With Bumps On Ends Of Lead Fingers To Connect To Semiconductor Patents (Class 257/673)
  • Publication number: 20120299170
    Abstract: A module and a method for manufacturing a module are disclosed. An embodiment of a module comprises a first semiconductor device, a frame arranged on the first semiconductor device, the frame comprising a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Inventors: Daniel Kehrer, Stefan Martens, Tze Yang Hin, Helmut Wietschorke, Horst Theuss, Beng Keh See, Ulrich Krumbein
  • Publication number: 20120286408
    Abstract: Wafer level packaging (WLP) packages semiconductor dies onto a wafer structure. After the wafer level package is complete, individual packages are obtained by singulating the wafer level package. The resulting package has a small form factor suitable for miniaturization. Unfortunately conventional WLP have poor heat dissipation. An interposer with a thermal pad can be attached to the semiconductor die to facilitate improved heat dissipation. In one embodiment, the interposer can also provide a wafer substrate for the wafer level package. Furthermore, the interposer can be constructed using well established and inexpensive processes. The thermal pad attached to the interposer can be coupled to the ground plane of a system where heat drawn from the semiconductor die can be dissipated.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Robert W. Warren, Nic Rossi
  • Patent number: 8304867
    Abstract: An integrated circuit (IC) device includes a substrate having a top surface including active circuitry including a plurality of I/O nodes, and a plurality of die pads coupled to the plurality of I/O nodes. A first dielectric layer including first dielectric vias is over the plurality of die pads. A redirect layer (RDL) including a plurality of RDL capture pads is coupled to the plurality of die pads over the first dielectric vias. A second dielectric layer including second dielectric vias is over the plurality of RDL capture pads. At least one of the second dielectric vias is a crack arrest via that has a via shape that includes an apex that faces away from a neutral stress point of the IC die and is oriented along a line from the neutral stress point to the crack arrest via to face in a range of ±30 degrees from the line. Under bump metallization (UBM) pads are coupled to the plurality of RDL capture pads over the second dielectric vias, and metal bonding connectors are on the UBM pads.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Fabian McCarthy, Stanley Craig Beddingfield
  • Publication number: 20120273929
    Abstract: The present technology discloses a multi-die package. The package comprises a lead frame structure and three dies including a first flip chip die, a second flip chip die and a third flip chip die stacked vertically. The first flip chip die is mounted on the bottom surface of the lead frame structure through the flip chip bumps; the second flip chip is mounted on the top surface of the first flip chip die through flip chip bumps; and the third flip chip die is mounted on the top surface of the lead frame structure through flip chip bumps.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Inventor: Hunt Hang Jiang
  • Patent number: 8298871
    Abstract: A leadframe suitable for use in the packaging of at least two integrated circuit dice into a single integrated circuit package is described. The leadframe includes a plurality of leads. Each of a first set of the plurality of leads has a first side and a second side substantially opposite the first side of the lead. Additionally, each of the first and second sides of the first set of leads each include at least two solder pads. Each solder pad on a lead of the first set of leads is isolated from other solder pads on the same side of the lead with at least one recessed region adjacent the solder pad. In various embodiments, I/O pads from at least two dice are physically and electrically connected to the opposing sides of the leads.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 30, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Will K. Wong, Nghia T. Tu, Jaime A. Bayan
  • Patent number: 8283758
    Abstract: Several embodiments of microelectronic packages with enhanced heat dissipation and associated methods of manufacturing are disclosed herein. In one embodiment, a microelectronic package includes a semiconductor die having a first side and a second side opposite the first side and a lead frame proximate the semiconductor die. The lead frame has a lead finger electrically coupled to the first side of the semiconductor die. The microelectronic package also includes an encapsulant at least partially encapsulating the semiconductor die and the lead frame. The encapsulant does not cover at least a portion of the second side of the semiconductor die.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 9, 2012
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Hunt Hang Jiang
  • Patent number: 8269321
    Abstract: According to one exemplary embodiment, a lead frame package includes a number of leads and a number of contacts, where each of the contacts is situated over one of the leads. The lead frame package further includes a semiconductor die including a number of bond pads. Each of the contacts is directly attached and bonded to one of the bond pads on the semiconductor die. Each of the contacts is situated over a top portion of one of the leads, where the top portion has a shorter length than a middle portion of each of the leads. Each of the contacts is connected to one of the bond pads on the semiconductor die without a wire bond. The semiconductor die does not include a redistribution layer situated over an active surface of the semiconductor die.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 18, 2012
    Assignee: Broadcom Corporation
    Inventors: Ken Jian Ming Wang, Matthew Vernon Kaufmann
  • Patent number: 8269322
    Abstract: A tape wiring substrate may have dispersion wiring patterns. The dispersion wiring patterns may be provided between input/output wiring pattern groups to compensate for the intervals therebetween. Connecting wiring patterns may be configured to connect the dispersion wiring patterns to a first end of the adjacent input/output wiring pattern.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: September 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Han Kim
