Resistive To Electromigration Or Diffusion Of The Contact Or Lead Material Patents (Class 257/767)
  • Patent number: 8426307
    Abstract: An integrated circuit structure having improved resistivity and a method for forming the same are provided. The integrated circuit structure includes a dielectric layer, an opening in the dielectric layer, an oxide-based barrier layer directly on sidewalls of the opening, and conductive materials filling the remaining portion of the opening.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Cheng-Lin Huang
  • Patent number: 8378490
    Abstract: A method of integrated circuit fabrication is provided, and more particularly fabrication of a semiconductor apparatus with a metallic alloy. An exemplary structure for a semiconductor apparatus comprises a first silicon substrate having a first contact comprising a silicide layer between the substrate and a first metal layer; a second silicon substrate having a second contact comprising a second metal layer; and a metallic alloy between the first metal layer of the first contact and the second metal layer of the second contact.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chyi-Tsong Ni, I-Shi Wang, Hsin-Kuei Lee, Ching-Hou Su
  • Patent number: 8354751
    Abstract: An interconnect structure having enhanced electromigration resistance is provided in which a lower portion of a via opening includes a multi-layered liner. The multi-layered liner includes, from a patterned surface of a dielectric material outwards, a diffusion barrier, a multi-material layer and a metal-containing hard mask. The multi-material layer includes a first material layer comprised of residue from an underlying dielectric capping layer, and a second material layer comprised of residue from an underlying metallic capping layer. The present invention also provides a method of fabricating such an interconnect structure which includes the multi-layered liner within a lower portion of a via opening formed within a dielectric material.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8329360
    Abstract: Provided is an apparatus that includes an overlay mark. The overlay mark includes a first portion that includes a plurality of first features. Each of the first features have a first dimension measured in a first direction and a second dimension measured in a second direction that is approximately perpendicular to the first direction. The second dimension is greater than the first dimension. The overlay mark also includes a second portion that includes a plurality of second features. Each of the second features have a third dimension measured in the first direction and a fourth dimension measured in the second direction. The fourth dimension is less than the third dimension. At least one of the second features is partially surrounded by the plurality of first features in both the first and second directions.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Guo-Tsai Huang, Fu-Jye Liang, Li-Jui Chen, Chih-Ming Ke
  • Patent number: 8278759
    Abstract: A structure for measuring misalignment of patterns may include a first wiring and a second wiring. The first wiring may include a first lower pattern and a first upper pattern. The first upper pattern may extend in a y-direction, and a first end portion of the first upper pattern that is relatively further toward (proximal to) a negative y-direction may contact the first lower pattern. The second wiring may include a second lower pattern and a second upper pattern. The second upper pattern may extend in the y-direction, a second end portion of the second upper pattern that is relatively further toward (proximal to) a positive y-direction may contact the second lower pattern. The second wiring may be spaced apart from the first wiring along the negative y-direction.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 2, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Wan-Seob Kim
  • Patent number: 8247905
    Abstract: The present invention is related to a method for forming vertical conductive structures by electroplating. Specifically, a template structure is first formed, which includes a substrate, a discrete metal contact pad located on the substrate surface, an inter-level dielectric (ILD) layer over both the discrete metal contact pad and the substrate, and a metal via structure extending through the ILD layer onto the discrete metal contact pad. Next, a vertical via is formed in the template structure, which extends through the ILD layer onto the discrete metal contact pad. A vertical conductive structure is then formed in the vertical via by electroplating, which is conducted by applying an electroplating current to the discrete metal contact pad through the metal via structure. Preferably, the template structure comprises multiple discrete metal contact pads, multiple metal via structures, and multiple vertical vias for formation of multiple vertical conductive structures.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Qiang Huang, John P. Hummel, Lubomyr T. Romankiw, Mary B. Rothwell
  • Patent number: 8232643
