Layered Contact, Lead Or Bond Patents (Class 257/781)
  • Patent number: 8922027
    Abstract: According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 30, 2014
    Assignee: Fujitsu Limited
    Inventors: Taiji Sakai, Nobuhiro Imaizumi
  • Patent number: 8922006
    Abstract: A device includes a substrate, a metal pad over the substrate, and a passivation layer covering edge portions of the metal pad. The passivation layer has a first opening overlapping the metal pad, wherein the first opening has a first lateral dimension measured in a direction parallel to a major surface of the substrate. A polymer layer is over the passivation layer and covering the edge portions of the metal pad. The polymer layer has a second opening overlapping the metal pad. The second opening has a second lateral dimension measured in the direction. The first lateral dimension is greater than the second lateral dimension by more than about 7 ?m. A Under-Bump metallurgy (UBM) includes a first portion in the second opening, and a second portion overlying portions of the polymer layer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Liang Lin, Chen-Shien Chen, Tin-Hao Kuo, Sheng-Yu Wu, Tsung-Shu Lin, Chang-Chia Huang
  • Patent number: 8912668
    Abstract: Electrical connections for chip scale packaging are disclosed. In one embodiment, a semiconductor device includes a post-passivation layer disposed over a substrate, the substrate having a first direction of coefficient of thermal expansion mismatch. The semiconductor device includes a first opening through the post-passivation layer, the first opening comprising a plurality of elongated apertures. A longest of the plurality of elongated apertures comprises a first dimension, wherein the first dimension is aligned substantially perpendicular to the first direction of coefficient of thermal expansion mismatch.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Shih-Wei Liang
  • Patent number: 8912666
    Abstract: A Chip Scale Package (CSP) and a method of forming the same are disclosed. Single chips without the conventional ball mountings, are first attached to an adhesive-substrate (adsubstrate) composite having openings that correspond to the input/output (I/O) pads on the single chips to form a composite chip package. Ball mounting is then performed over the openings, thus connecting the I/O pads at the chip sites to the next level of packaging directly. In another embodiment, the adhesive layer is formed on the wafer side first to form an adwafer, which is then die sawed in CSPs. Then the CSPs with the adhesive already on them are bonded to a substrate. The composite chip package may optionally be encapsulated with a molding material. The CSPs provide integrated and shorter chip connections especially suited for high frequency circuit applications, and can leverage the currently existing test infrastructure.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 16, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Jin-Yuan Lee, Ching-Cheng Huang, Mou-Shiung Lin
  • Patent number: 8907489
    Abstract: A wiring substrate includes: a substrate layer made of glass or silicon and including: a first surface formed with a first hole; and a second surface formed with a second hole and being opposite to the first surface, wherein the first hole is communicated with the second hole; a connection pad formed in the second hole; a first wiring layer formed in the first hole and electrically connected to the connection pad; a first insulation layer formed on the first surface of the substrate layer to cover the first wiring layer; and a second wiring layer formed on the first insulation layer and electrically connected to the first wiring layer. A diameter of the first hole is gradually decreased from the first surface toward the second surface, and a diameter of the second hole is gradually decreased from the second surface toward the first surface.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: December 9, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yuji Kunimoto, Naoyuki Koizumi
  • Patent number: 8901754
    Abstract: A semiconductor device comprises a semiconductor chip having a plurality of electrode pads; an insulation layer having one or more apertures which expose at least a part of the plurality of electrode pads respectively on the semiconductor chip; and a plurality of wires which are electrically connected to the exposed plurality of electrode pads.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 2, 2014
    Assignee: J-Devices Corporation
    Inventor: Osamu Yamagata
  • Patent number: 8901733
