Composite Material (e.g., Fibers Or Strands Embedded In Solid Matrix) Patents (Class 257/746)
  • Publication number: 20080224279
    Abstract: A die assembly includes a die mounted to a support, in which the support has interconnect pedestals formed at bond pads, and the die has interconnect terminals projecting beyond a die edge into corresponding pedestals. Also, a support has interconnect pedestals. Also, a method for electrically interconnecting a die to a support includes providing a support having interconnect pedestals formed at bond pads on the die mount surface of the support, providing a die having interconnect terminals projecting beyond a die edge, positioning the die in relation to the support such that the terminals are aligned with the corresponding pedestals, and moving the die and the support toward one another so that the terminals contact the respective pedestals.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 18, 2008
    Applicant: Vertical Circuits, Inc.
    Inventors: Terrence Caskey, Lawrence Douglas Andrews, Scott McGrath, Simon J.S. McElrea, Yong Du, Mark Scott
  • Publication number: 20080211095
    Abstract: A semiconductor device where an outside connection terminal of a semiconductor element and an electrode of a wiring board are connected to each other via a conductive adhesive, the conductive adhesive includes a first conductive adhesive; and a second conductive adhesive covering the first conductive adhesive; wherein the first conductive adhesive contains a conductive filler including silver (Ag); and the second conductive adhesive contains a conductive filler including a metal selected from a group consisting of tin (Sn), zinc (Zn), cobalt (Co), iron (Fe), palladium (Pd), and platinum (Pt).
    Type: Application
    Filed: February 27, 2008
    Publication date: September 4, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Motoyuki NISHIZAWA
  • Patent number: 7414313
    Abstract: The present invention relates to a donor laminate for transfer of a conductive layer comprising at least one electronically conductive polymer on to a receiver, wherein the receiver is a component of a device. The present invention also relates to methods pertinent to such transfers.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 19, 2008
    Assignee: Eastman Kodak Company
    Inventors: Debasis Majumdar, Glen C. Irvin, Jr., Charles C. Anderson, Gary S. Freedman, Robert J. Kress
  • Publication number: 20080191351
    Abstract: Methods of forming transparent conducting oxides and devices formed by these methods are shown. Monolayers that contain indium and monolayers that contain molybdenum are deposited onto a substrate and subsequently processed to form molybdenum-doped indium oxide. The resulting transparent conducing oxide includes properties such as an amorphous or nanocrystalline microstructure. Devices that include transparent conducing oxides formed with these methods have better step coverage over substrate topography and more robust film mechanical properties.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 14, 2008
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20080191350
    Abstract: Methods of forming transparent conducting oxides and devices formed by these methods are shown. Monolayers that contain zinc and monolayers that contain magnesium are deposited onto a substrate and subsequently processed to form magnesium-doped zinc oxide. The resulting transparent conducing oxide includes properties such as an amorphous or nanocrystalline microstructure. Devices that include transparent conducing oxides formed with these methods have better step coverage over substrate topography and more robust film mechanical properties.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 14, 2008
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7405419
    Abstract: A method of forming and a device including an interconnect structure having a unidirectional electrical conductive material is described. The unidirectional conductive material may overlie interconnect materials, and/or may surround interconnect materials, such as by lining the walls and base of a trench and via. The unidirectional conductive material may be configured to conduct electricity in a direction corresponding to a projection to or from a contact point and conductive material overlying the unidirectional conductive material, but have no substantial electrical conductivity in other directions. Moreover, the unidirectional conductive material may be electrically conductive in a direction normal to a surface over which it is formed or in directions along or across a plane, but have no substantial electrical conductivity in other directions.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: July 29, 2008
    Assignee: Intel Corporation
    Inventors: Reza M. Golzarian, Robert P. Meagley, Seiichi Morimoto, Mansour Moinpour
  • Publication number: 20080169563
    Abstract: A semiconductor package is disclosed that includes a semiconductor device; a circuit board; and a connection mechanism including a first conductive terminal provided on the semiconductor device, and a second conductive terminal provided on the circuit board side, the connection mechanism electrically connecting the semiconductor device and the circuit board via the first conductive terminal and the second conductive terminal. At least one of the first conductive terminal and the second conductive terminal of the connection mechanism includes one or more carbon nanotubes each having one end thereof fixed to the surface of the at least one of the first conductive terminal and the second conductive terminal, and extending in a direction away from the surface. The first conductive terminal and the second conductive terminal engage each other through the carbon nanotubes.
