Configuration Or Pattern Of Bonds Patents (Class 257/786)
  • Patent number: 8536716
    Abstract: Embodiments disclosed herein may relate to supply voltage or ground connections for integrated circuit devices. As one example, two or more supply voltage bond fingers may be connected together via one or more electrically conductive interconnects.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Mostafa Naguib Abdulla, Steven Eskildsen
  • Patent number: 8531031
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Publication number: 20130228938
    Abstract: A system for interconnecting at least two die each die having a plurality of conducting layers and dielectric layers disposed upon a substrate which may include active and passive elements. In one embodiment there is at least one interconnect coupling at least one conducting layer on a side of one die to at least one conducting layer on a side of the other die. Another interconnect embodiment is a slug having conducting and dielectric layers disposed between two or more die to interconnect between the die. Other interconnect techniques include direct coupling such as rod, ball, dual balls, bar, cylinder, bump, slug, and carbon nanotube, as well as indirect coupling such as inductive coupling, capacitive coupling, and wireless communications. The die may have features to facilitate placement of the interconnects such as dogleg cuts, grooves, notches, enlarged contact pads, tapered side edges and stepped vias.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Sagacious Investment Group L.L.C.
    Inventor: Ernest E. Hollis
  • Publication number: 20130228939
    Abstract: A semiconductor integrated circuit device having a control signal system for avoiding failure to check an indefinite signal propagation prevention circuit, for facilitating a check included in an automated tool, and for facilitating a power shutdown control inside a chip. In the semiconductor integrated circuit device, power shutdown priorities are provided by independent power domains (Area A to Area I). A method for preventing a power domain having a lower priority from being turned OFF when a circuit having a high priority is turned ON is also provided.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Yusuke KANNO, Hiroyuki MIZUNO, Yoshihiko YASU, Kenji HIROSE, Takahiro IRITA
  • Patent number: 8525352
    Abstract: A multi-die package includes a first semiconductor die and a second semiconductor die each having an upper surface with a plurality of bond pads disposed thereon. The upper surface of the second semiconductor die may be substantially coextensive with the upper surface of the first semiconductor die and extend substantially along a plane. The multi-die package also includes a plurality of bonding wires each coupling one of the bond pads on the upper surface of the first semiconductor die to a corresponding one of the bond pads on the upper surface of the second semiconductor die. A bonding wire of the plurality of bonding wires has a kink disposed at a height above the plane, a first hump disposed between the first semiconductor die and the kink, and a second hump disposed between the second semiconductor die and the kink.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: September 3, 2013
    Assignee: Carsem (M) sdn.bhd.
    Inventors: Liew Siew Har, Law Wai Ling
  • Patent number: 8525312
    Abstract: A microelectronic assembly can include a microelectronic element and a lead frame having a first unit and a second unit overlying the first unit and assembled therewith. The first unit can have a first metal layer comprising a portion of the thickness of the lead frame and including terminals and first conductive elements extending away therefrom. The second unit can have a second metal layer comprising a portion of the thickness of the lead frame and including bond pads and second conductive elements extending away therefrom. The first and second units each can have an encapsulation supporting at least portions of the respective first and second conductive elements. At least some of the second conductive elements can overlie portions of corresponding ones of the first conductive elements and can be joined thereto. The microelectronic element can have contacts electrically connected with the bond pads of the lead frame.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 3, 2013
    Assignee: Tessera, Inc.
