFET device that includes a first Zener diode connected between a gate metal and a drain metal of said semiconductor power device for functioning as a gate-drain (GD) clamp diode. The GD clamp diode includes multiple back-to-back doped regions in a polysilicon layer doped with dopant ions of a first conductivity type next to a second conductivity type disposed on an insulation layer above the MOSFET device, having an avalanche voltage lower than a source/drain avalanche voltage of the MOSFET device wherein the Zener diode is insulated from a doped region of the MOSFET device for preventing a channeling effect.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 31, 2009
    Assignee: Force-MOS Technology Corporation
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7485947
    Abstract: A zener diode circuit includes a semiconductor substrate having an N-doped region and a P-doped region that form a PN junction. The N-doped region and the P-doped region have areas with widths that decrease as the N-doped region and the P-doped region approach the PN junction. The zener diode circuit also includes a transistor that provides current to the zener diode, and circuitry that detects a state of the zener diode.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: February 3, 2009
    Assignee: Austriamicrosystems AG
    Inventor: Franz Unterleitner
  • Publication number: 20090026579
    Abstract: A rectenna capable of power conversion from electromagnetic (EM) waves of high frequencies is provided. In one embodiment, a rectenna element generates currents from two sources—based upon the power of the incident EM wave and from an n-type semiconductor, or another electron source attached to a maximum voltage point of an antenna element. The combined current from both sources increases the power output of the antenna, thereby increasing the detection sensitivity of the antenna of a low power signal. Full wave rectification is achieved using a novel diode connected to a gap in the antenna element of a rectenna element. The diode is conductive at forward bias voltage or reverse bias voltage, and rectifies the antenna signal generated by the desired EM wave received by antenna raise from The rectenna element of the present invention may be used as a building block to create large rectenna arrays.
    Type: Application
    Filed: October 7, 2005
    Publication date: January 29, 2009
    Inventors: Guy Silver, Juinerong Wu
  • Patent number: 7474011
    Abstract: A process and system for estimating the occurrence of single event latch-up in an integrated circuit. The process involves determining the resistance between each junction and the closest appropriate tap in a regular shaped well. Each junction occurring in an irregular-shaped well is also identified. Finally, the method may make suggestions for lowering the probability that single event latch-up may occur in the integrated circuit.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: January 6, 2009
    Assignee: Integrated Device Technologies, inc.
    Inventors: Chuen-Der Lien, Ta-Ke Tien, Pao-Lu Louis Huang
  • Patent number: 7462889
    Abstract: An avalanche photodiode according to this invention include a light receiving region 101 surrounded by a ring-shaped trench 13, a first electrode 11 formed on the light receiving region 101, a second electrode 12 formed on the periphery of the ring-shaped trench 13 surrounding the light receiving region, a first semiconductor layer lying just under the first electrode 11, and a second semiconductor layer lying just under the second electrode 12. Conductivity types of the first semiconductor and the second semiconductor are identical.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: December 9, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Eiji Yagyu, Nobuyuki Tomita, Eitaro Ishimura, Masaharu Nakaji
  • Patent number: 7439482
    Abstract: A system for setting the bias of a device. The novel bias setting system includes a first system for determining a ratio between noise at an operating gain of the device and noise at a reference gain of the device, and a second system for adjusting the bias until that ratio is equal to a predetermined factor Z. The reference gain is the unity gain or reach-through gain of the device. In an illustrative embodiment, the first system is adapted to measure the noise at operating gain by determining an operating gain threshold, and measure the noise at the reference gain by determining a reference gain threshold. The second system then adjusts the bias until the ratio of the operating gain threshold to the reference gain threshold is equal to the predetermined factor Z.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: October 21, 2008