    Abstract: In accordance with the objectives of the invention a new method is provided for the creation of metal bumps over surfaces of I/O pads. Contact pads are provided over the surface of a layer of dielectric. The aluminum of the I/O pads, which have been used as I/O pads during wafer level semiconductor device testing, is completely or partially removed over a surface area that is smaller than the surface area of the contact pad using methods of metal dry etching or wet etching. The contact pad can be accessed either by interconnect metal created in a plane of the contact pad or by via that are provided through the layer of dielectric over which the contact pad has been deposited. The process can be further extended by the deposition, patterning and etching of a layer of polyimide over the layer of passivation that serves to protect the contact pad.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 2, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Ching-Cheng Huang, Chuen-Jye Lin, Ming-Ta Lei, Mou-Shiung Lin
  • Patent number: 8901726
    Abstract: A package on package structure includes a first substrate having a first region and a second region, a bump formed on the first region of the first substrate, a first semiconductor die bonded to the second region of the first substrate, and a semiconductor die package bonded to the first substrate. The bump includes a metallic structure and a plurality of minor elements dispersed in the metallic structure. The semiconductor die package includes a connector bonded to the bump, and the first semiconductor die is between the semiconductor die package and the first substrate.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Cheng Lin, Hsiu-Jen Lin, Cheng-Ting Chen, Wei-Yu Chen, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8890339
    Abstract: A bond pad region is provided that reduces parasitic capacitance generated between bond pad metallization and underlying silicon by reducing the effective area of the bond pad, while maintaining flexibility of wire bond sites and ensuring mechanical integrity of the wire bonds. Embodiments provide, in a region that would be populated by a traditional bus bar bond pad, a small bus bar bond pad that is less than half the area of the region and populating at least a portion of the remaining area with metal tiles that are not electrically connected to the small bus bar bond pad or to each other. The metal tiles provide an attachment area for at least a portion of one or more wire bonds. Only those tiles involved in connection to a wire bond contribute to parasitic capacitance, along with the small bus bar pad.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: November 18, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Fernando A. Santos, Margaret A. Szymanowski, Mohd Salimin Sahludin
  • Patent number: 8890319
    Abstract: In accordance with an embodiment of the present invention, a semiconductor package includes a semiconductor chip disposed within an encapsulant, and a first coil disposed in the semiconductor chip. A dielectric layer is disposed above the encapsulant and the semiconductor chip. A second coil is disposed above the dielectric layer. The first coil is magnetically coupled to the second coil.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 18, 2014
    Assignee: Infineon Technologies AG
    Inventor: Giuseppina Sapone
  • Patent number: 8890338
    Abstract: A chip and a method of fabricating the chip for low cost chip identification circuitry. In one embodiment, a method of manufacturing an integrated circuit includes formation of a multi-level metallization structure including a pad level comprising programming pads. A plurality of active devices are formed on a substrate, and multiple levels of metallization are formed over the active devices, connecting some of the active devices to form programmable circuitry. The programmable circuitry is connected to pairs of programming pads on the bond pad level. Programming pads in some of the pairs are selectively connected to one another by using conductive ink deposited with maskless inkjet printing techniques. The pads are then covered with a non-conductive protective layer.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 18, 2014
    Assignee: Agere Systems, Inc.
    Inventor: Edward B. Harris
  • Patent number: 8884432
    Abstract: An interconnection substrate includes a plurality of electrically conductive elements of at least one wiring layer defining first and second lateral directions. Electrically conductive projections for bonding to electrically conductive contacts of at least one component external to the substrate, extend from the conductive elements above the at least one wiring layer. The conductive projections have end portions remote from the conductive elements and neck portions between the conductive elements and the end portions. The end portions have lower surfaces extending outwardly from the neck portions in at least one of the lateral directions. The substrate further includes a dielectric layer overlying the conductive elements and extending upwardly along the neck portions at least to the lower surfaces. At least portions of the dielectric layer between the conductive projections are recessed below a height of the lower surfaces.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 11, 2014
    Assignee: Tessera, Inc.
