In Combination With Device Formed In Single Crystal Semiconductor Material (e.g., Stacked Fets) Patents (Class 257/67)
  • Patent number: 7098478
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 29, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Patent number: 7095043
    Abstract: An (SiGe)C layer having a stoichiometric ratio of about 1:1 is locally formed on an Si layer, a large forbidden band width semiconductor device is prepared inside the layered structure thereof and an Si semiconductor integrated circuit is formed in the regions not formed with the layered structure, whereby high frequency high power operation of the device is enabled by the large forbidden band width semiconductor device and high performance is attained by hybridization of the Si integrated circuit.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: August 22, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Katsuya Oda, Nobuyuki Sugii, Makoto Miura, Isao Suzumura, Katsuyoshi Washio
  • Patent number: 7078275
    Abstract: An object is to provide a semiconductor device manufacturing method which makes possible a thin film transistor which is little affected by crystal grain boundaries, even when the channel width of the thin film transistor is made larger than the crystal grains of the semiconductor material. To this end, a thin film transistor of this invention comprises a gate electrode 22, source region 24, drain region 25, and channel formation region 26. The silicon film used in forming the active region comprises a plurality of substantially single-crystal silicon crystal grains, and regions including crystal grain boundaries which exist in the longitudinal direction of the channel formation region 26 (the direction L in the drawings) are removed. By this means, crystal grain boundaries are prevented from being included in each channel formation region 26, and the effective channel width can be increased.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: July 18, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Yasushi Hiroshima, Mitsutoshi Miyasaka
  • Patent number: 7064345
    Abstract: The invention relates to an organic field effect transistor with off-set threshold voltage. Said OFET has an intermediate layer that defines a space charge region between the insulator and the semiconductor.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: June 20, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Fix, Andreas Ullmann
  • Patent number: 7026193
    Abstract: In a circuit including at least one thin film transistor formed on an insulating substrate, a region 105 to which metal elements that promote crystallinity are added is disposed apart from a semiconductor island region 101 that forms the thin film transistor by a distance y, has a width w, and extends longitudinally over an end portion of the semiconductor island region 101 by a distance x. Also, in a TFT manufactured in a region which is not interposed between the nickel added regions, another nickel added region is disposed (resultantly, which is interposed between two nickel added regions). Further, all the intervals between the respective nickel added regions are preferably identified with each other. Thus, a thin film transistor circuit being capable of a high speed operation (in general, some tens of Mhz and more) is formed. In particular, correcting the difference of crystal growths, using a crystalline silicon film added with nickel, TFTs with uniform characteristics can be provided.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: April 11, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisashi Ohtani, Jun Koyama, Yasushi Ogata, Shunpei Yamazaki
  • Patent number: 6943373
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: September 13, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Patent number: 6933568
    Abstract: The present invention relates to a process for vapor depositing a low dielectric insulating film, a thin film transistor using the same, and a preparation method thereof, and more particularly to a process for vapor deposition of lowdielectric insulating film that can significantly improve a vapor deposition speed while maintaining properties of the low dielectric insulating film, thereby solving parasitic capacitance problems to realize a high aperture ratio structure, and can reduce a process time by using silane gas when vapor depositing an insulating film by a CVD or PECVD method to form a protection film for a semiconductor device. The present invention also relates to a thin film transistor using the process and preparation method thereof.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 23, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hoon Yang, Wan-Shick Hong, Kwan-Wook Jung
  • Patent number: 6930326