    Inventors: Qwai H. Low, Chok J. Chia, Kishor Desai, Charles G. Woychik, Huailiang Wei
  • Patent number: 8525354
    Abstract: A bond pad structure comprises an interconnection structure and an isolation layer. The dielectric layer has an opening and a metal pad. The isolation layer is disposed on the interconnection structure and extends into the opening until it is in contact with the metal pad, whereby the sidewalls of the opening is blanketed by the isolation layer, and a portion of the metal pad is exposed from the opening.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: September 3, 2013
    Assignee: United Microelectronics Corporation
    Inventors: Hui-Min Wu, Ming-I Wang, Kuan-Yu Wang, Kun-Che Hsieh, Chien-Hsin Huang
  • Patent number: 8519552
    Abstract: A chip structure includes a semiconductor substrate, an interconnecting metallization structure, a passivation layer, a circuit layer and a bump. The interconnecting metallization structure is over the semiconductor substrate. The passivation layer is over the interconnecting metallization structure. The circuit layer is over the passivation layer. The bump is on the circuit layer, and the bump is unsuited for being processed using a reflow process.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 27, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou
  • Patent number: 8519546
    Abstract: An electronic device includes a first semi-conductor die, a second semi-conductor die and an electrically conductive element. The electrically conductive element includes a first electrically conductive part interposed at least partially between the first semi-conductor die and the second semi-conductor die, wherein said first part is electrically coupled to the first semi-conductor die. The electrically conductive element further includes a second electrically conductive part electrically coupled to the first part, wherein said second part extends from at least part of the first part. The first part is an electrically conductive strap between the dice, and the second part is clip extending from at least part of the strap.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: August 27, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Davide Giuseppe Patti, Agatino Minotti
  • Patent number: 8519551
    Abstract: A first external connection terminal at a first row is disposed to position at upside of a first I/O cell, and a second external connection terminal at a second row is formed at upside of a boundary portion between two adjacent first I/O cells. Here, the first external connection terminal and the second external connection terminal are disposed to be separated for a predetermined distance so as not to have an overlapped portion with each other, and formed in an identical layer. According to the constitution, it is possible to prevent disadvantages such as characteristic deterioration of a semiconductor integrated circuit and accuracy deterioration of an electrical inspection.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: August 27, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Toru Osajima
  • Patent number: 8519517
    Abstract: A semiconductor package system, and method of manufacturing thereof, includes: an electrical substrate having a contact pad; a support structure having a lead finger thereon; a bump on the lead finger, the bump clamped on a top and a side of the lead finger and connected with the contact pad; and an encapsulant over the lead finger and the electrical substrate.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 27, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Hun Teak Lee, Jong Kook Kim, ChulSik Kim, Ki Youn Jang
  • Publication number: 20130214433
    Abstract: An integrated circuit including a first portion of a first cell library including a first plurality of rows, each of the first plurality of rows having a first row height and the first portion having a first portion height, a second portion of a second cell library including a second plurality of rows, each of the second plurality of rows having a second row height and the second portion having a second portion height, wherein the first portion height is equal to the second portion height and the first row height is different from the second row height, and a connector to electrically connect the first portion of the first cell library to the second portion of the second cell library.
    Type: Application
    Filed: May 9, 2012
    Publication date: August 22, 2013
    Applicant: Broadcom Corporation
    Inventor: Paul Penzes
  • Patent number: 8513813
    Abstract: A microelectronic element having a memory storage array has a front face facing away from a substrate of a microelectronic package, and is electrically connected with the substrate through conductive structure extending above the front face. First terminals are disposed at locations within first and second parallel grids of the package. The first terminals of each grid are configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 20, 2013
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8513777
    Abstract: A method for generating reticle data for forming a reticle. The method includes recognizing a non-layout region free from main chips in a process pattern, dividing the non-layout region into a plurality of rectangular non-layout regions, generating scribe data using the plurality of divided rectangular non-layout region as a plurality of dummy chips, and generating a dummy pattern for each of the dummy chips.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 20, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kenji Suzuki, Yukisada Horie, Katsuhito Kojima
  • Patent number: 8513819
    Abstract: A multi-die package includes a first semiconductor die and a second semiconductor die each having an upper surface with a plurality of bond pads positioned thereon. The multi-die package also includes a plurality of bonding wires each coupling one of the bond pads on the upper surface of the first semiconductor die to a corresponding one of the bond pads on the upper surface of the second semiconductor die. A bonding wire of the plurality of bonding wires includes a first portion extending upward from one of the second plurality of bond pads substantially along a z-axis and curving outward substantially along x and y axes in a direction towards the first semiconductor die. The bonding wire also includes a second portion coupled to the first portion and extending from the first portion downward to one of the first plurality of bond pads on the upper surface of the first semiconductor die.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 20, 2013
    Assignee: Carsem (M) SDN. BHD.