    Abstract: Lead free solder interconnections for integrated circuits. A copper column extends from an input/output terminal of an integrated circuit. A cap layer of material is formed on the input/output terminal of the integrated circuit. A lead free solder connector is formed on the cap layer. A substrate having a metal finish solder pad is aligned with the solder connector. An intermetallic compound is formed at the interface between the cap layer and the lead free solder connector. A solder connection is formed between the input/output terminal of the integrated circuit and the metal finish pad that is less than 0.5 weight percent copper, and the intermetallic compound is substantially free of copper.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 31, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Ching-Wen Hsiao, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 8222086
    Abstract: A plurality of FPGA dice is disposed upon a semiconductor substrate. In order both to connect thousands of signal interconnect lines between the plurality of FPGA dice and to supply the immense power required, it is desired that the substrate construction include two different portions, each manufactured using incompatible processes. The first portion is a signal interconnect structure containing a thin conductor layers portion characterized as having a plurality of thin, fine-pitch conductors. The second portion is a power connection structure that includes thick conductors and vertical through-holes. The through-holes contain conductive material and supply power to the FPGA dice from power bus bars located at the other side of the semiconductor substrate. The portions are joined at the wafer level by polishing the wafer surfaces within a few atoms of flatness and subsequent cleaning. The portions are then fusion bonded together or combined using an adhesive material.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: July 17, 2012
    Assignee: Research Triangle Institute
    Inventor: Robert O. Conn
  • Patent number: 8188600
    Abstract: The present invention provides a semiconductor device which is capable of enhancing adhesion at an interface between a wire-protection film and copper, suppressing dispersion of copper at the interface to avoid electromigration and stress-inducing voids, and having a highly reliable wire. An interlayer insulating film, and a first etching-stopper film are formed on a semiconductor substrate on which a semiconductor device is fabricated. A first alloy-wire covered with a first barrier metal film is formed on the first etching-stopper film by a damascene process. The first alloy-wire is covered at an upper surface thereof with a first wire-protection film. The first wire-protection film covering an upper surface of the first alloy-wire contains at least one metal among metals contained in the first alloy-wire.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 29, 2012
    Assignee: NEC Corporation
    Inventors: Mari Amano, Munehiro Tada, Yoshihiro Hayashi
  • Patent number: 8159068
    Abstract: A semiconductor device includes: a semiconductor layer composed of one of GaAs based semiconductor, InP-based semiconductor, and GaN-based semiconductor; a first silicon nitride film that is provided on the semiconductor layer, and of which an end portion is in contact with a surface of the semiconductor layer; a protective film that is composed of one of polyimide and benzocyclobutene, and is provided on the semiconductor layer and the first silicon nitride film, the protective film covering the end portion of the first silicon nitride film; and a first metallic layer that is composed of one of titanium, tantalum and platinum, and is continuously provided from a first portion located between the semiconductor layer and the protective film to a second portion located between the end portion of the first silicon nitride film and the protective film, the first metallic layer being in contact with the surface of the semiconductor layer and a surface of the end portion of the first silicon nitride film.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: April 17, 2012
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Takeshi Hishida, Tsutomu Igarashi
  • Patent number: 8138604
    Abstract: An interconnect structure is provided that has enhanced electromigration reliability without degrading circuit short yield, and improved technology extendibility. The inventive interconnect structure includes a dielectric material having a dielectric constant of about 3.0 or less. The dielectric material has at least one conductive material embedded therein. A noble metal cap is located directly on an upper surface of the at least one conductive region. The noble metal cap does not substantially extend onto an upper surface of the dielectric material that is adjacent to the at least one conductive region, and the noble cap material does not be deposited on the dielectric surface. A method fabricating such an interconnect structure utilizing a low temperature (about 300° C. or less) chemical deposition process is also provided.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Daniel C. Edelstein
  • Patent number: 8138603
    Abstract: An IC interconnect for high direct current (DC) that is substantially immune to electro-migration (EM) damage, a design structure of the IC interconnect and a method of manufacture of the IC interconnect is provided. The structure has electro-migration immunity and redundancy of design, which includes a plurality of wires laid out in parallel and each of which are coated with a liner material. Two adjacent of the wires are physically contacted to each other.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Conal E. Murray, Ping-Chuan Wang, Chih-Chao Yang