    Type: Application
    Filed: September 14, 2007
    Publication date: July 17, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Yuji Awano, Masataka Mizukoshi
  • Publication number: 20080164612
    Abstract: A conductive composition for coating a semiconductor wafer comprises conductive filler that has an average particle size of less than 2 microns and a maximum particle size of less than 10 microns, a first resin that has a softening point between 80-260° C., solvent, curing agent, and a second resin, wherein at room temperature the first resin is substantially soluble in the solvent.
    Type: Application
    Filed: January 10, 2007
    Publication date: July 10, 2008
    Inventor: Qizhuo Zhuo
  • Publication number: 20080122090
    Abstract: Interconnect structures that include a conformal liner repair layer bridging breaches in a liner formed on roughened dielectric material in an insulating layer and methods of forming such interconnect structures. The conformal liner repair layer is formed of a conductive material, such as a cobalt-containing material. The conformal liner repair layer may be particularly useful for repairing discontinuities in a conductive liner disposed on roughened dielectric material bordering the trenches and vias of damascene interconnect structures.
    Type: Application
    Filed: August 30, 2006
    Publication date: May 29, 2008
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 7348670
    Abstract: Cylinders having Al as a major constituent are orderly arrayed in an (Si, Ge) matrix. In a nanostructure in the form of a mixture film having a plurality of cylinders having Al as a major constituent, and a matrix region surrounding the plurality of cylinders and having Si and/or Ge as a major constituent, the total amount of Si and Ge is in the range from 20 to 70 atomic % in the mixture film, the cylinders are orderly arrayed, the diameter of the cylinders is in the range from 1 to 30 nm, and the interval between the cylinders is 30 nm or less.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: March 25, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Kazuhiko Fukutani
  • Patent number: 7332810
    Abstract: An integrated circuit device having vias having good resistance to migration causing the breaking of a wiring line, or an integrated circuit device having a wiring structure that is fined by breaking the limit of lithography technique is provided. The former device comprises a plurality of elements fabricated on a semiconductor substrate, wiring lines for making the elements and the integrated circuit device function, and vias for interconnecting wiring lines in separate layers, the via being formed of one or more cylindrical structures made up of carbon atoms. The latter device comprises a plurality of elements fabricated on a semiconductor substrate and wiring members for making the elements and the integrated circuit device function, at least part of the wiring members being formed of one or more cylindrical structures made up of carbon atoms.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: February 19, 2008
    Assignee: Fujitsu Limited
    Inventor: Yuji Awano
  • Publication number: 20080029845
    Abstract: An integrated circuit chip comprising a bond wire and a mass of magnetic material provided on the bond wire, wherein the mass of magnetic material increases the inductance of the bond wire.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 7, 2008
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION
    Inventor: Zheng John Shen
  • Patent number: 7298046
    Abstract: A semiconductor package for power transistors and the like has a heat sink flange with at least one die mounted thereon, a non-ceramic based window frame mounted thereon adjacent the die, and a plurality of leads mounted on the window frame and electrically coupled to the die by wire bonds. The non-ceramic based window frame is thermally matched to copper or other highly conductive material typically used for the flange, to facilitate assembly of the semiconductor package at high temperatures. The non-ceramic based window frame is flexible and is thermally matched to the highly conductive flange so as to expand and contract at a rate similar to the flange to prevent failure during assembly of the semiconductor package. The non-ceramic based material of the window frame includes a matrix of principally organic material, such as polytetrafluoroethylene, filled with fibers which may be glass fibers or ceramic fibers.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: November 20, 2007
    Assignee: Kyocera America, Inc.