    Inventors: Liew Siew Har, Law Wai Ling
  • Patent number: 8513818
    Abstract: A semiconductor device includes a semiconductor chip having an element formation surface on which at least one element is formed and including a plurality of electrode pads formed on the element formation surface, an interconnect substrate having a principal surface facing the element formation surface of the semiconductor chip and including a plurality of connection pads formed at positions of the principal surface facing the respective corresponding electrode pads, and a plurality of solder bumps provided between the respective corresponding electrode pads and connection pads, and configured to electrically connect the respective corresponding electrode pads and connection pads together. An UBM layer is formed on a portion of each solder bump closer to the corresponding electrode pad and a barrier metal layer is formed on a portion of each solder bump closer to the corresponding connection pad, and the two layers have substantially the same composition of major materials.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: August 20, 2013
    Assignee: Panasonic Corporation
    Inventor: Kiyomi Hagihara
  • Patent number: 8508048
    Abstract: A semiconductor device which includes a substrate, a semiconductor chip which is mounted on the substrate, a package in which an upper surface of the substrate and the semiconductor chip are sealed using an insulating material, and a molding material which is exposed to the upper surface of the package. In addition, the device includes a lead of which one end is connected to the mold material and the other end is electrically connected to the substrate, which is integrally formed of the same material as from a connection portion with the mold material to a connection portion with the substrate, and of which the connection portion with the mold material is exposed to the upper surface of the package.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventor: Hiroshi Honjo
  • Patent number: 8508055
    Abstract: A semiconductor device includes a bonding pad, and an area designation marking, wherein the bonding pad includes a first region, a second region, and a third region placed between the first region and the second region, wherein the area designation marking includes a first area designation mark configured to designate a first boundary between the first region and the third region and a second area designation mark configured to designate a second boundary between the second region and the third region, wherein the first region and the second region are configured to be contacted with a test probe. The first area designation mark includes a first notch or a first protrusion. The second area designation mark includes a second notch or a second protrusion. The first area designation mark includes a first pair of notches that is linearly spaced apart from each other to designate the first boundary line.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Akihito Tanabe
  • Patent number: 8508051
    Abstract: A semiconductor device includes a semiconductor substrate 1, an interlayer insulating film 2, 3 formed on the semiconductor substrate 1, an electrode pad 4 formed on the interlayer insulating film 2, 3, a protective film 6 which is formed on the interlayer insulating film 2, 3 to cover a peripheral portion of the electrode pad 4, and has a first opening 5 which exposes a center portion of the electrode pad 4, a divider 7 which is formed on the electrode pad 4 exposed from the first opening 5, and divides the first opening 5 into a plurality of second openings 5d, and a barrier metal 8 formed on the protective film 6 to fill the second openings 5d. The divider 7 is interposed between the electrode pad 4 and the barrier metal 8.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventors: Noriyuki Nagai, Kiyomi Hagihara
  • Patent number: 8502396
    Abstract: Systems and methods for embedded tamper mesh protection are provided. The embedded tamper mesh includes a series of protection bond wires surrounding bond wires carrying sensitive signals. The protection bond wires are positioned to be vertically higher than the signal bond wires. The protection wires may be bonded to outer contacts on the substrate while the signal bond wires are bonded to inner contacts, thereby creating a bond wire cage around the signal wires. Methods and systems for providing package level protection are also provided. An exemplary secure package includes a substrate having multiple contacts surrounding a die disposed on an upper surface of the substrate. A mesh die including a series of mesh die pads is coupled to the upper surface of the die. Bond wires are coupled from the mesh die pads to contacts on the substrate thereby creating a bond wire cage surrounding the die.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: August 6, 2013
    Assignee: Broadcom Corporation
    Inventors: Mark Buer, Matthew Kaufmann
  • Patent number: 8502363
    Abstract: A semiconductor device package including a substrate, first and second solder joints, a die pad, leads and enhancement elements surrounding the die pad, a chip electrically connected to the leads, and a package body encapsulating the chip, portions of the leads, and portions of the enhancement elements, but leaving exposed at least a side surface of each enhancement element. Side surfaces of the enhancement elements and the package body are coplanar. The substrate includes first pads corresponding to the leads and second pads corresponding to the enhancement elements. The first solder joints are disposed between the first pads and the leads. The second solder joints are disposed between the second pads and the enhancement elements. The second solder joints contact side surfaces of the enhancement elements. The surface area of the second pads is greater than the surface area of the corresponding enhancement elements.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 6, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Po-Shing Chiang, Ping-Cheng Hu, Yu-Fang Tsai