    Assignee: Raytheon Company
    Inventor: Robert W. Byren
  • Patent number: 7436002
    Abstract: A radiation-emitting surface-mountable component has a light-emitting diode chip mounted on a leadframe. A molding material encapsulates the leadframe and the light-emitting diode chip.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: October 14, 2008
    Assignee: Osram GmbH
    Inventors: Herbert Brunner, Klaus Höhn, Harald Jäger, Josef Schmid
  • Patent number: 7427741
    Abstract: An apparatus is provided with a biasing unit supplying a bias signal to a first avalanche photodiode and a second avalanche photodiode, the bias signal having a first level and a second level, the first level causing a multiplying effect and the second level causing a non-multiplying effect for the first and the second avalanche photodiodes; a smoothing unit smoothing the bias signal biasing the first avalanche photodiode into a smoothed bias signal; a current detecting unit detecting photocurrent from the second avalanche photodiode, with a multiplying current value corresponding to the multiplying bias level and a non-multiplying current value corresponding to the non-multiplying bias level; a multiplication factor calculating unit calculating a multiplication factor of the second avalanche photodiode based on the multiplying current value and the non-multiplying current value; and a control unit controlling the first level of the bias signal based on the calculated multiplication factor.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: September 23, 2008
    Assignee: Fujitsu Limited
    Inventors: Yasushi Koiwai, Hiroki Kanesaka
  • Patent number: 7423859
    Abstract: An apparatus for protecting electronic equipment from voltage surges includes a network interface coupled to a computer device for connecting the computer device to a computer network and a discrete voltage surge protection device coupled to the computer network with a first unshielded cable and to the network interface with a second unshielded cable. The unshielded cable comprises at least one wire pair and the discrete protection device comprises a voltage suppressor device coupled between the wires of each wire pair. The discrete voltage surge protection device renders the apparatus compliant with the Telcordia (Bellcore) GR-1089-CORE Intrabuilding Lightning Surge Tests.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: September 9, 2008
    Assignee: EMC Corporation
    Inventors: Robert P. Wierzbicki, Brandon Barney
  • Patent number: 7361942
    Abstract: A bi-directional transient voltage suppression (“TVS”) device (101) includes a semiconductor die (201) that has a first avalanche diode (103) in series with a first rectifier diode (104) connected cathode to cathode, electrically coupled in an anti-parallel configuration with a second avalanche diode (105) in series with a second rectifier diode (106) also connected cathode to cathode. All the diodes of the TVS device are on a single semiconductor substrate (301). The die has a low resistivity buried diffused layer (303) having a first conductivity type disposed between a semiconductor substrate (301) having the opposite conductivity type and a high resistivity epitaxial layer (305) having the first conductivity type. The buried diffused layer shunts most of a transient current away from a portion of the epitaxial layer between the first avalanche diode and the first rectifier diode, thereby reducing the clamping voltage relative to the breakdown voltage.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: April 22, 2008
    Assignee: Protek Devices, LP
    Inventors: Fred Matteson, Venkatesh Panemangalore Pai, Donald K. Cartmell
  • Publication number: 20080054373
    Abstract: A power semiconductor device includes a semiconductor chip, a first conductive piece, a second conductive piece and an encapsulating resin. The semiconductor chip includes a first electrode and a second electrode. The first conductive piece is in contact with the first electrode of the semiconductor chip. The second conductive piece is in contact with the second electrode of the semiconductor chip. The encapsulating resin covers the semiconductor chip, a portion of the first conductive piece and a portion of the second conductive piece, such that a conducting current is transmitted through the first conductive piece and the second conductive piece to form a power diode. In an embodiment, the power semiconductor device further includes a conductive pin and a third electrode.
    Type: Application
    Filed: February 15, 2007
    Publication date: March 6, 2008
    Applicant: Delta Electronics, Inc.