  • Patent number: 8264084
    Abstract: A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes: a) Lithographically patterning the top metal layer into the contact zones and the contact enhancement zones. b) Forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 11, 2012
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: François Hébert, Anup Bhalla, Kai Liu, Ming Sun
  • Patent number: 8253239
    Abstract: In one exemplary embodiment, a multi-chip connector is formed to have a first conductive strip that is suitable for attaching to a first semiconductor die and a second conductive strip that is attached suitable for attaching to a second semiconductor die.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 28, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Francis J. Carney, Phillip Celaya, Joseph K. Fauty, James P. Letterman, Stephen St. Germain, Jay A. Yoder
  • Patent number: 8253224
    Abstract: A copper strap for a semiconductor device package having a contact electrically connected to a die electrode, a leg portion electrically connected to a lead frame, a web portion positioned between the contact and the leg portion and connected to the leg portion and a connection region connecting the web portion to the contact. The contact includes a body having a plurality of formations, each of the plurality of formations having a concavity and an opposing convexity positioned to generally face the die electrode.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 28, 2012
    Assignee: International Rectifier Corporation
    Inventors: Kunzhong Hu, Chuan Cheah
  • Publication number: 20120153447
    Abstract: Processes of assembling microelectronic packages with lead frames and/or other suitable substrates are described herein. In one embodiment, a method for fabricating a semiconductor assembly includes forming an attachment area and a non-attachment area on a lead finger of a lead frame. The attachment area is more wettable to the solder ball than the non-attachment area during reflow. The method also includes contacting a solder ball carried by a semiconductor die with the attachment area of the lead finger, reflowing the solder ball while the solder ball is in contact with the attachment area of the lead finger, and controllably collapsing the solder ball to establish an electrical connection between the semiconductor die and the lead finger of the lead frame.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Inventor: Hunt Hang Jiang
  • Publication number: 20120153446
    Abstract: Several embodiments of microelectronic packages with enhanced heat dissipation and associated methods of manufacturing are disclosed herein. In one embodiment, a microelectronic package includes a semiconductor die having a first side and a second side opposite the first side and a lead frame proximate the semiconductor die. The lead frame has a lead finger electrically coupled to the first side of the semiconductor die. The microelectronic package also includes an encapsulant at least partially encapsulating the semiconductor die and the lead frame. The encapsulant does not cover at least a portion of the second side of the semiconductor die.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Inventor: Hunt Hang Jiang
  • Patent number: 8203201
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a paddle, an inner post adjacent to the paddle, a jumper pad, and an outer post, with the jumper pad between the inner post and the outer post; mounting an integrated circuit over a paddle first side, the paddle first side co-planar with the outer post; connecting a first jumper interconnect between the integrated circuit and the jumper pad; connecting a second jumper interconnect between the jumper pad and the outer post; and forming an encapsulation over paddle, the integrated circuit, the first jumper interconnect, the jumper pad, and the second jumper interconnect.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 19, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Emmanuel Espiritu, Henry Descalzo Bathan
  • Patent number: 8193622
    Abstract: A semiconductor die package is disclosed. The semiconductor die package includes a semiconductor die comprising an input at a first top semiconductor die surface and an output at a second bottom semiconductor die surface. A leadframe having a first leadframe surface and a second leadframe surface opposite the first leadframe surface is in the semiconductor die package and is coupled to the first top semiconductor die surface. A clip having a first clip surface and a second clip surface is coupled to the second bottom semiconductor die surface. A molding material having exterior molding material surfaces covers at least a portion of the leadframe, the clip, and the semiconductor die. The first leadframe surface and the first clip surface are exposed by the molding material, and the first leadframe surface, the first clip surface, and the exterior molding material surfaces of the molding material form exterior surfaces of the semiconductor die package.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: June 5, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Ruben P. Madrid
  • Patent number: 8188581
    Abstract: A multi-chip module (MCM) is described. This MCM includes at least two substrates that are remateably mechanically coupled by positive and negative features on facing surfaces of the substrates. These positive and negative features mate with each other. In particular, a positive feature may mate with a given pair of negative features, which includes negative features on each of the substrates. Furthermore, at least one of the negative features in the given pair may include a hard magnetic material, and the positive feature and the other negative feature in the given pair may include a soft magnetic material that provide a flux-return path to the hard magnetic material. In this way, the hard magnetic material may facilitate the remateable mechanical coupling of the substrates.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 29, 2012
    Assignee: Oracle America, Inc.