    Inventors: Jeffrey Venegas, Paul Garland, Joshua Lobsinger, Linda Luu
  • Patent number: 7247877
    Abstract: A method and structure for an integrated circuit comprising a first transistor and an embedded carbon nanotube field effect transistor (CNT FET) proximate to the first transistor, wherein the CNT FET is dimensioned smaller than the first transistor. The CNT FET is adapted to sense signals from the first transistor, wherein the signals comprise any of temperature, voltage, current, electric field, and magnetic field signals. Moreover, the CNT FET is adapted to measure stress and strain in the integrated circuit, wherein the stress and strain comprise any of mechanical and thermal stress and strain. Additionally, the CNT FET is adapted to detect defective circuits within the integrated circuit.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, Mark E. Masters, Leah M. P. Pastel, David P. Vallett
  • Patent number: 7151313
    Abstract: Methods are provided to form wirings for tile-shaped elements, structures of wirings for tile-shaped elements, and electronic equipment, with which highly reliable electrical wirings having minute wiring patterns can be formed. In wiring forming method for a tile-shaped element, which is used, when a circuit device is formed by connecting a tile-shaped element having at least an electrode and a tile configuration to a final substrate having at least an electrode, to form an electrical wiring that electrically connects the electrode of the tile-shaped element to the electrode of the final substrate, liquid material including electro conductive material is applied to at least a part of a wiring region that is a region where the electrical wiring is formed on at least one of surfaces of the final substrate and the tile-shaped element.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: December 19, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Takayuki Kondo
  • Patent number: 7135728
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: November 14, 2006
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, Parce J. Wallace, Jay L. Goldman
  • Patent number: 7132677
    Abstract: An GaN light emitting diode (LED) having a nanorod (or, nanowire) structure is disclosed. The GaN LED employs GaN nanorods in which a n-type GaN nanorod, an InGaN quantum well and a p-type GaN nanorod are subsequently formed in a longitudinal direction by inserting the InGaN quantum well into a p-n junction interface of the p-n junction GaN nanorod. In addition, a plurality of such GaN nanorods are arranged in an array so as to provide an LED having much greater brightness and higher light emission efficiency than a conventional laminated-film GaN LED.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: November 7, 2006
    Assignee: Dongguk University
    Inventors: Hwa-Mok Kim, Tae-Won Kang, Kwan-Soo Chung
  • Patent number: 7105428
    Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 12, 2006
    Assignee: Nanosys, Inc.
    Inventors: Yaoling Pan, Xiangfeng Duan, Robert S. Dubrow, Jay L. Goldman, Shahriar Mostarshed, Chunming Niu, Linda T. Romano, Dave Stumbo
  • Patent number: 7084507
    Abstract: An integrated circuit device having vias having good resistance to migration causing the breaking of a wiring line, or an integrated circuit device having a wiring structure that is fined by breaking the limit of lithography technique is provided. The former device comprises a plurality of elements fabricated on a semiconductor substrate, wiring lines for making the elements and the integrated circuit device function, and vias for interconnecting wiring lines in separate layers, the via being formed of one or more cylindrical structures made up of carbon atoms. The latter device comprises a plurality of elements fabricated on a semiconductor substrate and wiring members for making the elements and the integrated circuit device function, at least part of the wiring members being formed of one or more cylindrical structures made up of carbon atoms.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: August 1, 2006
    Assignee: Fujitsu Limited
    Inventor: Yuji Awano
  • Patent number: 7064372
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: June 20, 2006
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, J. Wallace Parce, Jay L. Goldman
  • Patent number: 6992389
    Abstract: A method of creating a multi-layered barrier for use in an interconnect, a barrier for an interconnect, and an interconnect including the barrier are disclosed. The method includes creating the multi-layered barrier in a recess of the device terminal by use of a single electroplating chemistry to enhance protection against voiding and de-lamination due to the diffusion of copper, whether by self-diffusion or electro-migration. The barrier includes at least a first layer of nickel-rich material and a second layer of copper-rich material. The barrier enables use of higher current densities for advanced complementary metal-oxide semiconductors (CMOS) designs, and extends the reliability of current CMOS designs regardless of solder selection. Moreover, this technology is easily adapted to current methods of fabricating electroplated interconnects such as C4s.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Tien-Jen J. Cheng, Emanuel I. Cooper, David E. Eichstadt, Jonathan H. Griffith, Randolph F. Knarr, Roger A. Quon, Erik J. Roggeman