    Inventors: Kazuo Sakuma, Philip Damberg, Belgacem Haba
  • Patent number: 8866311
    Abstract: The substrate includes a first dielectric layer, a first circuit pattern, a plurality of pillars and a second circuit pattern. The first dielectric layer has opposing first and second dielectric surfaces. The first circuit pattern is embedded in the first dielectric layer and defines a plurality of curved trace surfaces. Each of the pillars has an exterior surface adapted for making external electrical connection and a curved base surface abutting a corresponding one of the trace surfaces. The second circuit pattern is on the second dielectric surface of the first dielectric layer and electrically connected to the first circuit pattern.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: October 21, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Tien-Szu Chen, Kuang-Hsiung Chen, Sheng-Ming Wang, Hsiang-Ming Feng, Yen-Hua Kuo
  • Patent number: 8866298
    Abstract: A semiconductor component includes a semiconductor die and a copper-containing electrical conductor. The semiconductor die has a semiconductor device region, an aluminum-containing metal layer on the semiconductor device region, and at least one additional metal layer on the aluminum-containing metal layer which is harder than the aluminum-containing metal layer. The copper-containing electrical conductor is bonded to the at least one additional metal layer of the semiconductor die via an electrically conductive coating of the copper-containing electrical conductor which is softer than the copper of the copper-containing electrical conductor.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 21, 2014
    Assignee: Infineon Technologies AG
    Inventor: Reinhold Bayerer
  • Patent number: 8866300
    Abstract: Structures, materials, and methods to control the spread of a solder material or other flowable conductive material in electronic and/or electromagnetic devices are provided.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 21, 2014
    Assignee: Nuvotronics, LLC
    Inventors: David W. Sherrer, James R. Reid, Jr.
  • Patent number: 8865587
    Abstract: Some exemplary embodiments of a multi-chip semiconductor package utilizing a semiconductor substrate and related method for making such a semiconductor package have been disclosed. One exemplary embodiment comprises a first semiconductor device including, on a surface thereof, a first patterned dielectric layer, a conductive redistribution layer, a second patterned dielectric layer, and a second semiconductor device. The conductive redistribution layer connects to a first and a second patterned conductive attach material for connecting the first and second semiconductor devices to provide coplanar electrical connections for mounting on a printed circuit board. In one embodiment, the first semiconductor device is a diode having anode and cathode contacts on an upper surface thereof, and the second semiconductor device is an IGBT.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 21, 2014
    Assignee: International Rectifier Corporation
    Inventor: Stuart Cardwell
  • Patent number: 8860075
    Abstract: According to one embodiment, a semiconductor light emitting device includes a semiconductor layer, a p-side electrode, an n-side electrode, a p-side metal pillar, an n-side metal pillar, and an insulator. The semiconductor layer includes a first surface, a second surface opposite to the first surface, and a light emitting layer. The p-side metal pillar includes a p-side external terminal. The n-side metal pillar includes an n-side external terminal. At least one selected from an area and a planar configuration of the p-side external terminal is different from at least one selected from an area and a planar configuration of the n-side external terminal.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miyuki Izuka, Susumu Obata, Akiya Kimura, Akihiro Kojima, Yosuke Akimoto, Yoshiaki Sugizaki
  • Patent number: 8860232
    Abstract: According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: October 14, 2014
    Assignee: Fujitsu Limited
    Inventors: Taiji Sakai, Nobuhiro Imaizumi
  • Patent number: 8836147
    Abstract: A bonding structure of a ball-bonded portion is obtained by bonding a ball portion formed on a front end of a multilayer copper bonding wire. The multilayer copper bonding wire includes a core member that is mainly composed of copper, and an outer layer that is formed on the core member and is mainly composed of at least one noble metal selected from a group of Pd, Au, Ag and Pt. Further, a first concentrated portion of such noble metal(s) is formed in a ball-root region located at a boundary with the copper bonding wire in a surface region of the ball-bonded portion.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 16, 2014
    Assignee: Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Tomohiro Uno, Takashi Yamada, Atsuo Ikeda
  • Patent number: 8829693
    Abstract: Embodiments disclosed herein may relate to supply voltage or ground connections for integrated circuit devices. As one example, two or more supply voltage bond fingers may be connected together via one or more electrically conductive interconnects.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: September 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Mostafa Naguib Abdulla, Steven Eskildsen