  • Publication number: 20130193591
    Abstract: A power semiconductor module includes a baseplate having a top side, an underside, and a depression formed in the baseplate. The depression extends into the baseplate proceeding from the top side. A thickness of the baseplate is locally reduced in a region of the depression. The power semiconductor module further includes a circuit carrier arranged above the depression on the top side of the baseplate such that the depression is interposed between the circuit carrier and the underside of the baseplate.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Infineon Technologies AG
  • Patent number: 8497573
    Abstract: In one implementation, a high power semiconductor package is configured as a buck converter including a control transistor, a sync transistor, a driver integrated circuit (IC) for driving the control and sync transistors, and a conductive clip extending from a sync drain on a top surface of the sync transistor to a control source on a top surface of the control transistor. The conductive clip may also connect to substrate pads such as a leadframe pad for current input and output. In this manner, the conductive clip provides an efficient connection between the control source and the sync drain by direct mechanical connection and large surface area conduction, thereby enabling a package with significantly reduced electrical resistance, form factor, complexity, and cost.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 30, 2013
    Assignee: International Rectifier Corporation
    Inventors: Eung San Cho, Chuan Cheah
  • Patent number: 8497574
    Abstract: In one implementation, a high power semiconductor package is configured as a buck converter including a control transistor and a sync transistor disposed on a leadframe, a flip chip driver integrated circuit (IC) for driving the control and sync transistors, and conductive clips electrically coupling the top surfaces of the transistors to substrate pads such as leadframe pads. The source of the control transistor is electrically coupled to the drain of the sync transistor using the leadframe and one of the transistor conductive clips. In this manner, the leadframe and the conductive clips provide efficient current conduction by direct mechanical connection and large surface area conduction, thereby enabling a package with significantly reduced electrical resistance, form factor, complexity, and cost.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 30, 2013
    Assignee: International Rectifier Corporation
    Inventors: Eung San Cho, Chuan Cheah
  • Publication number: 20130187294
    Abstract: A semiconductor device comprising a plurality of semiconductor chips and a plurality of through-line groups is disclosed. Each of the through-line groups consists of a unique number of through-lines. The numbers associated with the through-line groups are mutually coprime to each other. When one of the through-lines is selected for the each through-line group, one of the semiconductor chip is designated by a combination of the selected through-lines of the plurality of the through-line groups.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 25, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Elpida Memory, Inc.
  • Patent number: 8487322
    Abstract: A luminous body comprises a transparent plastic moulding with indentations, and LED DIEs disposed within the indentations. One side of each LED DIE lies approximately flush with an upper side of the moulding, and each LED DIE is connected to an electricity supply via electrical conductors disposed on the moulding. A method for producing such a luminous body is also disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 16, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Andrea Maier-Richter, Eckard Foltin, Michael Roppel, Peter Schibli
  • Patent number: 8487441
    Abstract: A rigid wave pattern formed on a first side of a substrate in a semiconductor die package. The rigid wave pattern aligns with and overlies the contact fingers formed on the second side of the substrate. The rigid wave pattern includes a first pattern with an etched portion and an unetched portion around the etched portion. When the substrate and dice are encased during the molding process, the rigid wave pattern effectively reduces deformation of and stresses on the dice, therefore substantially alleviating die cracking.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 16, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Chin-Tien Chiu, Chih-Chin Liao, Ken Jian Ming Wang, Han-Shiao Chen, Cheemen Yu, Hem Takiar
  • Patent number: 8487423
    Abstract: In a semiconductor integrated circuit chip including an interconnect layer in which there is a limitation on the lengths of interconnects or areas occupied by the interconnects, empty spaces between power supply interconnect segments having the same potential located in parallel to a priority interconnect direction, are shifted relative to each other within the limits of the lengths and areas of power supply interconnects. As a result, a local increase in resistance is dispersed, whereby an influence on a voltage drop is reduced.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Yoichi Matsumura, Chie Kabuo, Takako Ohashi, Tadafumi Kadota, Kazuhiko Fujimoto, Hirofumi Miyashita
  • Patent number: 8482136
    Abstract: A chip scale package has a semiconductor die having an array of die bond pads arranged with a bond pad density per unit area, embedded in a molded die support body having a surface supporting an array of conducting contacts, each of the contacts connected by an electrical lead to a corresponding one of the die bond pads.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 9, 2013
    Assignee: NXP B.V.