    Abstract: According to the invention, a plurality of semiconductor devices which are required to have conformance are formed from crystalline semiconductor films having uniform crystallinity on the same line, and a semiconductor circuit in which variation between semiconductor devices is small can be provided, and a semiconductor integrated circuit having high conformance can be provided. The invention is characterized in that, in a part or whole of thin film transistors which configure an analog circuit such as a current mirror circuit, a differential amplifier circuit, or an operational amplifier, in which high conformance is required for semiconductor devices included therein, channel forming regions have crystalline semiconductor films on the same line. High conformance can be expected for an analog circuit which has the crystalline semiconductor films on the same line formed using the invention as the channel forming regions of the thin film transistors.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: August 16, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Tomoaki Atsumi, Atsuo Isobe
  • Patent number: 6924560
    Abstract: A method and system is disclosed for an SRAM device cell having at least one device of a first semiconductor type and at lease one device of a second semiconductor type. The cell has a first device of the first type constructed as a part of a first FinFET having one or more devices of the first type, a first device of the second type whose poly region is an extension of a poly region of the first device of the first type with no contact needed to connect therebetween, wherein the two devices are constructed using a silicon-on-insulator (SOI) technology so that they are separated by an insulator region therebetween so as to minimize the distance between the two devices.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: August 2, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ping-Wei Wang, Chang-Ta Yang
  • Patent number: 6909115
    Abstract: There is disclosed a semiconductor device and a method of fabricating the semiconductor device in which a heat treatment time required for crystal growth is shortened and a process is simplified. Two catalytic element introduction regions are arranged at both sides of one active layer and crystallization is made. A boundary portion where crystal growth from one catalytic element introduction region meets crystal growth from the other catalytic element introduction region is formed in a region which becomes a source region or drain region.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: June 21, 2005
    Assignee: Semiconductor Energy Laboratory Co. Ltd.
    Inventors: Chiho Kokubo, Hirokazu Yamagata, Shunpei Yamazaki
  • Patent number: 6906384
    Abstract: A semiconductor device includes first and second semiconductor layers and first and second MOS transistors. The first semiconductor layer is provided on and electrically connected to the semiconductor substrate. The second semiconductor layer is provided near the first semiconductor layer and formed above the semiconductor substrate via one of an insulating film and a cavity. The first and second MOS transistors are respectively provided on the first and second semiconductor layers, and each has a gate electrode arranged parallel to a boundary between the first and second semiconductor layers.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: June 14, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamada, Tsutomu Sato, Shinichi Nitta, Hajime Nagano, Ichiro Mizushima, Hisato Oyamatsu, Yoshihiro Minami, Shinji Miyano, Osamu Fujii
  • Patent number: 6894337
    Abstract: A method facilitates the formation of a stacked fin structure for a semiconductor device that includes a substrate. The method includes forming one or more oxide layers on the substrate and forming one or more amorphous silicon layers interspersed with the one or more oxide layers. The method further includes etching the one or more oxide layers and the one or more amorphous silicon layers to form a stacked fin structure and performing a metal-induced crystallization operation to convert the one or more amorphous silicon layers to one or more crystalline silicon layers.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 17, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Shibly S. Ahmed, Bin Yu
  • Patent number: 6894310
    Abstract: The invention includes a method of forming semiconductor circuitry. A monocrystalline silicon substrate is provided, and a mask is formed which covers a first portion of the substrate and leaves a second portion uncovered. A trench is formed in the uncovered portion and at least partially filled with a semiconductive material that comprises at least one atomic percent of an element other than silicon. The mask is removed and a first semiconductor circuit component is formed over the first portion of the substrate. Also, a second semiconductor circuit component is formed over the semiconductive material that at least partially fills the trench. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 17, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Er-Xuan Ping
  • Patent number: 6891192
    Abstract: A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg G. Gluschenkov, An L. Steegen, Haining S. Yang
  • Patent number: 6885031
    Abstract: A method of forming a single crystal semiconductor film on a non-crystalline surface is described. In accordance with this method, a template layer incorporating an ordered array of nucleation sites is deposited on the non-crystalline surface, and the single crystal semiconductor film is formed on the non-crystalline surface from the ordered array of nucleation sites. An integrated circuit incorporating one or more single crystal semiconductor layers formed by this method also is described.