  • Patent number: 8829585
    Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, David M. Fried, Byeong Y. Kim, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8829677
    Abstract: A die has interconnect pads on an interconnect side near an interconnect edge and has at least a portion of the interconnect side covered by a conformal dielectric coating, in which an interconnect trace over the dielectric coating forms a high interface angle with the surface of the dielectric coating. Because the traces have a high interface angle, a tendency for the interconnect materials to “bleed” laterally is mitigated and contact or overlap of adjacent traces is avoided. The interconnect trace includes a curable electrically conductive interconnect material; that is, it includes a material that can be applied in a flowable form, and thereafter cured or allowed to cure to form the conductive traces. Also, a method includes, prior to forming the traces, subjecting the surface of the conformal dielectric coating with a CF4 plasma treatment.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Invensas Corporation
    Inventors: Keith Lake Barrie, Suzette K. Pangrie, Grant Villavicencio, Jeffrey S. Leal
  • Patent number: 8823183
    Abstract: A bump for a semiconductor package includes: a first bump formed on a semiconductor chip and having at least two land parts and a connection part which connects the land parts and has a line width smaller than the land parts; and a second bump formed on the first bump and projecting on the land parts of the first bump in shapes of a hemisphere.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Young Kim, Qwan Ho Chung, Sung Ho Hyun, Myung Gun Park, Jin Ho Bae
  • Patent number: 8823167
    Abstract: This description relates to an integrated circuit device including a conductive pillar formed over a substrate. The conductive pillar has a sidewall surface and a top surface. The integrated circuit device further includes an under-bump-metallurgy (UBM) layer between the substrate and the conductive pillar. The UBM layer has a surface region. The integrated circuit device further includes a protection structure on the sidewall surface of the conductive pillar and the surface region of the UBM layer. The protection structure is formed of a non-metal material.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Wen Wu, Cheng-Chung Lin, Chien Ling Hwang, Chung-Shi Liu
  • Patent number: 8810029
    Abstract: A flip chip interconnect has a tapering interconnect structure, and the area of contact of the interconnect structure with the site on the substrate metallization is less than the area of contact of the interconnect structure with the die pad. Also, a bond-on-lead or bond-on-narrow pad or bond on a small area of a contact pad interconnection includes such tapering flip chip interconnects. Also, methods for making the interconnect structure include providing a die having interconnect pads, providing a substrate having interconnect sites on a patterned conductive layer, providing a bump on a die pad, providing a fusible electrically conductive material either at the interconnect site or on the bump, mating the bump to the interconnect site, and heating to melt the fusible material.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: August 19, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Rajendra D. Pendse, KyungOe Kim, TaeWoo Kang
  • Patent number: 8803317
    Abstract: Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Timothy H. Daubenspeck, Krystyna W. Semkow, Timothy D. Sullivan
  • Patent number: 8803337
    Abstract: An embodiment is an integrated circuit structure including a first die attached to a second die by a first connector. The first connector includes a solder joint portion between a first nickel-containing layer and a second nickel-containing layer, a first copper-containing layer between the first nickel-containing layer and the solder joint portion, and a second copper-containing layer between the second nickel-containing layer and the solder joint portion.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 8803338
    Abstract: A semiconductor device comprises a semiconductor substrate, an under-bump metallization (UBM) structure overlying the semiconductor substrate, and a solder bump overlying and electrically connected to the UBM structure. The UBM structure comprises a copper-containing metallization layer, a nickel-containing metallization layer, and a first intermetallic compound (IMC) layer between the copper-containing metallization layer and the nickel-containing metallization layer. The first IMC layer is in direct contact with the copper-containing metallization layer and the nickel-containing metallization layer.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Yian-Liang Kuo, Chih-Horng Chang
  • Patent number: 8803205