    Inventors: Yin-Yuan Chen, Chen-Yu Yu
  • Publication number: 20080023797
    Abstract: In conventional processes, a recombination rate of minority carrier accumulated between a diffusion layer of an anode and a diffusion layer of a cathode cannot be enhanced. An interlayer insulating film 20 is formed on a semiconductor substrate 10. An opening 22 (first opening), an opening 24 (second opening) and an opening 26 are formed in the interlayer insulating film 20. The opening 22 and the opening 26 are formed above respective the p-type diffusion layer 16 and the n-type diffusion layer 18. The opening 24 is formed above the gap region that is a region between the p-type diffusion layer 16 and the n-type diffusion layer 18. A contact plug 32, a contact plug 34 and a contact plug 36 are embedded in the opening 22, the opening 24 and the opening 26 respectively. Both regions of the semiconductor substrate 10 located under the opening 22 among and located under the opening 24 are doped with an impurity.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 31, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Masaharu SATO
  • Publication number: 20070235745
    Abstract: Impurity concentration of a second semiconductor region is set such that when a predetermined reverse bias is applied to a heterojunction diode configured by a first semiconductor region and the second semiconductor region, a breakdown voltage at least in a heterojunction region other than outer peripheral ends of the heterojunction diode is a breakdown voltage of a semiconductor device.
    Type: Application
    Filed: April 10, 2007
    Publication date: October 11, 2007
    Inventors: Tetsuya Hayashi, Masakatsu Hoshi, Yoshio Shimoida, Hideaki Tanaka, Shigeharu Yamagami
  • Patent number: 7279725
    Abstract: A method of making a vertical diode structure is provided, the vertical diode structure having associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer covers the interior surface of the diode opening and contacts the active region. The diode opening is initially filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that is heavily doped with a first type dopant and a bottom portion that is lightly doped with a second type dopant. The top portion is bounded by the bottom portion so as not to contact the titanium silicide layer. For one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung Tri Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 7227204
    Abstract: A device is provided which includes a single-crystal semiconductor region disposed in a substrate. The single-crystal region includes a first semiconductor material and a diode disposed in the single-crystal region. The diode includes an anode region including a first alloy region, being an alloy of the first semiconductor material with a second semiconductor material, and a second region which consists essentially of the first semiconductor material, the diode further including a cathode region.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 5, 2007
    Assignee: International Business Machines Corporation
    Inventors: Edward P. Maciejewski, Sherry A. Womack, Shreesh Narasimha, Christopher D. Sheraw
  • Patent number: 7199403
    Abstract: The invention relates to a semiconductor arrangement having a MOSFET structure and an active zener function. A n+-doped zone and a p+-doped zone are provided at the bottom of a trench for the purpose of forming zener diodes, the n+-doped zone being directly connected to the gate electrode.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: April 3, 2007
    Assignee: Infineon Technologies AG
    Inventor: Jenö Tihanyi
  • Patent number: 7170103
    Abstract: A method of making a vertical diode is provided, the vertical diode having associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer covers the interior surface of the diode opening and contacts the active region. The diode opening is initially filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that is heavily doped with a first type dopant and a bottom portion that is lightly doped with a second type dopant. The top portion is bounded by the bottom portion so as not to contact the titanium silicide layer. For one embodiment of the vertical diode, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: January 30, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung Tri Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 7170104
    Abstract: An arrangement having p-doped semiconductor layers and n-doped semiconductor layers which exhibits transitions between the p-doped semiconductor layers and n-doped semiconductor layers, the transitions displaying a Zener breakdown upon application of a voltage characteristic of a transition, a plurality of transitions between p-doped semiconductor layers and n-doped semiconductor layers being present, and the characteristic voltages additively make up the breakdown voltage of the entire arrangement. Also described is a method for manufacturing the arrangement.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: January 30, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Richard Spitz, Alfred Goerlach
  • Patent number: 7166875
    Abstract: A method of making a vertical diode is provided, the vertical dioxide having associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer covers the interior surface of the diode opening and contacts the active region. The diode opening is initially filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that is heavily doped with a first type dopant and a bottom portion that is lightly doped with a second type dopant. The top portion is bounded by the bottom portion so as not to contact the titanium silicide layer. For one embodiment of the vertical diode, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung Tri Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 7091572
    Abstract: A fast recovery diode has a single large area P/N junction surrounded by a termination region. The anode contact in contact with the central active area extends over the inner periphery of an oxide termination ring and an EQR metal ring extends over the outer periphery of the oxide termination ring. Platinum atoms are diffused into the back surface of the device. A three mask process is described. An amorphous silicon layer is added in a four mask process, and a plurality of spaced guard rings are added in a five mask process.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: August 15, 2006
    Assignee: International Rectifier Corporation
    Inventors: Kohji Andoh, Silvestro Fimiani, Fabrizio Rue Redda, Davide Chiola
  • Patent number: 7078783
    Abstract: A vertical unipolar component formed in a semiconductor substrate. An upper portion of the substrate includes insulated trenches filled with a vertical multiple-layer of at least two conductive elements separated by an insulating layer, the multiple-layer depth being at most equal to the thickness of the upper portion.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 18, 2006
    Assignee: STMicroelectronics S.A.