    Inventors: Jan Gulpen, Tonny Kamphuis, Pieter Hochstenbach, Leo van Gemert, Eric van Grunsven, Marc de Samber
  • Patent number: 8482138
    Abstract: Provided is a three-dimensional semiconductor device and method for fabricating the same. The device includes a first electrode structure and a second electrode structure stacked sequentially on a substrate. The first and second electrode structures include stacked first electrodes and stacked second electrodes, respectively. Each of the first and second electrodes includes a horizontal portion parallel with the substrate and an extension portion extending from the horizontal portion along a direction penetrating an upper surface of the substrate. Here, the substrate may be closer to top surfaces of the extension portions of the first electrodes than to the horizontal portion of at least one of the second electrodes.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Hwang, Hansoo Kim, Wonseok Cho, Jaehoon Jang
  • Patent number: 8482109
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead having a peripheral contact layer surrounding the peripheral lead with a non-horizontal side exposed from the peripheral contact layer; forming an inner lead and a paddle non-planar with the peripheral lead; mounting an integrated circuit to the paddle; and forming an encapsulation covering the integrated circuit and exposing the inner lead, the paddle, and the non-horizontal side.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 9, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Patent number: 8476774
    Abstract: A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Vage Oganesian, David Ovrutsky, Laura Wills Mirkarimi
  • Patent number: 8476159
    Abstract: A substrate structure with compliant bump comprises a substrate, a plurality of bumps, and a metallic layer, wherein the substrate comprises a surface, a trace layer, and a protective layer. The trace layer comprises a plurality of conductive pads, and each of the conductive pads comprises an upper surface. The protective layer comprises a plurality of openings. The bumps are formed on the surface, and each of the bumps comprises a top surface, an inner surface and an outer surface and defines a first body and a second body. The first body is located on the surface. The second body is located on top of the first body. The metallic layer is formed on the top surface, the inner surface, and the upper surface.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 2, 2013
    Assignee: Chipbond Technology Corporation
    Inventor: Chin-Tang Hsieh
  • Patent number: 8476745
    Abstract: An integrated circuit chip includes a semiconductor substrate; a first interconnection wire having a first portion and a second portion on the semiconductor substrate, wherein the second portion is separated from the first portion; a second interconnection wire situated under the first interconnection wire; a first conductive via electrically coupling the first portion with the second interconnection wire; a conductive layer situated between the first interconnection wire and the second interconnection wire; and a second conductive via electrically coupling the conductive layer with the second portion.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 2, 2013
    Assignee: Mediatek Inc.
    Inventors: Chao-Chun Tu, Shih-Hung Lin, Chih-Chien Huang, Tien-Chang Chang
  • Publication number: 20130161840
    Abstract: Back end of line (BEOL) stripping solutions which can be used in a stripping process that replaces etching resist ashing process are provided. The stripping solutions are useful for fabricating circuits and/or forming electrodes on semiconductor devices for semiconductor integrated circuits with good efficiency and with low and acceptable metal etch rates. Methods for their use are similarly provided. The preferred stripping agents contain a polar aprotic solvent, water, an amine and a quaternary hydroxide that is not tetramethylammonium hydroxide. Further provided are integrated circuit devices and electronic interconnect structures prepared according to these methods.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 27, 2013
    Applicant: DYNALOY LLC
    Inventor: Dynaloy LLC
  • Publication number: 20130161839
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The device includes first and second line pattern units configured to extend substantially parallel to one another in a first direction and alternately disposed such that end portions of the first and second line pattern units are arranged in a diagonal direction, third and fourth pattern units configured to respectively extend from the end portions of the first and second line pattern units in a second direction crossing the first direction, first contact pad units respectively formed in the third line pattern units disposed a first distance from the end portions of the first line pattern units, and fourth contact pad units respectively formed in the fourth line pattern units disposed a second distance from the end portions of the second line pattern units. Here, the second distance is different from the first distance.
    Type: Application
    Filed: September 14, 2012
    Publication date: June 27, 2013
    Applicant: SK HYNIX INC.
    Inventor: Duk Sun HAN
  • Patent number: 8471387
    Abstract: Disclosed herein is an extendable network structure, which includes a first device portion, a second device portion and at least three connectors. The three connectors are connected to the first device portion. The second device portion is electrically connected to the first device portion through one of the three connectors. The first and second device portions respectively have a first and a second center. Each of the connectors may be extendable from an initial state to an extended state, such that a first distance between the first and second centers in the extended state is at least 1.1 fold of a second distance between the first and second centers in the initial state.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 25, 2013
    Assignee: Monolithe Semiconductor Inc.