    Inventors: Jing Shi, Hiren D. Thacker, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20120104580
    Abstract: A substrate-less composite power semiconductor device may include a thin substrate and a top metal layer located on a top surface of the substrate. A total thickness of the substrate and the epitaxial layer may be less than 25 microns. Solder bumps are formed on top of the top metal layer and molding compound surrounds the solder bumps and leaves the solder bumps at least partly exposed.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Tao Feng, Zhiqiang Niu, Yuping Gong, Ruisheng Wu, Ping Huang, Lei Shi, Yueh-Se Ho
  • Publication number: 20120091568
    Abstract: One embodiment includes an encapsulated semiconductor package having a lead frame with die pad surrounded by a plurality of first and second leadfingers. A semiconductor chip including chip contact pads on its upper active surface is attached to the die pad. A plurality of first bond wires, incoluding a first electrically conductive material, extend between the chip contact pads and the plurality of first leadfingers. A plurality of second bond wires, including a second electrically conductive material, extend between a chip contact pad and a second leadfinger. The semiconductor package further includes a plurality of electrically conducting means attached to the second leadfingers.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Jenny Ong Wai Lian, Chen Wei Adrian Chng
  • Patent number: 8159055
    Abstract: A semiconductor device includes a semiconductor element; a group of back-inner terminals coupled with the semiconductor element through bonding wires and arranged in an area array shape so as to be exposed inside of the bottom; a group of back-outer terminals arranged outside the group of back-inner terminals; a group of front-outer terminals located immediately above the back-outer terminals to be exposed from the front surface, which are electrically coupled with the back-outer terminals located immediately therebelow through coupling conductors, respectively; and a sealing resin which seals the semiconductor element and bonding wires and non-exposed portions of said back-inner terminals, back-outer terminals and front-outer terminals. On at least the respective terminal faces of said back-inner terminals, back-outer terminals and front-outer terminals, noble-metal plated layers are formed.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: April 17, 2012
    Assignee: Mitsui High-Tec, Inc.