    Abstract: A semiconductor device includes a gate terminal, at least one control terminal and first and second load terminals and at least one device cell. The at least one device cell includes a MOSFET device having a load path and a control terminal, the control terminal coupled to the gate terminal and a JFET device having a load path and a control terminal, the load path connected in series with the load path of the MOSFET device between the load terminals. The at least one device cell further includes a first coupling transistor having a load path and a control terminal, the load path coupled between the control terminal of the JFET device and one of the source terminal and the gate terminal, and the control terminal coupled to the at least one control terminal of the transistor device.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 12, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans Weber, Michael Treu
  • Patent number: 8796869
    Abstract: In a CSP type semiconductor device, the invention prevents a second wiring from forming a narrowed portion on a lower surface of a step portion at the time of forming the second wiring that is connected to the back surface of a first wiring formed near a side surface portion of a semiconductor die on the front surface and extends onto the back surface of the semiconductor die over the step portion of a window that is formed from the back surface side of the semiconductor die so as to expose the back surface of the first wiring. A glass substrate is bonded on a semiconductor substrate on which a first wiring is formed on the front surface near a dicing line with an adhesive resin being interposed therebetween. The semiconductor substrate is then etched from the back surface to form a window having step portions with inclined sidewalls around the dicing line as a center.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 5, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Hiroaki Tomita, Kazuyuki Suto
  • Patent number: 8796133
    Abstract: A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Timothy H. Daubenspeck, Mark C. H. Lamorey, Howard S. Landis, Xiao Hu Liu, David L. Questad, Thomas M. Shaw, David B. Stone
  • Patent number: 8796865
    Abstract: Radio Frequency Identification (RFID) tags are provided, along with apparatuses and methods for making. In some embodiments, the RFID tags include an RFID tag chip that is attached to an inlay and/or a strap. The inlay or strap has one or more contact bumps formed thereon. In some of these embodiments, the RFID tag chip includes pads for electrical contacts, but not chip-bumps, thanks to the contact bump.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 5, 2014
    Assignee: Impinj, Inc.
    Inventors: Jay M. Fassett, Ronald A. Oliver, Ronald L. Koepp, Steven I. Mozsgai, Ernest Allen, III
  • Patent number: 8779604
    Abstract: A semiconductor structure includes a device, a conductive pad on the device, and a Ag1-xYx alloy bump over the conductive pad. The Y of the Ag1-xYx bump comprises metals forming complete solid solution with Ag at arbitrary weight percentage, and the X of the Ag1-xYx alloy bump is in a range of from about 0.005 to about 0.25. A difference between one standard deviation and a mean value of a grain size distribution of the Ag1-xYx alloy bump is in a range of from about 0.2 ?m to about 0.4 ?m. An average grain size of the Ag1-xYx alloy bump on a longitudinal cross sectional plane is in a range of from about 0.5 ?m to about 1.5 ?m.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: July 15, 2014
    Assignee: Chipmos Technologies Inc.
    Inventors: Shih Jye Cheng, Tung Bao Lu
  • Patent number: 8766439
    Abstract: Disclosed is a chip and method of forming the chip with improved conductive pads that allow for flexible C4 connections with a chip carrier or with another integrated circuit chip. The pads have a three-dimensional geometric shape (e.g., a pyramid or cone shape) with a base adjacent to the surface of the chip, a vertex opposite the base and, optionally, mushroom-shaped cap atop the vertex. Each pad can include a single layer of conductive material or multiple layers of conductive material (e.g., a wetting layer stacked above a non-wetting layer). The pads can be left exposed to allow for subsequent connection to corresponding solder bumps on a chip carrier or a second chip. Alternatively, solder balls can be positioned on the conductive pads to allow for subsequent connection to corresponding solder-paste filled openings on a chip carrier or a second chip.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8759941
    Abstract: The layout of an LSI is previously designed so that cells below pads which will be affected by stress are arranged so that the occurrence of a malfunction of the LSI which will be caused by the influence of stress is reduced or prevented. In addition to or instead of the cell arrangement, the arrangement of pads, bumps or the like may be adjusted.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 24, 2014
    Assignee: Panasonic Corporation
    Inventor: Kenji Yokoyama
  • Patent number: 8759986
    Abstract: Provided is a substrate structure including: a base substrate on which a conductive pattern is formed; a first plating layer covering the conductive pattern; and a second plating layer covering the first plating layer, wherein the first plating layer includes an electroless reduction plating layer.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 24, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chul Min Lee, Won Hyung Park, Kyung Jin Heo, Dek Gin Yang, Jin Su Yeo, Sung Wook Chun