    Inventor: Kevin T. Y. Huang
  • Patent number: 8471271
    Abstract: Provided is a light emitting diode package and a method of manufacturing the same. The light emitting diode package includes a package main body with a cavity, a plurality of light emitting diode chips, a wire, and a plurality of lead frames. The plurality of light emitting diode chips are mounted in the cavity. The wire is connected to an electrode of at least one light emitting diode chip. The plurality of lead frames are formed in the cavity, and at least one lead frame is electrically connected to the light emitting diode chip or a plurality of wires.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 25, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Won-Jin Son
  • Patent number: 8472196
    Abstract: A power module includes a first heat sink, first and second power chips, a thermo-conductive insulating layer, a lead frame and a molding compound. The first heat sink has a first area and a second area. The first power chip is disposed in the first area. The thermo-conductive insulating layer is disposed in the second area. The second power chip is disposed on the heat sink through the thermo-conductive insulating layer. The lead frame is electrically connected to at least one of the first and second power chips. The molding compound covers the first and second power chips, the thermo-conductive insulating layer and a portion of the lead frame. The first heat sink is electrically connected to at least one of the first and second power chips. Because the first power chip is not disposed on the first heat sink through the thermo-conductive insulating layer, the cost can be reduced.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: June 25, 2013
    Assignee: Delta Electronics, Inc.
    Inventors: Jian-Hong Zeng, Shou-Yu Hong, Qi-Feng Ye, Yi-Cheng Lin
  • Publication number: 20130154128
    Abstract: The present disclosure relates to an electromigration tolerant power distribution network generated by an automatic place and route (APR) methodology. In some embodiments, an automatic place and route tool constructs a local power network having multi-level power rails. The multi-level power rails have interleaved segments of vertically adjacent metal layers, wherein each interleaved segment is shorter than a predetermined characteristic length corresponding to a Blech length. By limiting the length of the interleaved metallization segments, electromigration within the multi-level power rails is alleviated, allowing for the maximum current density requirement (Jmax) for mean time to failures (MTTF) to be increased.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Hsing Wang, King-Ho Tam, Huang-Yu Chen
  • Publication number: 20130154127
    Abstract: In a system for providing temporary or permanent connection of an integrated circuit die to a base substrate using electrical microsprings, a thermal element is provided that assists with cooling of the pad structure during use. The thermal element may be formed of the same material and my similar processes as the microsprings. The thermal element may be one or more block structures or one or more thermal microsprings. The thermal element may be provided with channels to contain and/or direct the flow of a thermal transfer fluid. Cooling of components associated with the pad structure (e.g., ICs) may be provided.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, Eric J. Shrader, John S. Paschkewitz
  • Publication number: 20130154099
    Abstract: A design rule checker that performs a maximum pattern density check in a first intermediary metallization layer that underlies a top metallization layer and a pad opening in an integrated circuit. The maximum pattern density check is performed at least under some circumstances if a modulus of the primary metallization material is less than a modulus of a surrounding dielectric material. The maximum pattern density check verifies that the pattern density within the underlying portion is below a maximum pattern density that depends on the thickness of the access pad. A maximum metal width check may also be performed in this portion.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Stevan G. Hunter, Bryce A. Rasmussen, Troy L. Ruud
  • Patent number: 8466560
    Abstract: A method of forming dummy structures in accordance with the golden ratio to reduce dishing and erosion during a chemical mechanical polish. The method includes determining at least one unfilled portion of a die prior to a chemical mechanical planarization and filling the at least one unfilled portion with a plurality of dummy structures, a ratio of the dummy structures to a total area of the unfilled portion being in the range of 36 percent and 39 percent. A die formed in accordance with the method may include a plurality of metal levels and a plurality of regions at each metal level, each region having a plurality of dummy structures formed as golden rectangles.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: June 18, 2013
    Assignee: STMicroelectronics, Inc.