    Inventors: Kiyoshi Matsunaga, Takao Shioyama, Tetsuyuki Hirashima
  • Patent number: 8154110
    Abstract: A dual-face package has an LSI chip sealed with a mold resin, and electrodes for external connections on both of the front face and the back face. The LSI chip is bonded onto the die pad of a leadframe whose outer lead portions are exposed as back-face electrodes at least the back face. The LSI chip and a plurality of inner lead portions of the leadframe are connected by wiring. At least some of the plurality of inner lead portions have front-face electrodes integrally formed by working a portion of the leadframe. Head faces of the front-face electrodes, or bump electrodes connected to the respective head faces of the front-face electrodes serve as electrodes for external connections to another substrate, element, or the like.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: April 10, 2012
    Assignee: Oki Semiconductor Co., Ltd
    Inventors: Masamichi Ishihara, Harufumi Kobayashi
  • Publication number: 20120074544
    Abstract: A semiconductor device includes, a lead frame having a die pad and a plurality of leads each disposed around the die pad, a semiconductor element rested on the die pad of the lead frame, and bonding wires for electrically interconnecting the lead of the lead frame and the semiconductor element. The lead frame, the semiconductor element, and the bonding wires are sealed with a sealing resin section. The sealing resin section includes a central region provided over and around the semiconductor device, and a marginal region provided in the periphery of the central region. Thickness of the central region is greater than that of the marginal region.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 29, 2012
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Masachika MASUDA, Koji TOMITA, Tadashi OKAMOTO, Yasunori TANAKA, Hiroshi OHSAWA, Kazuyuki MIYANO, Atsushi KURAHASHI, Hiromichi SUZUKI
  • Patent number: 8143707
    Abstract: A semiconductor device includes a circuit base including an inner lead portion and an outer lead portion. The inner lead portion has a plurality of inner leads. At least part of the inner leads is routed inside a chip mounting area. On both upper and lower surfaces of the circuit base, a first and a second semiconductor chip are mounted. At least part of electrode pads of the first semiconductor chip are electrically connected to electrode pads of the second semiconductor chip via the inner leads.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Goto
  • Publication number: 20120068320
    Abstract: An integrated circuit for implementing a switch-mode power converter is disclosed. The integrated circuit comprises at least a first semiconductor die having an electrically quiet surface, a second semiconductor die for controlling the operation of said first semiconductor die stacked on said first semiconductor die having said electrically quiet surface and a lead frame structure for supporting said first semiconductor die and electrically coupling said first and second semiconductor dies to external circuitry.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Inventors: Eric YANG, Jinghai ZHOU, Hunt Hang JIANG
  • Patent number: 8132709
    Abstract: A semiconductor device comprises a semiconductor element having electrodes, a metal member, wires that electrically connect the semiconductor element and the metal member and/or electrodes within the semiconductor element, wherein the wires constitute at least a first wire loop and a second wire loop, the first wire loop is bonded at one end to a first bonding point and at the other end to a second bonding point, and has a flat part which includes the surface of a boll part and the wire located contiguously the ball part surface, and the second wire loop connects the surface of the ball part and a third bonding point.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 13, 2012
    Assignee: Nichia Corporation
    Inventors: Tadao Hayashi, Yoshiharu Nagae
  • Patent number: 8129221
    Abstract: Example embodiments relate to semiconductor packages and methods of forming the same. A semiconductor package according to example embodiments may include a printed circuit board (PCB), a first semiconductor chip mounted on the PCB, and a chip package mounted on the first semiconductor chip. The chip package may be in direct contact with the first semiconductor chip.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Joo Hwang, Tae-Gyeong Chung, Eun-Chul Ahn
  • Patent number: 8129229
    Abstract: A metal leadframe to be used in manufacturing a “flip-chip” type semiconductor package is treated to form a metal plated layer in an area to be contacted by a solder ball or bump on the chip. The leadframe is then process further to form an oxide or organometallic layer around the metal plated layer. Pretreating the leadframe in this manner prevents the solder from spreading out during reflow and maintains a good standoff distance between the chip and leadframe. During the molding process, the standoff between the chip and leadframe allows the molding compound to flow freely, preventing voids in the finished package.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 6, 2012
    Assignee: UTAC Thai Limited
    Inventors: Saravuth Sirinorakul, Somchai Nondhasitthichai
  • Patent number: 8124461
    Abstract: A leadframe package includes a die pad with four unitary, outwardly extending slender bars; a plurality of leads arranged along periphery of the die pad; a separate pad segment separated from the die pad and isolated from the plurality of leads; a semiconductor die mounted on an upper side of the die pad, wherein the semiconductor die contains first bond pads wire-bonded to respective the plurality of leads and a second bond pad wire-bonded to the separate pad segment; and a molding compound encapsulating the semiconductor die, the upper side of the die pad, the first suspended pad segment and inner portions of the plurality of leads.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: February 28, 2012
    Assignee: Mediatek Inc.