  • Patent number: 8119520
    Abstract: A semiconductor device and method for manufacturing the same is provided, capable of gap-filling a copper metal wiring while minimizing void generation. A semiconductor device according to an embodiment includes a copper sulfide layer formed on a first barrier metal formed in a via and trench; and a via plug and an upper metal wiring formed in the via hole and the trench, respectively, on the copper sulfide layer and an exposed lower metal wiring.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 21, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Kyung Min Park
  • Patent number: 8120180
    Abstract: A semiconductor device includes a semiconductor substrate, an insulation pattern on the semiconductor substrate, and an etch stop layer on the insulating pattern, the insulation pattern and the etch stop layer defining a contact hole that exposes the substrate, a first plug filled in a portion of the contact hole, a diffusion barrier layer formed above the first plug and in a bottom portion and on sidewalls of a remaining portion of the contact hole, a second plug fainted on the diffusion barrier layer and filled in the contact hole, and a storage node coupled to and formed on the second plug.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: February 21, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jin-Hyock Kim, Jae-Sung Roh, Seung-Jin Yeom, Kee-Jeung Lee, Han-Sang Song, Deok-Sin Kil, Young-Dae Kim
  • Patent number: 8115264
    Abstract: Provided is a semiconductor device that comprises a metal gate having a low sheet resistance characteristic and a high diffusion barrier characteristic and a method of fabricating the metal gate of the semiconductor device. The semiconductor device includes a metal gate formed on a gate insulating film, wherein the metal gate is formed of a metal nitride that contains Al or Si and includes upper and lower portions where the content of Al or Si is relatively high and a central portion where the content of Al or Si is relatively low.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: February 14, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, Jin-seo Noh, Joong S. Jeon
  • Patent number: 8102049
    Abstract: The present invention provides a semiconductor device including at least one of an insulating layer and a semiconductor layer each including a hole formed therein, and a through electrode provided in the hole. In the semiconductor device, the side wall of the hole is constituted of a first region from the opening of the hole to a predetermined position between the opening of the hole and the bottom surface of the hole, and a second region from the predetermined position to the bottom surface of the hole. The through electrode includes a seed layer and a plating layer. The seed layer covers the second region and the bottom surface of the hole without covering the first region. In addition, the plating layer covers the seed layer and at least a part of the first region.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: January 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuaki Takahashi, Masahiro Komuro, Koji Soejima, Satoshi Matsui, Masaya Kawano
  • Patent number: 8102668
    Abstract: An integral impedence is formed on or within a lead frame pin of a semiconductor package and receives a connection from an electrode of a semiconductor die within the package to eliminate the need for adjustment and protective impedences external of the package. The impedence comprises passives such as resistors, capacitors, diodes or inductors which modify the performance of the package for new semiconductor device characteristics. The impedences may have positive or negative temperature coefficients and are in close thermal communication with the semiconductor die.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: January 24, 2012
    Assignee: International Rectifier Corporation
    Inventors: Henning M. Hauenstein, Alana Nakata
  • Patent number: 8093729
    Abstract: An electrically conductive interconnect system has a post, extending above a supporting surface, the post including a rigid material, a coating on the rigid material, wherein the post and has a first width at the supporting surface and a second width at a distance removed from the supporting surface, and the post narrows from the first width to the second width. A method of electrically connecting a portion of a first supporting surface to a portion of a second supporting surface involves bringing a post on the first supporting surface into contact with an electrically conductive material located on the second supporting surface, softening the electrically conductive material, causing a separation distance between the first supporting surface and the second supporting distance to decrease so that a portion of the post will be surrounded by the electrically conductive material, and allowing the temperature of the electrically conductive material to decrease.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: January 10, 2012
    Assignee: Cufer Asset Ltd. L.L.C.