  • Patent number: 6987320
    Abstract: In a pressure-welded semiconductor device where at least one semiconductor element is disposed inside a casing, a buffer conductive layer including conductive carbons is disposed at pressure-welded portions between first casing-side electrodes and element-side electrodes disposed on a first main surface and at pressure-welded portions between second casing-side electrodes and element-side electrodes disposed on a second main surface.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: January 17, 2006
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Yukio Miyachi, Atsuto Okamoto
  • Patent number: 6973720
    Abstract: Method for manufacturing an elastic connector, integrated with an electrode of at least either a chip-type LED or a printed circuit board on which a LED element is directly mounted and to which the LED is electrically connected. The LED-integrated connector can subsequently be mounted on another circuit board by being sandwiched and compressed between a lower surface of the chip-type LED or lower surface of the LED-mounted printed circuit board and the other circuit board to which the LED-integrated connector is being mounted, so as to provide an electric connection. The method providing a LED-integrated connector which is thin and cost-effective while able to provide a simple and secure conductivity between electrodes of the chip-type LED and other circuit board, to which the LED-integrated connector is subsequently mounted.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: December 13, 2005
    Assignee: Citizen Electronics Co., Ltd.
    Inventors: Masakazu Koizumi, Shingo Mizuguchi, Tatsuji Hirano, Koichi Fukasawa, Hirohiko Ishii, Junji Miyashita
  • Patent number: 6946675
    Abstract: A microelectronic network is fabricated on a fibrous skeleton by binding or complexing electronically functional substances to the nucleic acid skeleton. The skeleton comprises fibers with nucleotide chains. The assembly of the fibers into a network is based on interactions of nucleotide chain portions of different fibers.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: September 20, 2005
    Assignee: Technion Research & Development Foundation Ltd.
    Inventors: Erez Braun, Yoav Eichen, Uri Sivan, Gdalyahu Ben-Joseph
  • Patent number: 6936912
    Abstract: An active matrix substrate comprises a substrate, a plurality of adhesion parts provided on the substrate so as to have substantially the same height, and a plurality of active elements provided on the plurality of adhesion parts, respectively, each of the plurality of adhesion parts including a height control member and an adhesive.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: August 30, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Akiyama, Yujiro Hara, Yutaka Onozuka, Tsuyoshi Hioki, Mitsuo Nakajima
  • Patent number: 6909185
    Abstract: A composite material is provided, which has a low thermal expansivity, a high thermal conductivity, and a good plastic workability, which composite material may be applied to semiconductor devices and many other uses. The composite material is composed of metal and inorganic particles having a smaller coefficient of thermal expansion than the metal. It is characterized in that the inorganic particles are dispersed in such a way that 95% or more of them (in terms of their area in cross-section) form aggregates of complex configuration joined together. The composite material contains 20-80 vol % of copper oxide, with the remainder being copper. It has a coefficient of thermal expansion of 5×10?6 to 14×10?6/° C. and thermal conductivity of 30-325 W/m·K in the range of room temperature to 300° C. It is suitable for the radiator plate of semiconductor devices and the dielectric plate of electrostatic attractors.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: June 21, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Yasuo Kondo, Junya Kaneda, Tasuhisa Aono, Teruyoshi Abe, Masahisa Inagaki, Ryuichi Saito, Yoshihiko Koike, Hideo Arakawa
  • Patent number: 6882051
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: April 19, 2005
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 6875367
    Abstract: Coupling components to an underlying substrate using a composition of a polymer and magnetic material particles. Upon applying the composition between the component and the printed circuit board, the composition may be subjected to a magnetic field to align the magnetic material particles into a conductive path between the component and the underlying substrate. At the same time the polymer-based material may be cured or otherwise solidified to affix the conductive path formed by the magnetic material particles.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 5, 2005
    Assignee: Intel Corporation
    Inventors: George Hsieh, Terrance J. Dishongh, Norman J. Armendariz, David V. Spaulding
  • Patent number: 6825560