    Inventors: Nan-Jang Chen, Hong-Chin Lin
  • Patent number: 8114706
    Abstract: A method of packaging an integrated circuit, including providing a lead frame having lead fingers, where the lead frame has a gold layer thereon on a top surface and a bottom surface. An integrated circuit die is attached to the lead frame. The gold layer is substantially removed from portions of the top surface of the lead frame. The integrated circuit die is wire bonded to the lead fingers with a plurality of wire stitches subsequent to substantially removing the gold. The die is encapsulated in a mold compound to form a packaged integrated circuit.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Takahiko Kudoh, Muhammad Faisal Khan
  • Patent number: 8110905
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a substrate; mounting a base integrated circuit on the substrate; forming a leadframe interposer, over the base integrated circuit, by: providing a metal sheet, mounting an integrated circuit die on the metal sheet, injecting a molded package body on the integrated circuit die and the metal sheet, and forming a ball pad, a bond finger, or a combination thereof from the metal sheet that is not protected by the molded package body; coupling a circuit package on the ball pad; and forming a component package on the substrate, the base integrated circuit, and the leadframe interposer.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 7, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: DongSam Park, YoungSik Cho, Sang-Ho Lee
  • Patent number: 8105932
    Abstract: One embodiment includes an encapsulated semiconductor package having a lead frame with die pad surrounded by a plurality of first and second leadfingers. A semiconductor chip including chip contact pads on its upper active surface is attached to the die pad. A plurality of first bond wires, including a first electrically conductive material, extend between the chip contact pads and the plurality of first leadfingers. A plurality of second bond wires, including a second electrically conductive material, extend between a chip contact pad and a second leadfinger. The semiconductor package further includes a plurality of electrically conducting means attached to the second leadfingers.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 31, 2012
    Assignee: Infineon Technologies AG
    Inventors: Jenny Ong Wai Lian, Chen Wei Adrian Chng
  • Patent number: 8102666
    Abstract: An integrated circuit package system includes: connecting a carrier and an integrated circuit mounted thereover; mounting an interposer, having an opening, over the integrated circuit; connecting an interconnect between the interposer and the carrier through the opening; and forming an encapsulation planar with a carrier vertical side of the carrier and an interposer vertical side of the interposer.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: January 24, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: HyungSang Park, In Sang Yoon, DeokKyung Yang, Soo-San Park
  • Publication number: 20110309483
    Abstract: A semiconductor device that can cope with larger numbers of pins and finer pitches while suppressing lowering of the manufacturing yield and reliability includes: a semiconductor chip having a plurality of electrodes provided on an upper surface thereof; a plurality of lead terminals including inner lead portions disposed toward the semiconductor chip; a sheet-form wiring member having a plurality of conductors insulated from one another on one main surface thereof; and a sealing-resin layer for sealing at least the semiconductor chip, the inner lead portions and the wiring member. The electrodes of the semiconductor device and the inner lead portions of the lead terminals are electrically connected respectively to each other via the conductors of the wiring member.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: Rohm Co., Ltd.
    Inventor: Akihiko Tadaoka
  • Patent number: 8076762
    Abstract: A packaged semiconductor product includes a packaging substrate coupled to a semiconductor die through an interconnect structure with elements of variable features. The interconnect structure may be bumps or pillars. The variable features of the interconnect structure induce a reverse bend on the semiconductor die that mitigates warpage of the semiconductor die during semiconductor assembly by balancing bending of the packaging substrate during reflow. The variable features can be variable height and/or variable composition.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: December 13, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Arvind Chandrasekaran, Ratibor Radojcic
  • Patent number: 8072051
    Abstract: Semiconductor packages and methods for making and using the same are described. The semiconductor packages contain a lead frame that has been folded to create folded leads that form a customized array of land pads and vias. The lead frame contains both longer folded lead and shorter folded leads. The longer leads can be folded so that an upper part of the longer leads form vias, the lower part forms part of a land pad array, and a substantially flat part that is connected to a first die containing an IC. The shorter leads can be folded so that a lower part forms part of a land pad array and the short leads are connected to a second die containing in IC. The folded leads can be routed according to the requirements of each specific IC die to which they are connected and therefore can support multiple dies in the semiconductor package. Other embodiments are also described.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: December 6, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Manolito Galera, Leocadio Alabin, In Suk Kim
  • Patent number: 8067823
    Abstract: A flip chip lead frame package includes a die and a lead frame having a die paddle and leads, and has interconnection between the active site of the die and the die paddle. Also, methods for making the package are disclosed.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: November 29, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Cheonhee Lee
  • Patent number: 8067827
    Abstract: An assembly of microelectronic devices and method for forming an assembly of microelectronic devices. In one embodiment, the method includes positioning a first packaged microelectronic device adjacent to a support member having support member circuitry, with the first packaged microelectronic device having a first microelectronic die at least partially encased in a first encapsulant to define a first package configuration. The method can further include electrically connecting the first packaged microelectronic device to a first portion of the support member circuitry and positioning at least proximate to the first packaged microelectronic device a second packaged microelectronic device having a second microelectronic die at least partially encased in a second encapsulant to define a second package configuration different than the first package configuration. The first packaged microelectronic device can be positioned between the support member and the second packaged microelectronic device.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: David J. Corisis
  • Publication number: 20110285000
    Abstract: A semiconductor package system, and method of manufacturing thereof, includes: an electrical substrate having a contact pad; a support structure having a lead finger thereon; a bump on the lead finger, the bump clamped on a top and a side of the lead finger and connected with the contact pad; and an encapsulant over the lead finger and the electrical substrate.