    Inventor: John Trezza
  • Patent number: 8084864
    Abstract: A vertical metallic stack, from bottom to top, of an elemental metal liner, a metal nitride liner, a Ti liner, an aluminum portion, and a metal nitride cap, is formed on an underlying metal interconnect structure. The vertical metallic stack is annealed at an elevated temperature to induce formation of a TiAl3 liner by reaction of the Ti liner with the material of the aluminum portion. The material of the TiAl3 liner is resistant to electromigration, thereby providing enhanced electromigration resistance to the vertical metallic stack comprising the elemental metal liner, the metal nitride liner, the TiAl3 liner, the aluminum portion, and the metal nitride cap. The effect of enhanced electromigration resistance may be more prominent in areas in which the metal nitride cap suffers from erosion during processing.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jonathan D. Chapple-Sokol, Daniel A. Delibac, Zhong-Xiang He, Tom C. Lee, William J. Murphy, Timothy D. Sullivan, David C. Thomas, Daniel S. Vanslette
  • Patent number: 8080879
    Abstract: An electrode structure is disclosed for enhancing the brightness and/or efficiency of an LED. The electrode structure can have a metal electrode and an optically transmissive thick dielectric material formed intermediate the electrode and a light emitting semiconductor material. The electrode and the thick dielectric cooperate to reflect light from the semiconductor material back into the semiconductor so as to enhance the likelihood of the light ultimately being transmitted from the semiconductor material. Such LED can have enhanced utility and can be suitable for uses such as general illumination. The semiconductor material can have a cutout formed therein and a portion of the electrode can be formed outside of the cutout and a portion of the electrode can be formed inside of the cutout. The portion of the electrode outside the cutout can be electrically isolated from the semiconductor material by the dielectric material.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 20, 2011
    Assignee: Bridgelux, Inc.
    Inventor: Frank T. Shum
  • Patent number: 8072075
    Abstract: The present invention relates to an integrated-circuit device that has at least one Copper-containing feature in a dielectric layer, and a diffusion-barrier layer stack arranged between the feature and the dielectric layer. The integrated-circuit device of the invention has a diffusion-barrier layer stack, which comprises, in a direction from the Copper-containing feature to the dielectric layer, a CuSiN layer and a SiN layer. This layer combination provides an efficient barrier for suppressing Copper diffusion from the feature into the dielectric layer. Furthermore, a CuSiN/SiN layer sequence provides an improved adhesion between the layers of the diffusion-barrier layer stack and the dielectric layer, and thus improves the electromigration performance of the integrated-circuit device during operation. Therefore, the reliability of device operation and the lifetime of the integrate-circuit device are improved in comparison with prior-art devices.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: December 6, 2011
    Inventors: Nicolas Jourdan, Laurant Georges Gosset, Joaquin Torres
  • Patent number: 8056039
    Abstract: An interconnect structure for an integrated circuit (IC) device includes an elongated, electrically conductive line comprising one or more segments formed at a first width, w1, and one or more segments formed at one or more additional widths, w2 . . . wN, with the first width being narrower than each of the one or more additional widths; wherein the relationship of the total length, L1, of the one or more conductive segments formed at the first width to the total lengths, L2 . . . LN, of the one or more conductive segments formed at the one or more additional widths is selected such that, for a given magnitude of current carried by the conductive line, a critical length with respect to an electromigration short-length effect benefit is maintained such that a total length of the conductive line, L=L1+L2+ . . . +LN, meets a minimum desired design length regardless of the critical length.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kaushik Chanda, Ronald Filippi, Stephan Grunow, Chao-Kun Hu, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert
  • Patent number: 8053895