    Abstract: The present invention relates to electrically attaching a surface mount device to mounting structure via their respective contact pads using an attach material, such as solder or conductive epoxy, which includes a filler material. In general, the filler material is relatively solid and granular shaped, wherein the diameter of the filler material controls a mounting distance between the surface mount device and the mounting structure. The filler allows a desired distance to be maintained during initial placement of the surface mount device and any subsequent reheating.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 30, 2004
    Assignee: RF Micro Devices, Inc.
    Inventors: Jeffrey Scott Walker, Joseph Byron Bullis
  • Publication number: 20040232550
    Abstract: The present invention relates to electrically attaching a surface mount device to a mounting structure via their respective contact pads using an attach material, such as solder or conductive epoxy, which includes a filler material. In general, the filler material is relatively solid and granular shaped, wherein the diameter of the filler material controls a mounting distance between the surface mount device and the mounting structure. The filler allows a desired distance to be maintained during initial placement of the surface mount device and any subsequent reheating.
    Type: Application
    Filed: May 22, 2003
    Publication date: November 25, 2004
    Applicant: RF Micro Devices, Inc.
    Inventors: Jeffrey Scott Walker, Joseph Byron Bullis
  • Patent number: 6818972
    Abstract: A method and structure for reducing chip carrier flexing during thermal cycling. A semiconductor chip is coupled to a stiff chip carrier (i.e., a chip carrier having an elastic modulus of at least about 3×105 psi), and there is no stiffener ring on a periphery of the chip carrier. Without the stiffener ring, the chip carrier is able to undergo natural flexing (in contrast with constrained flexing) in response to a temperature change that induces thermal strains due to a mismatch in coefficient of thermal expansion between the chip and the chip carrier. If the temperature at the chip carrier changes from room temperature to a temperature of about −40° C., a maximum thermally induced displacement of a surface of the chip carrier is at least about 25% less if the stiffener ring is absent than if the stiffener ring is present.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: November 16, 2004
    Assignee: International Business Machines Corporation
    Inventors: Lisa J. Jimarez, Miguel A. Jimarez
  • Patent number: 6818155
    Abstract: Coupling components to an underlying substrate using a composition of a polymer and magnetic material particles. Upon applying the composition between the component and the printed circuit board, the composition may be subjected to a magnetic field to align the magnetic material particles into a conductive path between the component and the underlying substrate. At the same time the polymer-based material may be cured or otherwise solidified to affix the conductive path formed by the magnetic material particles.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: November 16, 2004
    Assignee: Intel Corporation
    Inventors: George Hsieh, Terrance J. Dishongh, Norman J. Armendariz, David V. Spaulding
  • Patent number: 6784543
    Abstract: A structure in which a phosphorus-nickel layer, a rich phosphorus nickel layer that contains phosphorus or boron higher than this phosphorus-nickel layer, a nickel-tin ally layer, a tin-rich tin alloy layer, and a tin alloy solder layer are formed in sequence on an electrode. Accordingly, adhesiveness between a metal pattern used as the electrode, the wiring, or the pad and the solder can be improved.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: August 31, 2004
    Assignee: Fujitsu Limited
    Inventors: Hirohisa Matsuki, Yutaka Makino, Masamitsu Ikumo, Mitsutaka Sato, Tetsuya Fujisawa, Yoshitaka Aiba
  • Patent number: 6781156
    Abstract: A localised reduced lifetime region (1,25,41) is provided in a semiconductor device formed substantially of silicon. A predetermined concentration of carbon is provided in the region, and then the body is heated to incorporate a lifetime controlling impurity substantially within the carbon region. It is believed that the association between the impurity ions (M+) and the carbon atoms (C) on silicon lattice sites produces C-M+ complexes with significant capture cross-sections. The carbon may be provided by addition during epitaxial growth of silicon material, during bulk growth of the silicon, or by implantation and/or diffusion.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: August 24, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Miron Drobnis, Martin J. Hill
  • Patent number: 6740972
    Abstract: Described is an electronic device having a compliant fibrous interface. The interface comprises a free fiber tip structure having flocked thermally conductive fibers embedded in an adhesive in substantially vertical orientation with portions of the fibers extending out of the adhesive and an encapsulant between the portions of the fibers that extend out of the adhesive and the fiber's free tips.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: May 25, 2004
    Assignee: Honeywell International Inc.