    Type: Application
    Filed: July 29, 2011
    Publication date: November 24, 2011
    Inventors: Hun Teak Lee, Jong Kook Kim, ChulSik Kim, Ki Youn Jang
  • Patent number: 8049312
    Abstract: A semiconductor die package includes: an assembly including a semiconductor die, a clip structure attached to an upper surface of the semiconductor die, and a heat sink attached to an upper surface of the clip structure; and a molding material partially encapsulating the assembly, wherein an upper surface of the heat sink is exposed through the molding material.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: November 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Juan Alejandro Herbsommer, Jonathan A. Noquil, Osvaldo J. Lopez
  • Patent number: 8045331
    Abstract: A printed circuit board includes a core layer, an insulation layer formed on the core layer and having a cavity formed on a part of the insulation layer, and a circuit pattern formed on the insulation layer, wherein the circuit pattern comprises one or more external terminals positioned above the cavity.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-Seong Seo, Young-Min Lee, Kyu-Sub Kwak
  • Patent number: 8044496
    Abstract: A QFN semiconductor package includes a die attach pad; a semiconductor die mounted on the die attach pad; an inner terminal lead disposed adjacent to the die attach pad; a first wire bonding the inner terminal lead to the semiconductor die; an extended, outer terminal lead disposed along periphery of the QFN semiconductor package, wherein the extended, outer terminal lead is disposed beyond a maximum wire length which is provided for a specific minimum pad opening size on the semiconductor die; an intermediary terminal disposed between the inner terminal lead and the extended, outer terminal lead; a second wire bonding the intermediary terminal to the semiconductor die; and a trace interconnecting the intermediary terminal to the extended, outer terminal lead.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 25, 2011
    Assignee: Mediatek Inc.
    Inventors: Tung-Hsien Hsieh, Nan-Cheng Chen
  • Patent number: 8039319
    Abstract: A method for making a quad flat non-lead (QFN) semiconductor package includes half etching a first side of a carrier to form top portions of a lead array and a die attach surface of a die attach pad, wherein the lead array includes at least one inner terminal lead disposed adjacent to the die attach pad, at least one extended, outer terminal lead disposed along periphery of the QFN semiconductor package, and at least one intermediary terminal disposed between the inner terminal lead and the extended, outer terminal lead, wherein the intermediary terminal is disposed between the inner terminal lead and the extended, outer terminal lead.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 18, 2011
    Assignee: Mediatek Inc.
    Inventors: Tung-Hsien Hsieh, Nan-Cheng Chen
  • Patent number: 8039933
    Abstract: A QFN semiconductor package includes a die attach pad; a semiconductor die mounted on the die attach pad; an inner terminal lead disposed adjacent to the die attach pad; a first wire bonding the inner terminal lead to the semiconductor die; an extended, outer terminal lead disposed along periphery of the QFN semiconductor package, wherein the extended, outer terminal lead is disposed beyond a maximum wire length which is provided for a specific minimum pad opening size on the semiconductor die; an intermediary terminal disposed between the inner terminal lead and the extended, outer terminal lead; a second wire bonding the intermediary terminal to the semiconductor die; and a third wire bonding the intermediary terminal to the extended, outer terminal lead.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 18, 2011
    Assignee: Mediatek Inc.