    Abstract: A metal line of a semiconductor device includes an insulation layer formed on a semiconductor substrate. The insulation layer has a metal line forming region. A diffusion barrier is formed on a surface of the metal line forming region of the insulation layer. The diffusion barrier includes a multi-layered structure that includes an MoB2 layer, an MoxByNz layer and an Mo layer. A metal layer is formed on the diffusion barrier to fill the metal line forming region of the insulation layer.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong Ha Jung, Seung Jin Yeom, Baek Mann Kim, Nam Yeal Lee
  • Patent number: 8053863
    Abstract: An electrical fuse comprises: an interconnect to be cut; and a first terminal and a second terminal which are respectively provided at both ends of the interconnect to be cut. The interconnect to be cut comprises: a first orientation film which contains copper as a main component and is oriented in a (111) plane; and a second orientation film which contains copper as a main component and is oriented in a (511) plane. The second orientation film is provided inside the first orientation film over a width direction of the first orientation film, which is perpendicular to a direction from the first terminal toward the second terminal, so as to partition the first orientation film. Accordingly, it becomes possible to securely cut the electrical fuse whose constituent material is copper, and moreover, to maintain a satisfactory cut state of the electrical fuse after the cutting.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 8, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Toshiyuki Takewaki
  • Patent number: 7994640
    Abstract: Functionalized nanoparticles are deposited on metal lines inlaid in dielectric to form a metal cap layer that reduces electromigration in the metal line. The functionalized nanoparticles are deposited onto activated metal surfaces, then sintered and annealed to remove the functional agents leaving behind a continuous capping layer. The resulting cap layer is about 1 to 10 nm thick with 30-100% atomic of the nanoparticle material. Various semiconductor processing tools may be adapted for this deposition process without adding footprint in the semiconductor fabrication plant.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: August 9, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Glenn Alers, Robert H. Havemann
  • Patent number: 7977798
    Abstract: An integrated circuit having a semiconductor substrate with a barrier layer is disclosed. The arrangement includes a semiconductor substrate and a metallic element. A carbon-based barrier layer is disposed between the semiconductor substrate and the metallic element.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 12, 2011
    Assignees: Infineon Technologies AG, Qimonda AG
    Inventors: Stephan Dertinger, Alfred Martin, Barbara Hasler, Grit Sommer, Florian Binder
  • Patent number: 7956469
    Abstract: Provided is a light emitting device with high extraction efficiency, in which absorption of light by a conductive wire is prevented effectively. The light emitting device includes a conductive wire electrically connecting an electrode of a light emitting element and an electrically conductive member. The surface of the bonding portion of the conductive wire between the conductive wire and at least one of the electrode of the light emitting element and the electrically conductive member is covered with a metal film. The reflectivity of the metal film is higher than that of the conductive wire at the emission peak wavelength of the light emitting element.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: June 7, 2011
    Assignee: Nichia Corporation
    Inventors: Masaki Hayashi, Yuji Okada, Koji Kuroda
  • Patent number: 7956463
    Abstract: An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Takeshi Nogami, Stephen M. Rossnagel
  • Patent number: 7951708
    Abstract: A method of forming a diffusion barrier for use in semiconductor device manufacturing includes depositing, by a physical vapor deposition (PVD) process, an iridium doped, tantalum based barrier layer over a patterned interlevel dielectric (ILD) layer, wherein the barrier layer is deposited with an iridium concentration of at least 60 atomic % such that the barrier layer has a resulting amorphous structure.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Daniel C. Edelstein, Philip L. Flaitz, Takeshi Nogami, Stephen M. Rossnagel, Chih-Chao Yang
  • Patent number: 7944041