    Inventor: Frédéric Lanois
  • Patent number: 7071537
    Abstract: A power device includes a substrate assembly including an upper surface and a lower surface. The substrate assembly includes a first layer and a second layer. The first layer overlies the second layer and has different conductivity than the second layer. A first electrode is provided proximate the upper surface. A second electrode is provided proximate the upper surface and is spaced apart from the first electrode. The second layer is configured to provide a current path between the first and second electrodes.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: July 4, 2006
    Assignee: IXYS Corporation
    Inventors: Ulrich Kelberlau, Nathan Zommer
  • Patent number: 7038248
    Abstract: Hetero-structure semiconductor devices having first and second-type semiconductor junctions are disclosed. The hetero-structures are incorporated into pillar and rail-stack memory circuits improving the forward-to-reverse current ratios thereof.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: May 2, 2006
    Assignee: SanDisk Corporation
    Inventor: Thomas H. Lee
  • Patent number: 7012308
    Abstract: A diode which eliminates generation of local avalanche breakdown phenomenon when static surges in the backward direction are applied and withstands electrostatic breakdown. A P-type impurity diffused region of high concentration as an anode and an N-type impurity diffused region of high concentration as a cathode that surrounds the P-type impurity diffused region, are formed on the surface of an N-type silicon well region. The surface of the N-type silicon well region on which the impurity diffused regions are formed is covered with an interlayer dielectric, and a metal interconnect layer is formed thereon, to spread to the border line of the N-type impurity diffused region and is electrically connected to the P-type impurity diffused region. Accordingly, a P-type inversion layer IP is uniformly formed in a separation area between the impurity diffused regions when static surges in the backward direction are applied, preventing local avalanche breakdown.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 14, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Katsuhiro Kato, Kenji Ichikawa
  • Patent number: 7012276
    Abstract: A thin film Zener diode, comprising: (a) a thin film comprised of at least one layer including at least one organic material; and (b) first and second electrodes in contact with respective opposite sides of the thin film, wherein the materials of the first and second electrodes and the thickness of the thin film are selected to provide a pre-selected Zener threshhold voltage.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 14, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard P. Kingsborough, Igor Sokolik
  • Patent number: 6979908
    Abstract: A described embodiment of the present invention includes an integrated circuit having a plurality of I/O modules. The I/O modules include a bond pad formed on a substrate. The I/O modules also include an electrostatic discharge device formed in the substrate. The electrostatic discharge device is at least partially formed beneath the bond pad. The I/O module also includes an I/O buffer formed in the substrate. The I/O buffer is connected to the bond pad. The I/O buffer provides communication between the bond pad and circuitry formed in the substrate. The circuitry is positioned substantially adjacent to both the electrostatic discharge device and the I/O buffer.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: December 27, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: U-Ming Ko
  • Patent number: 6949815
    Abstract: A semiconductor device has an LSI device provided with a plurality of power supply line connection pads and ground line connection pad in a peripheral edge part of a circuit-formation surface, metal foil leads 5 electrically connected to each of the pads and adhered to the LSI device via an insulation layer, and decoupling capacitors mounted on one surface of the metal foil leads.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: September 27, 2005
    Assignee: NEC Corporation
    Inventors: Takao Yamazaki, Toru Mori, Akinobu Shibuya, Shintaro Yamamichi, Yuzo Shimada
  • Patent number: 6936868