    Inventors: John H. Zhang, Heng Yang
  • Patent number: 8466566
    Abstract: It is an objective to provide a semiconductor device with low leak current. The semiconductor device includes a plurality of ground side electrodes and a plurality of signal side electrodes arranged on a semiconductor substrate in an alternating manner; a plurality of control electrodes arranged respectively between each pair of a ground side electrode and a signal side electrode; a ground side electrode connecting section that connects the ground side electrodes to each other; a signal side electrode connecting section that connects the signal side electrodes to each other; and ground side lead wiring and signal side lead wiring that extend respectively from a region near one end and a region near another end of an arranged electrode section, in which the ground side electrodes and the signal side electrodes are arranged in an arrangement direction, away from the arranged electrode group in the arrangement direction.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 18, 2013
    Assignee: Advantest Corporation
    Inventors: Makoto Nakanishi, Tomoo Yamanouchi, Junichi Okayasu, Taku Sato, Daiju Terasawa, Masahiko Takikawa
  • Patent number: 8461675
    Abstract: A semiconductor die substrate panel is disclosed including a minimum kerf width between adjoining semiconductor package outlines on the panel, while ensuring electrical isolation of plated electrical terminals. By reducing the width of a boundary between adjoining package outlines, additional space is gained on a substrate panel for semiconductor packages.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: June 11, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Hem Takiar, Ken Jian Ming Wang, Chih-Chin Liao, Han-Shiao Chen
  • Patent number: 8461697
    Abstract: In a semiconductor integrated circuit device, arrangement relationship of power source area I/O pads differs between a peripheral portion and a center portion of a gate region of a chip. That is, in two columns and two rows of the peripheral portion of the gate region, VDD area I/O pads connected to a high-voltage power source VDD and GND area I/O pads connected to a ground power source GND are alternately aligned and arranged both in a row direction and in a column direction. Moreover, in the center portion of the gate region, the same VDD area I/O pads or the same GND area I/O pads are successively aligned in the row direction, and the VDD area I/O pads and the GND area I/O pads are alternately aligned and arranged in the column direction.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 11, 2013
    Assignee: Panasonic Corporation
    Inventor: Mitsushi Nozoe
  • Patent number: 8456012
    Abstract: A semiconductor device including an interconnection structure including a copper pad, a pad barrier layer and a metal redistribution layer, an interconnection structure thereof and methods of fabricating the same are provided. The semiconductor device includes a copper pad disposed on a first layer, a pad barrier layer including titanium disposed on the copper pad, an inorganic insulating layer disposed on the pad barrier layer, a buffer layer disposed on the inorganic insulating layer, wherein the inorganic insulating layer and the buffer layer expose a portion of the pad barrier layer, a seed metal layer disposed on the exposed buffer layer, a metal redistribution layer disposed on the seed metal layer, and a first protective layer disposed on the metal redistribution layer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: June 4, 2013
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Chang-Woo Shin, Hyun-Soo Chung, Eun-Chul Ahn, Jum-Gon Kim, Jin-Ho Chun
  • Patent number: 8456022
    Abstract: A solderable contact for use with an electrical component includes a pad metallization on a substrate, and an under bump metallization over at least part of the pad metallization. The under bump metallization is in an area for receiving solder. The pad metallization is structured to reveal parts of the substrate surface. The under bump metallization is in direct contact with the parts of the substrate.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: June 4, 2013
    Assignee: Epcos AG
    Inventors: Robert Hammedinger, Konrad Kastner, Martin Maier, Michael Obesser
  • Patent number: 8456025
    Abstract: A semiconductor integrated circuit device includes a semiconductor chip including input/output cells, pads formed on a surface of the semiconductor chip, and interconnects formed on the surface of the semiconductor chip to electrically connect at least some of the plurality of input/output cells and at least some of the plurality of pads. A first plurality of the pads located in a center portion of the semiconductor chip are arranged in a rectangular dot grid pattern, and a second plurality of the pads located in at least one of four corner portions of the semiconductor chip are arranged in a staggered dot pattern.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 4, 2013
    Assignee: Panasonic Corporation
    Inventor: Kenji Yokoyama
  • Patent number: 8450837
    Abstract: In a hybrid integrated circuit device, a circuit board on which an island portion of a lead is fixedly attached and a control board on which a control element and the like are mounted are disposed in an overlapping manner. The circuit board and the control board are integrally encapsulated with an encapsulating resin. A transistor disposed on an upper surface of the circuit board and a control element mounted on an upper surface of the control board are also covered by the encapsulating resin. Thus, a module in which an inverter circuit and a control circuit are integrally encapsulated with resin is provided.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 28, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Shigeki Mashimo, Fumio Horiuchi, Kiyoaki Kudo, Akira Sakurai, Yuhki Inagaki