    Abstract: A plurality of FPGA dice is disposed upon a semiconductor substrate. In order both to connect thousands of signal interconnect lines between the plurality of FPGA dice and to supply the immense power required, it is desired that the substrate construction include two different portions, each manufactured using incompatible processes. The first portion is a signal interconnect structure containing a thin conductor layers portion characterized as having a plurality of thin, fine-pitch conductors. The second portion is a power connection structure that includes thick conductors and vertical through-holes. The through-holes contain conductive material and supply power to the FPGA dice from power bus bars located at the other side of the semiconductor substrate. The portions are joined at the wafer level by polishing the wafer surfaces within a few atoms of flatness and subsequent cleaning. The portions are then fusion bonded together or combined using an adhesive material.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: May 17, 2011
    Assignee: Research Triangle Institute
    Inventor: Robert O. Conn
  • Patent number: 7936069
    Abstract: A semiconductor device includes an interlayer insulation film, an underlying line provided in the interlayer insulation film, a liner film overlying the interlayer insulation film, an interlayer insulation film overlying the liner film. The underlying line has a lower hole and the liner film and the interlayer insulation film have an upper hole communicating with the lower hole, and the lower hole is larger in diameter than the upper hole. The semiconductor device further includes a conductive film provided at an internal wall surface of the lower hole, a barrier metal provided along an internal wall surface of the upper hole, and a Cu film filling the upper and lower holes. The conductive film contains a substance identical to a substance of the barrier metal. A highly reliable semiconductor device can thus be obtained.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 3, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyoshi Maekawa, Kenichi Mori
  • Patent number: 7932609
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 26, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 7923839
    Abstract: A semiconductor device includes a contact plug electrically connected to a semiconductor substrate; a first barrier metal film with a columnar crystal structure arranged in contact with the semiconductor substrate at least on a bottom surface side of the contact plug; an amorphous film made of a material of the first barrier metal film arranged in contact with the first barrier metal film at least on the bottom surface side of the contact plug; a second barrier metal film made of a material identical to that of the first barrier metal film and having a columnar crystal structure, at least a portion of which is arranged in contact with the amorphous film on the bottom surface side and a side surface side of the contact plug; and a dielectric film arranged on the side surface side of the contact plug.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Kitamura, Junichi Wada, Hideto Matsuyama
  • Patent number: 7919832
    Abstract: A resistor structure for an integrated circuit includes a first set of contacts connected between a semiconductor layer and a first conductive layer; and a second set of plugs connected between the first conductive layer and a second conductive layer, wherein the first set of contacts and the second set of plugs are coupled together as a first resistor segment to provide a predetermined resistance for the integrated circuit.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: April 5, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Lung Hsueh, Sung-Chieh Lin
  • Patent number: 7919845
    Abstract: Formation of a hybrid integrated circuit device is described. A design for the integrated circuit is obtained and separated into at least two portions responsive to component sizes. A first die is formed for a first portion of the hybrid integrated circuit device using at least in part a first minimum dimension lithography. A second die is formed for a second portion of the device using at least in part a second minimum dimension lithography, where the second die has the second minimum dimension lithography as a smallest lithography used for the forming of the second die. The first die and the second die are attached to one another via coupling interconnects respectively thereof to provide the hybrid integrated circuit device.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 5, 2011
    Assignee: Xilinx, Inc.