    Inventors: Charles Smith, Michael M. Chau, Roger A. Emigh, Nancy F. Dean
  • Patent number: 6727117
    Abstract: A semiconductor package for power transistors of the LDMOS type has a metallic substrate with a die mounted directly thereon, lead frame insulators mounted thereon adjacent the die and a plurality of leads mounted on the insulators and electrically coupled to the die by bond wires. The substrate includes a body having opposite surfaces comprising pure copper layers, and with the body interior being at least partially comprised of a copper/diamond composite so as to act as a heat spreader and provide improved heat removal and low thermal expansion, as well as an electrical connection for the die. The body may be entirely comprised of a copper/diamond composite, or it may be comprised of a copper/tungsten composite having a copper/diamond composite insert therein. The copper/diamond composite is comprised of diamond particles within a copper matrix.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: April 27, 2004
    Assignee: Kyocera America, Inc.
    Inventor: John Washington McCoy
  • Patent number: 6717191
    Abstract: A typical air bridge is an aluminum conductor suspended across an air-filled cavity to connect two components of an integrated circuit, two transistors for example. The air-filled cavity has a low dielectric constant which reduces cross-talk between neighboring conductors and improves speed and efficiency of the integrated circuit. However, current air bridges must be kept short because typical aluminum conductors sag too much. Accordingly, one embodiment of the invention forms air-bridge conductors from an aluminum-beryllium alloy, which enhances stiffness and ultimately provides a 40-percent improvement in air-bridge lengths.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Publication number: 20040056352
    Abstract: A package to be mounted with semiconductor chips has a heat-radiating substrate having a thickness of smaller than 0.4 mm of a Cu—Mo composite as prepared by impregnating from 30 to 40% by mass of copper (Cu) melt into a green compact of molybdenum. The heat-radiating substrate is produced by preparing an Mo green compact through isostatic molding, mounting Cu on the Mo green compact, heating it to thereby impregnate copper into the Mo green compact to give a Cu—Mo composite, and rolling the Cu—Mo composite into a sheet substrate.
    Type: Application
    Filed: September 29, 2003
    Publication date: March 25, 2004
    Applicant: TOKYO TUNGSTEN CO., LTD.
    Inventors: Norio Hirayama, Mitsuo Osada, Akira Ichida, Yoshinari Amano, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa, Kenji Sakimae
  • Patent number: 6693353
    Abstract: A package to be mounted with semiconductor chips has a heat-radiating substrate having a thickness of smaller than 0.4 mm of a Cu—Mo composite as prepared by impregnating from 30 to 40% by mass of copper (Cu) melt into a green compact of molybdenum. The heat-radiating substrate is produced by preparing an Mo green compact through isostatic molding, mounting Cu on the Mo green compact, heating it to thereby impregnate copper into the Mo green compact to give a Cu—Mo composite, and rolling the Cu—Mo composite into a sheet substrate. In the isostatic molding process, at least two or more plates.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: February 17, 2004
    Assignee: Tokyo Tungsten Co., Ltd.