    Abstract: A sequential mesa type avalanche photodiode (APD) includes a semiconductor substrate and a sequential mesa portion formed on the substrate. In the sequential mesa portion, a plurality of semiconductor layers, including a light absorbing layer and a multiplying layer, are laminated by epitaxial growth. In the plurality of semiconductor layers, a pair of semiconductor layers forming a pn junction is included. The carrier density of a semiconductor layer which is near to the substrate among the pair of semiconductor layers is larger than the carrier density of a semiconductor layer which is far from the substrate among the pair of semiconductor layers. In the APD, light-receiving current based on movement of electrons and positive holes generated in the sequential mesa portion when light is incident from the substrate toward the light absorbing layer is larger at a central portion than at a peripheral portion of the sequential mesa portion.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: August 30, 2005
    Assignee: Anritsu Corporation
    Inventors: Jun Hiraoka, Kazuo Mizuno, Yuichi Sasaki
  • Patent number: 6900520
    Abstract: A semiconductor element includes a substrate and a first DMOS element formed on a first portion of the substrate. The DMOS element includes a gate electrode that is formed to have slanted side walls. The semiconductor element also includes a first MOS element formed on a second portion of the substrate that is separate from the first portion.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: May 31, 2005
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventor: Suk-Kyun Lee
  • Patent number: 6897543
    Abstract: Integrated circuit antifuse circuitry is provided. A metal-oxide-semiconductor (MOS) antifuse transistor serves as an electrically-programmable antifuse. In its unprogrammed state, the antifuse transistor is off and has a relatively high resistance. During programming, the antifuse transistor is turned on which melts the underlying silicon and causes a permanent reduction in the transistor's resistance. A sensing circuit monitors the resistance of the antifuse transistor and supplies a high or low output signal accordingly. The antifuse transistor may be turned on during programming by raising the voltage at its substrate relative to its source. The substrate may be connected to ground through a resistor. The substrate may be biased by causing current to flow through the resistor. Current may be made to flow through the resistor by inducing avalanche breakdown of the drain-substrate junction or by producing Zener breakdown of external Zener diode circuitry connected to the resistor.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: May 24, 2005
    Assignee: Altera Corporation
    Inventors: Cheng H. Huang, Yowjuang Liu, Chih-Ching Shih, Hugh Sung-Ki O
  • Patent number: 6894324
    Abstract: A silicon-on-insulator (SOI) gated diode and non-gated junction diode are provided. The SOI gated diode has a PN junction at the middle region under the gate, and which has more junction area than a normal diode. The SOI non-gated junction diode has a PN junction at the middle region thereof, and then also has more junction area than a normal diode. The SOI diodes of the present invention improve the protection level offered for electrical overstress (EOS)/electrostatic discharge (ESD) due to the low power density and heating for providing more junction area than normal ones. The I/O ESD protection circuits, which comprise primary diodes, a first plurality of diodes, and a second plurality of diodes, all of which are formed of the present SOI diodes, could effectively discharge the current when there is an ESD event. And, the ESD protection circuits, which comprise more primary diodes, could effectively reduce the parasitic input capacitance, so that they can be used in the RF circuits or HF circuits.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: May 17, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Dou Ker, Kei-Kang Hung, Tien-Hao Tang
  • Patent number: 6885082
    Abstract: The present invention provides a semiconductor device having a bipolar transistor constructed so as to allow the adjustment of the base input signal voltage that switches on a transistor in which a diffusion region of a different conductivity type from that of the base region is formed at the contact of the base electrode, and to allow the base current to be controlled when a digital transistor is produced. A base electrode connection region 24 of an n+-type is provided to a p-type base region 12, and a zener voltage control diffusion region 25 of a p+-type is provided around the periphery of the base electrode connection region 24 so as to form a pn junction and undergo zener breakdown at the desired voltage. A resistor 26 composed of polysilicon is connected to the base electrode connection region 24 via a metal electrode 16a. As a result, this semiconductor device has a bipolar transistor in which a zener diode ZD and the resistor 26 are serially built into the base.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: April 26, 2005