    Type: Grant
    Filed: August 9, 2003
    Date of Patent: April 26, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Theodore I. Kamins
  • Patent number: 6885070
    Abstract: In a semiconductor memory device including memory cells and a peripheral circuit unit, a memory cell has a first gate structure formed on a semiconductor substrate; a first impurity region of a first conductive type formed in the substrate on a first side of the gate structure; and a second impurity region formed in the substrate on a second side of the gate structure, the second impurity region including: a third impurity region of the first conductive type, a fourth impurity region of the first conductive type between the third impurity region and the second side of the gate structure, and a halo ion region of a second conductive type formed adjacent to the fourth impurity region.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 26, 2005
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Sang-Bai Yi, Jae-Min Yu, Sung-Chul Lee
  • Patent number: 6875998
    Abstract: An object of the present invention is to provide a semiconductor device formed by laser crystallization by which formation of grain boundaries in the TFT channel formation region can be avoided, and a method of manufacturing the same. Still another object of the present invention is to provide a method of designating the semiconductor device.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: April 5, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Toshihiko Saito, Atsuo Isobe, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno
  • Patent number: 6867433
    Abstract: In accordance with a preferred embodiment of the present invention, a silicon-on-insulator (SOI) chip includes a silicon layer of a predetermined thickness overlying an insulator layer. A multiple-gate fully-depleted SOI MOSFET including a strained channel region is formed on a first portion of the silicon layer. A planar SOI MOSFET including a strained channel region formed on another portion of the silicon layer. For example, the planar SOI MOSFET can be a planar fully-depleted SOI (FD-SOI) MOSFET or the planar SOI MOSFET can be a planar partially-depleted SOI (PD-SOI) MOSFET.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: March 15, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, How-Yu Chen, Chien-Chao Huang, Wen-Chin Lee, Fu-Liang Yang, Chenming Hu
  • Patent number: 6864520
    Abstract: A method (and structure) for an electronic chip having at least one layer of material for which a carrier mobility of a first carrier type is higher in a first crystal surface than in a second crystal surface and for which a carrier mobility of a second carrier type is higher in the second crystal surface than the first crystal surface includes a first device having at least one component fabricated on the first crystal surface of the material, wherein an activity of the component of the first device involves primarily the first carrier type, and a second device having at least one component fabricated on the second crystal surface of the material, wherein an activity of the component of the second device involves primarily the second carrier type.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Massimo V. Fischetti, Steven E. Laux, Paul M. Solomon, Hon-Sum Philip Wong
  • Patent number: 6849958
    Abstract: A new Static Random Access Memory (SRAM) cell using Thin Film Transistors (TFT) is disclosed. In a first embodiment, an SRAM cell comprises a strong inverter and a strong access device constructed on a semiconductor substrate layer, and a weak inverter and a weak access device constructed in a semiconductor thin film layer located vertically above the strong devices. The strong devices are used in the data read and write paths, and the weak devices are used for latch feed-back and sector data erase. This first embodiment is used for high density and high speed memory applications. In a second embodiment, an SRAM cell comprises thin film inverters and thin film access devices constructed in a semiconductor thin film layer located substantially above logic transistors. The TFT SRAM cell is buried above the logic gates of an Integrated Circuit to consume no extra Silicon real estate. This second embodiment is used for slow access and Look-Up-Tables type memory applications.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: February 1, 2005
    Assignee: Viciciv
    Inventor: Raminda Udaya Madurawe
  • Publication number: 20040266076
    Abstract: The present invention provides an integrated semiconductor circuit containing a planar single gated FET and a FinFET located on the same SOI substrate. Specifically, the integrated semiconductor circuit includes a FinFET and a planar single gated FET located atop a buried insulating layer of an silicon-on-insulator substrate, the planar single gated FET is located on a surface of a patterned top semiconductor layer of the silicon-on-insulator substrate and the FinFET has a vertical channel that is perpendicular to the planar single gated FET. A method of forming a method such an integrated circuit is also provided. In the method, resist imaging and a patterned hard mask are used in trimming the width of the FinFET active device region and subsequent resist imaging and etching are used in thinning the thickness of the FET device area. The trimmed active FinFET device region is formed such that it lies perpendicular to the thinned planar single gated FET device region.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Diane C. Boyd, Meikei Ieong, Thomas S. Kanarsky, Jakub T. Kedzierski, Min Yang
  • Publication number: 20040256622
    Abstract: The invention reduces the size of an element chip and reduces the manufacturing cost in a thin film transistor type display device in which thin film transistors are formed on a first substrate, wiring lines are formed on a second substrate, and the element chip, including one or more thin film transistors, is peeled off from the first substrate and transferred to the second substrate. In the patterning process of the thin film transistors, holographic lithography or a dynamic auto focus system is used, a design rule of 1.0 &mgr;m or less is used, and only a polycrystalline silicon layer and a first metal layer are used as the wiring lines of the element chip.
    Type: Application
    Filed: January 27, 2004
    Publication date: December 23, 2004
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Mutsumi Kimura, Chiharu Iriguchi
  • Publication number: 20040245577
    Abstract: The invention includes SRAM constructions comprising at least one transistor device having an active region extending into a crystalline layer comprising Si/Ge. A majority of the active region within the crystalline layer is within a single crystal of the crystalline layer, and in particular aspects an entirety of the active region within the crystalline layer is within a single crystal of the crystalline layer. The SRAM constructions can be formed in semiconductor on insulator assemblies, and such assemblies can be supported by a diverse range of substrates, including, for example, glass, semiconductor substrates, metal, insulative materials, and plastics. The invention also includes electronic systems comprising SRAM constructions.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventor: Arup Bhattacharyya
  • Patent number: 6825495
    Abstract: A CMOS transistor is described. The CMOS transistor comprises a first TFT of a first conductivity type and a second TFT of a second conductivity type. The first TFT includes a gate, a channel region, a first doped region of the first conductivity type and a source region, wherein the channel region, the first doped region and the source region are arranged along a first direction. The second TFT includes a gate, a channel region, a second doped region of the second conductivity type and a drain region, wherein the channel region, the second doped region and the drain region are arranged along the first direction. The first and the second doped regions are arranged along a second direction that is perpendicular to the first direction, and are electrically connected by a conductive line extending along the second direction.
    Type: Grant
    Filed: September 1, 2003
    Date of Patent: November 30, 2004
    Assignee: Au Optronics Corporation
    Inventors: Jen-Yi Hu, Wein-Town Sun
  • Patent number: 6825533
    Abstract: A semiconductor device contains a word line, a charge storage region located above the word line, an active layer located above the charge storage region, a patterned etch stop layer located above a first portion of the active layer, and bit lines located over a portion of the etch stop layer and over second portions of the active layer.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: November 30, 2004
    Assignee: Matrix Semiconductor, Inc.
    Inventor: Michael A. Vyvoda
  • Publication number: 20040235226
    Abstract: An electrical interconnection method includes: a) providing two conductive layers separated by an insulating material on a semiconductor wafer; b) etching the conductive layers and insulating material to define and outwardly expose a sidewall of each conductive layer; c) depositing an electrically conductive material over the etched conductive layers and their respective sidewalls; and d) anisotropically etching the conductive material to define an electrically conductive sidewall link electrically interconnecting the two conductive layers. Such is utilizable to make thin film transistors and other circuitry.
    Type: Application
    Filed: June 16, 2004
    Publication date: November 25, 2004
    Inventors: Charles H. Dennison, Monte Manning
  • Patent number: 6815839
    Abstract: The semiconductor memory device includes two PMOS transistors that make the SRAM memory cell. The gate insulating films of these PMOS transistors are formed using a material that has a high permittivity. As a result, the capacitance of memory nodes is increased, and the probability of soft errors is lowered.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: November 9, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Koji Nii, Motoshige Igarashi
  • Patent number: 6806498
    Abstract: In a polycrystalline silicon thin film transistor, a semiconductor device having a high field effect mobility is achieved by increasing a grain size of a silicon thin film. First, an insulation layer having a two-layer structure is formed on a transparent insulated substrate 201. In the insulation layer, a lower insulation layer 202, which is in contact with the transparent insulating substrate 201, is made to have a higher thermal conductivity than an upper insulation layer 203. Thereafter, the upper insulation layer 203is patterned so that a plurality of stripes are formed thereon. Subsequently, an amorphous silicon thin film 204 is formed on the patterned insulation layer, and the insulation layer is irradiated with a laser light scanning in a direction parallel to the stripe pattern on the upper insulation layer 203. Thus, the amorphous silicon thin film 203 is formed into a polycrystalline silicon thin film 210.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: October 19, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshinao Taketomi, Keizaburo Kuramasu, Masumi Izuchi, Hiroshi Satani, Hiroshi Tsutsu, Hikaru Nishitani, Mikihiko Nishitani, Masashi Goto, Yoshiko Mino
  • Publication number: 20040188686
    Abstract: An apparatus including a circuit substrate comprising a single crystal semiconductor layer having a smallest dimension reduced; and circuit devices formed in the single crystal layer.
    Type: Application
    Filed: April 13, 2004
    Publication date: September 30, 2004
    Inventor: Kramadhati V. Ravi
  • Patent number: 6777763
    Abstract: In a thin film transistor (TFT), a mask is formed on a gate electrode, and a porous anodic oxide is formed in both sides of the gate electrode using a relatively low voltage. A barrier anodic oxide is formed between the gate electrode and the porous anodic oxide and on the gate electrode using a relatively high voltage. A gate insulating film is etched using the barrier anodic oxide as a mask. The porous anodic oxide is selectively etched after etching barrier anodic oxide, to obtain a region of an active layer on which the gate insulating film is formed and the other region of the active layer on which the gate insulating film is not formed. An element including at least one of oxygen, nitrogen and carbon is introduced into the region of the active layer at high concentration in comparison with a concentration of the other region of the active layer. Further, N- or P-type impurity is introduced into the active layer.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Hideto Ohnuma, Naoaki Yamaguchi, Yasuhiko Takemura
  • Publication number: 20040144979
    Abstract: The invention includes three-dimensional TFT based stacked CMOS inverters. Particular inverters can have a PFET device stacked over an NFET device. The PFET device can be a semiconductor-on-insulator thin film transistor construction, and can be formed over a conventional substrate (such as a monocrystalline silicon wafer) or a non-conventional substrate (such as one or more of glass, aluminum oxide, silicon dioxide, metal and plastic). The thin film of semiconductor material can comprise both silicon and germanium. Further, the thin film can contain two different layers. A first of the two layers can have silicon and germanium present in a relaxed crystalline lattice, and a second of the two layers can be a strained crystalline lattice of either silicon alone, or silicon in combination with germanium. The invention also includes computer systems utilizing such CMOS inverters.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 29, 2004
    Inventor: Arup Bhattacharyya
  • Publication number: 20040140520
    Abstract: A double gate MOS transistor includes a substrate active region defined in a semiconductor substrate and a transistor active region located over the substrate active region and overlapped with the substrate active region. At least one semiconductor pillar penetrates the transistor active region and is in contact with the substrate active region. The semiconductor pillar supports the transistor active region so that the transistor active region is spaced apart from the substrate active region. At least one bottom gate electrode fills a space between the transistor active region and the substrate active region. The bottom gate electrode is insulated from the substrate active region, the transistor active region and the semiconductor pillar. At least one top gate electrode crosses over the transistor active region and has at least one end that is in contact with a sidewall of the bottom gate electrode.