    Inventors: Norio Hirayama, Mitsuo Osada, Akira Ichida, Yoshinari Amano, Kiyoshi Asai, Hidetoshi Maesato, Tadashi Arikawa, Kenji Sakimae
  • Patent number: 6657303
    Abstract: An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A device dielectric layer formed on the semiconductor substrate. A channel dielectric layer on the device dielectric layer has an opening formed therein. A barrier layer lines the channel opening. A conductor core fills the opening over the barrier layer. A cerium-conductor interconnect cap is disposed over the conductor core with a capping layer over the dielectric layer and the cerium-conductor interconnect cap.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: December 2, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Pin-Chin Connie Wang, Steven C. Avanzino
  • Patent number: 6651736
    Abstract: A thermal conducting material with higher thermal conductivity for a given low viscosity is shown. Carbon fibers are added to the thermal grease to promote thermal conductivity. The carbon fibers are also not highly electrically conductive, reducing the danger of short circuiting due to misapplication of the thermal grease. Due to the high thermal conductivity of the carbon fibers, a lower loading percentage is needed to obtain significant gains in thermal conductivity. The low loading percentages in turn permit lower thermal grease viscosity, which allows the thermal grease to be spread very thin during application.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: November 25, 2003
    Assignee: Intel Corporation
    Inventors: Chia-Pin Chiu, James C. Shipley, Craig B. Simmons
  • Patent number: 6646344
    Abstract: Provided are a composite material excellent in plastic workability, a method of producing the composite material, a heat-radiating board of a semiconductor equipment, and a semiconductor equipment to which this heat-radiating board is applied. This composite material comprises a metal and an inorganic compound formed to have a dendritic shape or a bar shape. In particular, this composite material is a copper composite material, which comprises 10 to 55 vol. % cuprous oxide (Cu2O) and the balance of copper (Cu) and incidental impurities and has a coefficient of thermal expansion in a temperature range from a room temperature to 300° C. of from 5×10−6 to 17×10−6/° C. and a thermal conductivity of 100 to 380 W/m·k. This composite material can be produced by a process comprising the steps of melting, casting and working and is applied to a heat-radiating board of a semiconductor article.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: November 11, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kazutaka Okamoto, Yasuo Kondo, Teruyoshi Abe, Yasuhisa Aono, Junya Kaneda, Ryuichi Saito, Yoshihiko Koike
  • Publication number: 20030151141
    Abstract: There is provided a structure in which a phosphorus-nickel layer, a rich phosphorus nickel layer that contains phosphorus or boron higher than this phosphorus-nickel layer, a nickel-tin ally layer, a tin-rich tin alloy layer, and a tin alloy solder layer are formed in sequence on an electrode. Accordingly, adhesiveness between a metal pattern used as the electrode, the wiring, or the pad and the solder can be improved.