  • Patent number: 8753972
    Abstract: A copper bonding compatible bond pad structure and associated method is disclosed. The device bond pad structure includes a buffering structure formed of regions of interconnect metal and regions of non-conductive passivation material, the buffering structure providing buffering of underlying layers and structures of the device.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: June 17, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: François Hébert, Anup Bhalia
  • Patent number: 8735273
    Abstract: A method includes forming a passivation layer over a metal pad, which is overlying a semiconductor substrate. A first opening is formed in the passivation layer, with a portion of the metal pad exposed through the first opening. A seed layer is formed over the passivation layer and to electrically coupled to the metal pad. The seed layer further includes a portion over the passivation layer. A first mask is formed over the seed layer, wherein the first mask has a second opening directly over at least a portion of the metal pad. A PPI is formed over the seed layer and in the second opening. A second mask is formed over the first mask, with a third opening formed in the second mask. A portion of a metal bump is formed in the third opening. After the step of forming the portion of the metal bump, the first and the second masks are removed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Chih-Wei Lin, Yi-Wen Wu, Hsiu-Jen Lin, Chung-Shi Liu, Mirng-Ji Lii, Chen-Hua Yu
  • Patent number: 8735277
    Abstract: The invention relates to an ultrathin semiconductor circuit having contact bumps and to a corresponding production method. The semiconductor circuit includes a bump supporting layer having a supporting layer thickness and having a supporting layer opening for uncovering a contact layer element being formed on the surface of a semiconductor circuit. An electrode layer is situated on the surface of the contact layer element within the opening of the bump supporting layer, on which electrode layer is formed a bump metallization for realizing the contact bump. On account of the bump supporting layer, a thickness of the semiconductor circuit can be thinned to well below 300 micrometers, with the wafer reliably being prevented from breaking. Furthermore, the moisture barrier properties of the semiconductor circuit are thereby improved.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies AG
    Inventors: Dirk Mueller, Manfred Schneegans, Sokratis Sgouridis
  • Patent number: 8736070
    Abstract: A semiconductor component having improved thermomechanical durability has in a semiconductor substrate at least one cell comprising a first main electrode zone, a second main electrode zone and a control electrode zone lying in between. For making contact with the main electrode zone, at least one metallization layer composed of copper or a copper alloy is provided which is connected to at least one bonding electrode which likewise comprises copper or a copper alloy.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies Austria AG
    Inventor: Matthias Stecher
  • Patent number: 8736080
    Abstract: A sensor array package can include a sensor disposed on a first side of a substrate. Signal trenches can be formed along the edges of the substrate and a conductive layer can be deposited in the signal trench and can couple to sensor signal pads. Bond wires can be attached to the conductive layers and can be arranged to be below a surface plane of the sensor. The sensor array package can be embedded in a printed circuit board enabling the bond wires to terminate at other conductors within the printed circuit board.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Apple Inc.
    Inventors: Shawn X. Arnold, Terry L. Gilton, Matthew E. Last
  • Patent number: 8736079
    Abstract: A pad structure is suitable for a circuit carrier or an integrated circuit chip. The pad structure includes an inner pad, a conductive via and an outer pad. The conductive via connects the inner pad. The outer pad connects the conductive via and further connects a conductive ball or a conductive bump. The outer diameter of the outer pad is greater than the outer diameter of the inner pad.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: May 27, 2014
    Assignee: VIA Technologies, Inc.
    Inventors: Yu-Kai Chen, Yeh-Chi Hsu
  • Patent number: 8729397
    Abstract: An embedded structure of circuit board is provided. The embedded structure includes a substrate, a first patterned conductive layer disposed on the substrate and selectively exposing the substrate, a first dielectric layer covering the first patterned conductive layer and the substrate, a pad opening disposed in the first dielectric layer, and a via disposed in the pad opening and exposing the first patterned conductive layer, wherein the outer surface of the first dielectric layer has a substantially even surface.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 20, 2014
    Assignee: Unimicron Technology Corp.