    Type: Application
    Filed: November 18, 2003
    Publication date: July 22, 2004
    Inventors: Sung-Min Kim, Dong-Gun Park, Chang-Sub Lee, Jeong-Dong Choe, Shin-Ae Lee, Seong-Ho Kim
  • Patent number: 6765272
    Abstract: A semiconductor device has a gate electrode which is formed on a first conductive-type well set in semiconductor substrate, with a gate insulating film lying therebetween; a LDD structure in which, on either side of said gate electrode, there are formed a LDD region and a source/drain region; an interlayer insulating film to cover said gate electrode as well as said LDD regions; and contact sections. A contact section connecting to one side of the source/drain regions having a potential equal to a potential of said first conductive-type well is disposed so as to come into contact with the LDD region lying thereunder; and a contact section connecting to the other side of the source/drain region having a potential different from the potential of said first conductive-type well is disposed so as not to come into contact with the LDD region lying thereunder.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: July 20, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Hidetaka Natsume
  • Patent number: 6762448
    Abstract: A semiconductor device includes a group of fin structures. The group of fin structures includes a conductive material and is formed by growing the conductive material in an opening of an oxide layer. The semiconductor device further includes a source region formed at one end of the group of fin structures, a drain region formed at an opposite end of the group of fin structures, and at least one gate.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: July 13, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ming-Ren Lin, Haihong Wang, Bin Yu
  • Patent number: 6737675
    Abstract: A semiconductor device comprises two transistors where a gate electrode of one transistor and source or drain of another transistor are located in the same rail. A monolithic three dimensional array contains a plurality of such devices. The transistors in different levels of the array preferably have a different orientation.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: May 18, 2004
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Kedar Patel, Alper Ilkbahar, Roy Scheuerlein, Andrew J. Walker
  • Publication number: 20040084676
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Applicant: Renesas Technology Corporation
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Patent number: 6723589
    Abstract: The present invention relates to a method of manufacturing a thin film transistor in a semiconductor device. The present invention forms a single crystal silicon thin film on an interlayer insulating film on a single crystal driver transistor using a solid phase crystallization of amorphous silicon, forms a single crystal silicon thin film transistor (C—Si TFT) in the single crystal silicon thin film in order to uses it as a load transistor and uses a contact plug connecting a drain in the driver transistor and a drain in the load transistor as a SPC (solid phase crystallization) plug, in a process of depositing a silicon thin film on a single crystal transistor by a three-dimensional stack process to deposit to form a load transistor in a manufacture process of SRAM. Therefore, the present invention can improve the uniformity and reliability of the load transistor.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: April 20, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ga Won Lee
  • Publication number: 20040065884
    Abstract: The invention includes three-dimensional TFT based stacked CMOS inverters. Particular inverters can have a PFET device stacked over an NFET device. The PFET device can be a semiconductor-on-insulator thin film transistor construction, and can be formed over a conventional substrate (such as a monocrystalline silicon wafer) or a non-conventional substrate (such as one or more of glass, aluminum oxide, silicon dioxide, metal and plastic). The thin film of semiconductor material can comprise both silicon and germanium. Further, the thin film can contain two different layers. A first of the two layers can have silicon and germanium present in a relaxed crystalline lattice, and a second of the two layers can be a strained crystalline lattice of either silicon alone, or silicon in combination with germanium. The invention also includes computer systems utilizing such CMOS inverters.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 8, 2004
    Inventor: Arup Bhattacharyya
  • Patent number: 6716664
    Abstract: A functional device free from cracking and having excellent functional characteristics, and a method of manufacturing the same are disclosed. A low-temperature softening layer (12) and a heat-resistant layer (13) are formed in this order on a substrate (11) made of an organic material such as polyethylene terephthalate, and a functional layer (14) made of polysilicon is formed thereon. The functional layer (14) is formed by crystallizing an amorphous silicon layer, which is a precursor layer, with laser beam irradiation. When a laser beam is applied, heat is transmitted to the substrate (11) and the substrate (11) tends to expand. However, a stress caused by a difference in a thermal expansion coefficient between the substrate (11) and the functional layer (14) is absorbed by the low-temperature softening layer (12), so that no cracks and peeling occurs in the functional layer (14). The low-temperature softening layer (12) is preferably made of a polymeric material containing an acrylic resin.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: April 6, 2004
    Assignee: Sony Corporation
    Inventors: Akio Machida, Dharam Pal Gosain, Setsuo Usui
  • Publication number: 20040041151
    Abstract: A method of forming a power device (10) includes forming a power transistor (27) and a pull-down transistor (28) on a semiconductor die (36). The pull-down transistor (28) is enabled to rapidly and predictably disable the power transistor (27). The pull-down transistor (28) remains enabled for a first time period during the enabling of the power transistor (27) to facilitate rapidly and predictably enabling the power transistor (27).