    Inventors: James Karp, Steven P. Young, Bernard J. New, Scott S. Nance, Patrick J. Crotty
  • Patent number: 7910967
    Abstract: A ferroelectric capacitor having a three-dimensional structure, a nonvolatile memory device having the same, and a method of fabricating the same are provided. The ferroelectric capacitor may include a trench-type lower electrode, at least one layer formed around the lower electrode, a ferroelectric layer (PZT layer) formed on the lower electrode and the at least one layer and an upper electrode formed on the ferroelectric layer. The at least one layer may be at least one insulating interlayer and the at least one layer may also be at least one diffusion barrier layer. The at least one layer may be formed of an insulating material excluding SiO2 or may have a perovskite crystal structure excluding Pb.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Shin, Young-soo Park, June-mo Koo, Byoung-jae Bae, I-hun Song, Suk-pil Kim
  • Patent number: 7875976
    Abstract: In one aspect of the present invention, a semiconductor device may include a semiconductor substrate, a silicide layer provided on the semiconductor substrate, a dielectric layer provided on the semiconductor substrate, a contact layer provided on the silicide layer, a metal layer provided in the dielectric layer and electrically connected to the silicide layer via the contact layer, a diffusion barrier layer provided between the dielectric layer and the metal layer, wherein the contact layer includes a first metal element provided in the metal layer, a second metal element provided in the diffusion barrier layer and at least one of a third metal provided in the silicide layer and Si element.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: January 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Takamasa Usui, Kazuya Ohuchi
  • Patent number: 7863744
    Abstract: A semiconductor device includes an insulating interlayer formed above a silicon substrate and provided with a concave portion in a certain location, a barrier metal film covering an inner wall of the insulating interlayer, a lower layer copper interconnect provided so as to be in contact with the barrier metal film and buried in the interior of the concave portion, and a protective film provided so as to be in contact with the lower layer copper interconnect and also provided on substantially the entire top surface of the lower layer copper interconnect. An upper surface of the lower layer copper interconnect is provided so as to be retracted to be closer to the substrate than an upper surface of barrier metal film on the side wall of the concave portion.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Naoyoshi Kawahara, Yumi Saitou
  • Patent number: 7855458
    Abstract: An electronic component includes a substrate, and a capacitor unit on the substrate. The capacitor unit has a laminate structure including a first electrode layer provided on the substrate, a second electrode layer opposed to the first electrode layer, and a dielectric layer disposed between the first and the second electrode layers. The first electrode layer has a multilayer structure including an adhesion metal layer joined to the dielectric layer. The adhesion metal layer is provided with an oxide coating on a side of the dielectric layer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: December 21, 2010
    Assignee: Fujitsu Limited
    Inventors: Tsuyoshi Matsumoto, Yoshihiro Mizuno, Xiaoyu Mi, Hisao Okuda, Satoshi Ueda
  • Patent number: 7851916
    Abstract: A method and system is disclosed for better packaging semiconductor devices. In one example, a semiconductor device package comprises a package substrate, at least one die with an orientation of <100> placed on the substrate with electrical connections made between the package substrate and the die, and an underfill fillet attaching the die to the substrate with the underfill fillet reaching less than 60% of a thickness of the die on at least one side thereof.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: December 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Hui Lee, Mickey Ken, Chien-Hsiun Lee, Szu Wei Lu
  • Patent number: 7825516
    Abstract: In integrated circuit technology; an electromigration and diffusion sensitive conductor of a metal such as copper and processing procedure therefore is provided, wherein, at a planarized chemical mechanical processed interfacing surface, the conductor metal is positioned in a region of a selectable low K eff dielectric material surrounded by a material selected to be protection from outdiffusion and a source of a film thickness cap that is to form over the conductor metal and/or serve as a catalytic layer for electroless selective deposition of a CoWP capping .