    Inventors: Yi-Chun Liu, Wei-Ming Cheng, Tsung-Yuan Chen, Shu-Sheng Chiang
  • Patent number: 8728867
    Abstract: A manufacturing of a semiconductor device includes forming one of a layer with a first metal and the layer with a second metal on one of a semiconductor chip mounting area of a support plate and a back surface of the semiconductor chip; forming the other of the layer with the first metal and the layer with the second metal on an area corresponding to a part of the area, in which one of the layer with the first metal and the layer with the second metal, of the other one of the semiconductor chip mounting area and the back surface of the semiconductor chip; and forming a layer which includes an alloy with the first metal and the second metal after positioning the semiconductor chip in the semiconductor chip mounting area to bond the semiconductor chip with the semiconductor chip mounting area.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Fujitsu Limited
    Inventors: Kozo Shimizu, Keishiro Okamoto, Nobuhiro Imaizumi, Tadahiro Imada, Keiji Watanabe
  • Patent number: 8723335
    Abstract: A semiconductor structure includes an interconnect region, and a material transfer region coupled to the interconnect region through a bonding interface. The semiconductor structure includes a capping layer sidewall portion which extends annularly around the material transfer region and covers the bonding interface. The capping layer sidewall portion restricts the flow of debris from the bonding interface.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 13, 2014
    Inventor: Sang-Yun Lee
  • Patent number: 8723325
    Abstract: A semiconductor substrate is provided having a first metal layer formed over a first insulating layer. A second insulating layer is formed having a first damascene opening, the first opening having a second insulating layer portion formed therein. A resist layer is deposited to fill the first opening and the resist layer is thereafter patterned to form an etching mask for etching a second damascene opening. The second opening is etched into a portion of the second insulating layer, the second opening exposing a portion of the first metal layer. A second metal layer is formed to include filling the first and second damascene openings embedding the second insulating layer portion in the second metal layer. The second metal layer is planarized and a passivation layer is formed above the second insulating layer and the second metal layer, wherein the passivation layer partially covers the second metal layer.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: May 13, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Ying-Ju Chen
  • Patent number: 8722529
    Abstract: An integrated circuit structure includes a bond pad; an Mtop pad located directly underlying the bond pad; an Mtop-1 pad having at least a portion directly underlying the Mtop pad, wherein at least one of the Mtop pad and the Mtop-1 pad has a horizontal dimension smaller than a horizontal dimension of the bond pad; a plurality of vias interconnecting the Mtop pad and the Mtop-1 pad; and a bond ball on the bond pad. Each of the Mtop pad and the Mtop-1 pad has positive enclosures to the bond ball in all horizontal directions.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 13, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Yu-Wen Liu, Hao-Yi Tsai, Shin-Puu Jeng, Ying-Ju Chen
  • Patent number: 8704385
    Abstract: A semiconductor device has a semiconductor substrate, an insulating film disposed on a surface of the semiconductor substrate, and a porous metal film disposed on the insulating film and having a void region containing voids and a void-free region that does not contain any voids. A protective film is disposed on the porous metal film and has an opening portion defining a pad region having a pad opening end. An interface between the void region and the void-free region of the porous metal film is disposed at one of the pad opening end and a position outside of the pad opening end. A wire is wire-bonded to the porous metal film in the pad region.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 22, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Masaru Akino
  • Patent number: 8697565
    Abstract: A method, and an apparatus formed thereby, to construct shallow recessed wells on top of exposed conductive vias on the surface of a semiconductor. The shallow recessed wells are subsequently filled with a conductive cap layer, such as a tantalum nitride (TaN) layer, to prevent or reduce oxidation which may otherwise occur naturally when exposed to air, or possibly occur during an under-bump metallization process.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lin-Ya Huang, Chi-Sheng Juan, Chien-Lin Tseng
  • Patent number: 8697566
    Abstract: A manufacturing method of a bump structure is provided. A substrate having at least one pad and a passivation layer is provided. The passivation layer has at least one first opening exposing the pad. An insulating layer is formed on the passivation layer. The insulating layer has at least one second opening located above the first opening. A metal layer is formed on the insulating layer. The metal layer electrically connects the pad through the first and second openings. A first bump is formed in the first and second openings. A second bump is formed on the first bump and a portion of the metal layer. The metal layer not covered by the second bump is partially removed by using the second bump as a mask, so as to form at least one UBM layer. The first bump is completely covered by the UBM layer and the second bump.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: April 15, 2014
    Assignee: ChipMOS Technologies Inc.
    Inventor: Chung-Pang Chi