    Type: Application
    Filed: August 27, 2002
    Publication date: March 4, 2004
    Applicant: Semiconductor Components Industries, LLC.
    Inventor: Benjamin M. Rice
  • Patent number: 6700133
    Abstract: A film having a high thermal conductivity material such as aluminum nitride is formed on a substrate, and then a silicon film is formed. When a laser light or an intense light corresponding to the laser light is irradiated to the silicon film, since the aluminum nitride film absorbs heat, a portion of the silicon film near the aluminum nitride film is solidified immediately. However, since a solidifying speed is slow in another portion of the silicon film, crystallization progresses from the portion near the aluminum nitride film. When a substrate temperature is 400° C. or higher at laser irradiation, since a solidifying speed is decreased, a crystallinity of the silicon film is increased. Also, when the substrate is thin, the crystallinity of the silicon film is increased.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: March 2, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisashi Ohtani, Yasuhiko Takemura, Akiharu Miyanaga, Shunpei Yamazaki
  • Publication number: 20040023449
    Abstract: A semiconductor device is presented which includes a self-aligned, planarized thin-film transistor which can be used in various integrated circuit devices, such as static random access memory (SRAM) cells. The semiconductor device has a first field-effect transistor and a second field-effect transistor. The second field-effect transistor overlies the first field-effect transistor, and the first field-effect transistor and the second field-effect transistor share a common gate. The second field-effect transistor includes a source and a drain which are self-aligned to the shared gate in a layer of planarized semiconductor material above the first field-effect transistor. In one embodiment, the second field-effect transistor is a thin-film transistor, and the shared gate has a U-shape wrap-around configuration at a body of the thin-film transistor.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Applicant: International Business Machines Corporation
    Inventors: Louis L. Hsu, Jack Allan Mandelman, William Robert Tonti, Li-Kong Wang
  • Patent number: 6687152
    Abstract: A semiconductor memory device has MIS transistors to constitute a memory cell array. Each of the MIS transistors has a silicon layer in a floating state. Furthermore, the MIS transistor has a second gate, a potential of which is fixed in order to control a potential of the silicon layer by a capacitive coupling, in addition to a first gate, which forms a channel between a source region and a drain region of the MIS transistor. The MIS transistor dynamically stores a first data state in which the silicon layer has a first potential set by impact ionization generated near a drain junction and a second data state in which the silicon layer has a second potential set by a forward current flowing through the drain junction.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: February 3, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takashi Ohsawa
  • Patent number: 6680485
    Abstract: A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250° C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: January 20, 2004
    Assignee: The Regents of the University of California
    Inventors: Paul G. Carey, Patrick M. Smith, Thomas W. Sigmon, Randy C. Aceves
  • Patent number: 6680487
    Abstract: There is disclosed a semiconductor device and a method of fabricating the semiconductor device in which a heat time required for crystal growth is shortened and a process is simplified. Two catalytic element introduction regions are arranged at both sides of one active layer and crystallization is made. A boundary portion where crystal growth from one catalytic element introduction region meets crystal growth from the other catalytic element introduction region is formed in a region which becomes a source region or drain region.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: January 20, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Chiho Kokubo, Hirokazu Yamagata, Shunpei Yamazaki
  • Patent number: 6674161
    Abstract: Semiconductor devices and methods of forming semiconductor devices are described. In one embodiment, at least one conductive structure is formed within a plurality of semiconductor substrates. At least portions of one of the conductive structures have oppositely facing, exposed outer surfaces. Individual substrates are stacked together in a die stack such that individual conductive structures on each substrate are in electrical contact with the conductive structures on a next adjacent substrate. In a preferred embodiment, the conductive structures comprise multi-layered, conductive pad structures.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: January 6, 2004
    Assignee: Rambus Inc.