    Inventors: Tung-Hsien Hsieh, Nan-Cheng Chen
  • Publication number: 20110248390
    Abstract: A lead frame for providing electrical interconnection to an Integrated Circuit (IC) die. The lead frame includes a die support area for receiving and supporting the IC die and a plurality of leads surrounding the die support area. A plurality of interconnect receiving portions is formed in the die support area. The interconnect receiving portions are for providing electrical interconnection to first bumps on a bottom surface of the IC die. The leads are for providing electrical interconnection to second bumps on a surface of the IC die, the second bumps surrounding the first bumps.
    Type: Application
    Filed: March 15, 2011
    Publication date: October 13, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Tzu Ling WONG, Chee Seng FOONG, Kai Yun YOW
  • Publication number: 20110233745
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 8022514
    Abstract: An integrated circuit package system including forming a leadframe having a lead with a leadfinger support of a predetermined height, and attaching an integrated circuit die with an electrical interconnect at a predetermined collapse height determined by the predetermined height of the leadfinger support.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 20, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Henry Descalzo Bathan, Zigmund Ramirez Camacho, Arnel Senosa Trasporto, Jeffrey D. Punzalan
  • Patent number: 8022555
    Abstract: Example embodiments relate to semiconductor packages and methods of forming the same. A semiconductor package according to example embodiments may include a printed circuit board (PCB), a first semiconductor chip mounted on the PCB, and a chip package mounted on the first semiconductor chip. The chip package may be in direct contact with the first semiconductor chip.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Joo Hwang, Tae-Gyeong Chung, Eun-Chul Ahn
  • Publication number: 20110221047
    Abstract: A flip chip package structure includes a chip placed under a lead frame, a bump on the upper surface of the chip that is electrically connected to the lead of the lead frame, and a backside metal on the lower surface of the chip that is exposed outside an encapsulant encapsulating the chip and a portion of the lead frame.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 15, 2011
    Applicant: RICHTEK TECHNOLOGY CORP.
    Inventors: YU-LIN YANG, LIH-MING DOONG
  • Publication number: 20110204499
    Abstract: An interposer includes a substrate, a conductive structure configured to contact the back side of a semiconductor device and contact pads. The interposer may include first and second sets of contact pads carried by the substrate. The interposer may also include conductive traces carried by the substrate to electrically connect corresponding contact pads of the first and second sets. The receptacles, which may be formed in a surface of the substrate and expose contacts of the second set, may be configured to at least partially receive conductive structures that are secured to the contact pads of the second set. Thus, the interposer may be useful in providing semiconductor device assemblies and packages of reduced height or profile. Such assemblies and packages are also described, as are multi-chip modules including such assemblies or packages.
    Type: Application
    Filed: March 8, 2011
    Publication date: August 25, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Teck Kheng Lee
  • Patent number: 8000107
    Abstract: A carrier with embedded components comprises a substrate and at least one embedded component. The substrate has at least one slot and a first composite layer. The embedded component is disposed at the slot of the substrate. The first composite layer has a degassing structure, at least one first through hole and at least one first fastener, wherein the degassing structure corresponds to the slot, the first through hole exposes the embedded component, and the first fastener is formed at the first through hole and contacts the embedded component. According to the present invention, the degassing structure can smoothly discharge the hydrosphere existing within the carrier under high temperature circumstances and the first fastener is in contact with the embedded component, which increases the joint strength between the embedded component and the substrate.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 16, 2011
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Yung-Hui Wang, In-De Ou, Chih-Pin Hung
  • Patent number: RE43444
    Abstract: A semiconductor device comprising a semiconductor pellet mounted on a pellet mounting area of the main surface of a base substrate, in which first electrode pads arranged on the back of the base substrate are electrically connected to bonding pads arranged on the main surface of the semiconductor pellet. The base substrate is formed of a rigid substrate, and its first electrode pads are electrically connected to the second electrode pads arranged on its reverse side. The semiconductor pellet is mounted on the pellet mounting area of the main surface of the base substrate, with its main surface downward, and its bonding pads are connected electrically with the second electrode pads of the base substrate through bonding wires passing through slits formed in the base substrate.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Atsushi Nakamura, Kunihiko Nishi