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 6867436
    Abstract: A bi-directional transient voltage suppression (“TVS”) device (101) includes a semiconductor die (201) that has a first avalanche diode (103) in series with a first rectifier diode (104) connected cathode to cathode, electrically coupled in an anti-parallel configuration with a second avalanche diode (105) in series with a second rectifier diode (106) also connected cathode to cathode. All the diodes of the TVS device are on a single semiconductor substrate (301). The die has a low resistivity buried diffused layer (303) having a first conductivity type disposed between a semiconductor substrate (301) having the opposite conductivity type and a high resistivity epitaxial layer (305) having the first conductivity type. The buried diffused layer shunts most of a transient current away from a portion of the epitaxial layer between the first avalanche diode and the first rectifier diode, thereby reducing the clamping voltage relative to the breakdown voltage.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: March 15, 2005
    Assignee: Protek Devices, LP
    Inventors: Fred Matteson, Venkatesh Panemangalore Pai, Donald K. Cartmell
  • Patent number: 6861680
    Abstract: A silicon-on-insulator (SOI) gated diode and non-gated junction diode are provided. The SOI gated diode has a PN junction at the middle region under the gate, which has more junction area than a normal diode. The SOI non-gated junction diode has a PN junction at the middle region thereof, and also has more junction area than a normal diode. The SOI diodes of the present invention improve the protection level offered for electrical overstress (EOS)/electrostatic discharge (ESD) due to the low power density and heating for providing more junction area than normal ones. The I/O ESD protection circuits, which comprise primary diodes, a first plurality of diodes, and a second plurality of diodes, all of which are formed of the present SOI diodes, could effectively discharge the current when there is an ESD event. And the ESD protection circuits, which comprise more primary diodes, could effectively reduce the parasitic input capacitance, so that they can be used in the RF circuits or HF circuits.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 1, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Dou Ker, Kei-Kang Hung, Tien-Hao Tang
  • Patent number: 6847045
    Abstract: A cold electron emitter may include a heavily a p-doped semiconductor, and dielectric layer, and a metallic layer (p-D-M structure). A modification of this structure includes a heavily n+ doped region below the p region (n+-p-D-M structure). These structures make it possible to combine high current emission with stable (durable) operation. The high current density is possible since under certain voltage drop across the dielectric layer, effective negative electron affinity is realized for the quasi-equilibrium “cold” electrons accumulated in the depletion layer in the p-region next to the dielectric layer. These electrons are generated as a result of the avalanche in the p-D-M structure or injection processes in the n+-p-D-M structure. These emitters are stable since they make use of relatively low extracting field in the vacuum region and are not affected by contamination and absorption from accelerated ions. In addition, the structures may be fabricated with current state-of-the-art technology.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: January 25, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viatcheslav V. Ossipov, Alexandre M. Bratkovski, Henryk Birecki
  • Patent number: 6822294
    Abstract: In an ESD protection device using a LVTSCR-like structure, the holding voltage is increased by placing the p+ emitter outside the drain of the device, thereby retarding the injection of holes from the p+ emitter. The p+ emitter may be implemented in one or more emitter regions formed outside the drain. The drain is split between a n+ drain and a floating n+ region near the gate to avoid excessive avalanche injection and resultant local overheating.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: November 23, 2004
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Ann Concannon, Peter J. Hopper
  • Publication number: 20040201079