    Inventor: Belgacem Haba
  • Patent number: 6670642
    Abstract: The invention provides a semiconductor memory device comprising a plurality of word lines, a plurality of bit lines, and a plurality of static memory cells each having a first, second, third, fourth, fifth, and sixth transistors. While each of channels of the first, second, third, and fourth transistors are formed vertical against a substrate of the semiconductor memory device. Each of semiconductor regions forming a source or a drain of the fifth and sixth transistors forms a PN junction against the substrate. According to another aspect of the invention, the SRAM device of the invention has a plurality of SRAM cells, at least one of which is a vertical SRAM cell comprising at least four vertical transistors onto a substrate, and each vertical transistor includes a source, a drain, and a channel therebetween aligning in one aligning line which penetrates into the substrate surface at an angle greater than zero degree.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: December 30, 2003
    Assignee: Renesas Technology Corporation.
    Inventors: Norikatsu Takaura, Hideyuki Matsuoka, Riichiro Takemura, Kousuke Okuyama, Masahiro Moniwa, Akio Nishida, Kota Funayama, Tomonori Sekiguchi
  • Publication number: 20030227041
    Abstract: A high integration dynamic random access memory is provided by this invention. Furthermore, a write method is provided such that the cell size of two-and three-transistor gain cell memories is reduced. A dynamic memory incorporating a thin-channel transistor as the write element such that long data storage retention is achieved in the memory devices of this invention. A dynamic memory cell having low operating power and high density is also realized by this invention.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Bryan Atwood, Kazuo Yano, Tomoyuki Ishii, Taro Osabe, Kazumasa Yanagisawa, Takeshi Sakata
  • Patent number: 6657229
    Abstract: A semiconductor device has field shield isolation or trench type isolation between elements which suppresses penetration of field oxide into an element active region of the device. A common gate is located between two MOS transistors, which may be of opposite conductivity type. After gate electrode wiring layers are formed in a field region and an active region to the same level, a pad polysilicon film formed on the entire surface to cover the patterns of these gate electrode wiring layers, which are in separated patterns.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: December 2, 2003
    Assignee: United Microelectronics Corporation
    Inventors: Kohei Eguchi, Yuichi Egawa, Shoichi Iwasa, Hideki Fujikake, Wataru Yokozeki, Tatsuya Kawamata
  • Publication number: 20030218177
    Abstract: A method of manufacturing a semiconductor device with the use of a laser crystallization method is provided which can prevent grain boundaries from being formed in a channel forming region of a TFT and which can avoid substantial reduction in TFT mobility, reduction in on current, and increase in off current due to the grain boundaries, and a semiconductor device manufactured by using the manufacturing method is also provided. Stripe shape or rectangular shape unevenness is formed only in a driver circuit. Continuous wave laser light is irradiated to a semiconductor film formed on an insulating film along the stripe unevenness of the insulating film or along a major axis or minor axis of the rectangular unevenness. Although it is most preferable to use the continuous wave laser light at this point, pulse wave laser light may also be used.
    Type: Application
    Filed: March 25, 2003
    Publication date: November 27, 2003
    Inventor: Shunpei Yamazaki