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stefanie Ruth Chiras, Michael Wayne Lane, Sandra Guy Malhotra, Fenton Reed Mc Feely, Robert Rosenberg, Carlos Juan Sambucetti, Philippe Mark Vereecken
  • Patent number: 7816255
    Abstract: Methods of forming a semiconductor device that includes a diffusion barrier film are provided. The diffusion barrier film includes a metal nitride formed by using a MOCVD process and partially treated with a plasma treatment. Thus, a specific resistance of the diffusion barrier film can be decreased, and the diffusion barrier film may have distinguished barrier characteristics.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-In Choi, Gil-Heyun Choi, Hyun-Bae Lee, Jong-Won Hong, Jong-Myeong Lee
  • Patent number: 7816789
    Abstract: A semiconductor structure and methods of forming the same are provided. The semiconductor structure includes a semiconductor substrate; a first dielectric layer over the semiconductor substrate; a conductive wiring in the first dielectric layer; and a copper germanide nitride layer over the conductive wiring.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: October 19, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 7812454
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, an electrical bus embedded in a dielectric material below a surface of a semiconductor substrate is disclosed. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: October 12, 2010
    Assignee: HVVi Semiconductors, Inc
    Inventor: Bishnu Prasanna Gogoi
  • Patent number: 7812452
    Abstract: A semiconductor device according to the present invention includes a semiconductor substrate; a capacitor having a lower electrode formed on said semiconductor substrate, a capacity insulating film formed on said lower electrode, and an upper electrode formed on said capacity insulating film; contact holes formed on said upper electrode and said lower electrode; a barrier layer containing oxygen, formed inside said contact holes; and a conductive layer which fills said contact holes in which said barrier layer is formed on the inside.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 12, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Kazuhide Abe
  • Patent number: 7795732
    Abstract: A ceramic wiring board 10 includes a ceramic substrate 11 and a wiring layer 12 formed on the ceramic substrate 11. The wiring layer 12 includes a wiring part 13 and a connection part 14, the wiring part 13 having a base metal layer 15, a first diffusion preventive layer 16 and a first Au layer 17 which are stacked in sequence on a surface of the ceramic substrate 11, and the connection part 14 having a second diffusion preventive layer 19, a void suppression layer 20 and a solder layer 18 which are stacked in sequence at a desired position on the wiring part 13. The void suppression layer 20 is made of, for example, Au or an Au—Sn alloy containing 85 mass % or more of Au.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: September 14, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Miho Nakamura, Yoshiyuki Fukuda
  • Publication number: 20100224999
    Abstract: The invention relates to a method for producing metallic interconnect lines on the surface of a substrate comprising: an etching step for defining trenches within said substrate; a step for filling said trenches using electrodeposition of a metal exhibiting a crystalline lattice, further comprising the production of a so-called metal invasion layer, on top of said trenches filled with grains of metal so as to define said interconnect lines, characterized in that it also comprises the following steps: determination of a first direction (D1) of orientation of grains along a trench and of a second direction (D2) of orientation of grains in a direction perpendicular to a trench; determination of a third direction (D3) of ion channelling in the crystalline lattice of said metal; determination of at least one direction of orientation (Di1, Di2, Di3) of an ion implantation beam in said metal invasion layer, by performing the scalar products: of a first vector relative to said first direction (D1, <110>) an
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Applicant: Commissariat A L'Energie Atomique
    Inventor: Vincent CARREAU
  • Publication number: 20100224998
    Abstract: An integrated circuit (IC) includes an interconnect system made of electrically conducting ribtan material. The integrated circuit includes a substrate, a set of circuit elements that are formed on the substrate, an interconnect system that interconnects the circuit elements. At least part of the interconnect system is made of a metallic ribtan material.
    Type: Application
    Filed: June 25, 2009
    Publication date: September 9, 2010
    Applicant: Carben Semicon Limited
    Inventors: Steven Grant Duvall, Pavel Khokhlov, Pavel I. Lazarev
  • Patent number: 7786548
    Abstract: An electric element includes a first electrode (1), a second electrode (3), and a variable-resistance film (2) connected between the first electrode (1) and the second electrode (3). The variable-resistance film (2) contains Fe (iron) and O (oxygen) as constituent elements. The content of oxygen in the variable-resistance film (2) is modulated along the film thickness direction.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 31, 2010
    Assignee: Panasonic Corporation
    Inventors: Koichi Osano, Shunsaku Muraoka, Satoru Mitani, Kumio Nago
  • Patent number: 7781889
    Abstract: A system may include a first conductive ground pad, a second conductive ground pad, a first conductive via coupling the first ground pad to the second ground pad, a first conductive signal trace, a second conductive signal trace, and a second conductive via disposed within the first conductive via and coupling the first conductive signal trace to the second conductive signal trace. The first conductive ground pad and the second conductive ground pad may be disposed between the first conductive signal trace and the second conductive signal trace.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: August 24, 2010
    Assignee: Intel Corporation
    Inventors: Bram Leader, Richard R. Doersch