    Abstract: A single-electrode, push-pull semiconductor PIN Mach-Zehnder modulator (10) that includes first and second PIN devices (12, 14) on a substrate (16). Intrinsic layers (22, 28) of the devices (12, 14) are the active regions of two arms (50, 52) of a Mach-Zehnder interferometer. An outer electrode (38) is connected to the N layer (24) of the first PIN device (12) and a center electrode (40) is connected to the P layer (20) of the first PIN device (12). An outer electrode (42) is connected to the P layer (26) of the second PIN device (14) and the center electrode (40) is connected to the N layer (30) of the second PIN device (14). An RF modulation signal biases the PIN devices (12, 14) in opposite directions and causes the index refraction of the intrinsic layers (22, 28) to change in opposite directions to give a push-pull modulation effect.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Inventors: David C. Scott, Timothy A. Vang, Wenshen Wang, Elizabeth T. Kunkee
  • Patent number: 6791161
    Abstract: The present invention is directed to a novel semiconductor device, which can be efficiently fabricated for use in Zener diode applications. Precision Zener diodes and the method for manufacturing the same are provided. The Zener diodes of the present invention are made from a semiconductor substrate layer having a range or resistivity, on which is grown an epitaxial layer. The epitaxial layer has a resistivity greater than that of the substrate. The diode also has an interior region of doped semiconductor material of the same conductivity type as the substrate. The interior region extends through the epitaxial layer and into the substrate layer. The diode also has a junction layer of a conductivity type different from the substrate. The junction layer is formed in the epitaxial surface, and the junction layer forms an interior P/N junction with the interior region and a peripheral P/N junction with a peripheral portion of the device.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 14, 2004
    Assignee: FabTech, Inc.
    Inventor: Roman J. Hamerski
  • Patent number: 6784520
    Abstract: A constant voltage device includes n-type and p-type doped layers. The n-type doped layer is formed by heavily doping with an n-type impurity an upper portion of a p-type silicon semiconductor substrate, in an active region defined by an isolating insulator film. The p-type doped layer is formed by doping the region under the n-type doped layer with a p-type impurity. The n-type and p-type doped layers are provided to form two layers in parallel with the substrate surface of the semiconductor substrate, whereby a pn junction formed between the n-type and p-type doped layers creates a diode structure. Impurity concentration in the p-type doped layer is established so that the impurity concentration of a portion adjacent the isolating insulator film is lower that that of the rest.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: August 31, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hiroyuki Doi
  • Patent number: 6781161
    Abstract: A semiconductor device with two epitaxial layers formed on a substrate. The middle layer of epitaxial material can be formed thin and with an appropriate doping concentration to provide a low avalanche breakdown voltage with a negative resistance characteristic. The top layer of epitaxial material is doped with the same concentration as the substrate to provide a two-terminal thyristor device with symmetrical bidirectional operating characteristics.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: August 24, 2004
    Assignee: Teccor Electronics, LP
    Inventors: Elmer L. Turner, Jr., Yong-Fa Alan Wang
  • Patent number: 6768138
    Abstract: The invention relates to technology improving the withstand voltage of a Schottky diode. With a diode of the present invention, the distance a between the long sides of the narrow groove withstand voltage portions and the inner ring circumference of the intermediate withstand voltage portion is set to twice the distance b between the short sides of the narrow groove withstand voltage portions and the inner ring circumference of the intermediate withstand voltage portion. Furthermore, the distance c between the inner ring circumference of the innermost outer withstand voltage portions and the outer ring circumference of the intermediate withstand voltage portion, the distance u between the adjacent outer withstand voltage portions, and the distance d between the adjacent narrow groove withstand voltage portions are all equal to the distance a.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: July 27, 2004
    Assignee: Shindengen Electric Manufacturing Co., Ltd.
    Inventors: Mizue Kitada, Kosuke Ohsima, Shinji Kunori