    Type: Application
    Filed: February 28, 2003
    Publication date: August 14, 2003
    Applicant: Fujitsu Limited
    Inventors: Hirohisa Matsuki, Yutaka Makino, Masamitsu Ikumo, Mitsutaka Sato, Tetsuya Fujisawa, Yoshitaka Aiba
  • Publication number: 20030080426
    Abstract: A method for selectively doping an organic semiconductor 1material in the region of a contact area 0.1formed between a contact and the organic semiconductor material disposed thereon includes introducing the dopant with the aid of nanoparticles, the nanoparticles being disposed in a manner adjoining the contact area and, as a result, only a very narrow region of the organic semiconductor material being doped. The field increase effected by the nanoparticles results in a further reduction of the contact resistance.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 1, 2003
    Inventors: Hagen Klauk, Gunter Schmid
  • Patent number: 6548898
    Abstract: A structure in which a phosphorus-nickel layer, a rich phosphorus nickel layer that contains phosphorus or boron higher than this phosphorus-nickel layer, a nickel-tin ally layer, a tin-rich tin alloy layer, and a tin alloy solder layer are formed in sequence on an electrode. Accordingly, adhesiveness between a metal pattern used as the electrode, the wiring, or the pad and the solder can be improved.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: April 15, 2003
    Assignee: Fujitsu Limited
    Inventors: Hirohisa Matsuki, Yutaka Makino, Masamitsu Ikumo, Mitsutaka Sato, Tetsuya Fujisawa, Yoshitaka Aiba
  • Patent number: 6543524
    Abstract: A net-shape molded heat transfer component is provided which includes a thermally conductive core and a metallic coating for reflection of electromagnetic interference and radio frequency waves. The heat transfer component is formed by net-shape molding a core body from a thermally conductive composition, such as a polymer composition, and applying a metallic coating. The molded heat transfer part is freely convecting through the part, which makes it more efficient and has an optimal thermal configuration. Additionally, the part is shielded from electromagnetic interference and radio frequency waves, thus preventing the transfer of same into the circuitry housed by the part. In addition, the coating also seals the conductive polymer core against moisture infiltration, making the part well suited for telecommunications applications in potentially harsh environments.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: April 8, 2003
    Assignee: Cool Options, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal, James D. Miller
  • Patent number: 6545356
    Abstract: Methods of forming a graded layer is disclosed. The graded layer transitions from one material to another material. The properties of these materials are chosen to optimize the interfaces on each side of the graded layer. Specifically, an improved transistor gate stack barrier layer may be formed by disposing an appropriate graded layer between a gate layer and an interconnect layer. In fact, the graded layer may obviate the use of the interconnect layer, as the top of the graded layer may include a highly conductive material. An improved integrated circuit interconnect structure may also be formed by grading the material composition of an interconnect layer.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: April 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Scott G. Meikle
  • Patent number: 6528179
    Abstract: A method and structure for reducing chip carrier flexing during thermal cycling. A semiconductor chip is coupled to a stiff chip carrier (i.e., a chip carrier having an elastic modulus of at least about 3×105 psi), and there is no stiffener ring on a periphery of the chip carrier. Without the stiffener ring, the chip carrier is able to undergo natural flexing (in contrast with constrained flexing) in response to a temperature change that induces thermal strains due to a mismatch in coefficient of thermal expansion between the chip and the chip carrier. If the temperature at the chip carrier changes from room temperature to a temperature of about −40° C., a maximum thermally induced displacement of a surface of the chip carrier is at least about 25% less if the stiffener ring is absent than if the stiffener ring is present.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: March 4, 2003
    Assignee: International Business Machines Corporation
    Inventors: Lisa J. Jimarez, Miguel A. Jimarez
  • Patent number: 6521998
    Abstract: In an electrode structure for a nitride III-V compound semiconductor device, a metallic nitride is used as an electrode material. A metallic material of the metallic nitride has a negative nitride formation free energy, and comprises at least one metal selected from a group consisting of IVa-group metals such as titanium and zirconium, Va-group metals such as vanadium, niobium, and tantalum, and VIa-group metals such as chromium, molybdenum, and tungsten.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: February 18, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobuaki Teraguchi, Takeshi Kamikawa
  • Patent number: 6509590
    Abstract: A typical air bridge is an aluminum conductor suspended across an air-filled cavity to connect two components of an integrated circuit, two transistors for example. The air-filled cavity has a low dielectric constant which reduces cross-talk between neighboring conductors and improves speed and efficiency of the integrated circuit. However, current air bridges must be kept short because typical aluminum conductors sag too much. Accordingly, one embodiment of the invention forms air-bridge conductors from an aluminum-beryllium alloy, which enhances stiffness and ultimately provides a 40-percent improvement in air-bridge lengths.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: January 21, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar