With Specific Housing Or Contact Structure Patents (Class 257/81)
  • Patent number: 8742559
    Abstract: To suppress the reduction in reliability of a resin-sealed semiconductor device. A first cap (member) and a second cap (member) with a cavity (space formation portion) are superimposed and bonded together to form a sealed space. A semiconductor including a sensor chip (semiconductor chip) and wires inside the space is manufactured in the following way. In a sealing step of sealing a joint part between the caps, a sealing member is formed of resin such that an entirety of an upper surface of the second cap and an entirety of a lower surface of the first cap are respectively exposed. Thus, in the sealing step, the pressure acting in the direction of crushing the second cap can be decreased.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 3, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Noriyuki Takahashi
  • Patent number: 8742448
    Abstract: An optoelectronic component has an optoelectronic semiconductor chip, a contact frame, a contact carrier, a first electrical connection zone and a second electrical connection zone electrically insulated from the first electrical connection zone, which each have a part of the contact frame and a part of the contact carrier, wherein the contact frame has a recess which separates the first electrical connection zone at least in places from the second electrical connection zone and into which the optoelectronic semiconductor chip projects, and wherein the contact frame has a contact element which connects the contact frame electrically with the optoelectronic semiconductor chip.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 3, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Johann Ramchen, Michael Zitzlsperger
  • Patent number: 8742563
    Abstract: A component and a method for producing a component are disclosed. The component comprises an integrated circuit, a housing body, a wiring device overlapping the integrated circuit and the housing body, and one or more external contact devices in communication with the wiring device.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Harry Hedler, Markus Brunnbauer
  • Patent number: 8735189
    Abstract: A method of fabricating a light emitting diode device comprises providing a substrate, growing an epitaxial structure on the substrate. The epitaxial structure includes a first layer on the substrate, an active layer on the first layer and a second layer on the active layer. The method further comprises depositing a conductive and reflective layer on the epitaxial structure, forming a group of first trenches and a second trench. Each of the first and second trenches extends from surface of the conductive and reflective layer to the first layer to expose part of the first layer. The method further comprises depositing conductive material to cover a portion of the conductive and reflective layer to form a first contact pad, and cover surfaces between adjacent first trenches to form a second contact pad. The second contact pad electrically connects the first layer by filling the conductive material in the first trenches.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 27, 2014
    Assignee: Starlite LED Inc
    Inventor: Chang Han
  • Patent number: 8735922
    Abstract: A LED mirror light assembly comprises a body having a through hole configured subject to a predetermined shape and located on a middle part thereof, a film-coated glass configured subject to shape of the through hole and supported on a first step, a LED holder holding a plurality of light-emitting diodes, and a reflector comprising a reflective surface located on a front side thereof and facing toward the light-emitting diodes and a light-shading coating coated on a rear side thereof The reflector being kept in a non-parallel manner relative to the film-coated glass and defining with the film-coated glass a predetermined contained angle so that the light spots of the light-emitting diodes are repeatedly reflected by the reflective back face of the film-coated glass and the reflective surface of the reflector, forming a curved tunnel of light spots.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 27, 2014
    Inventor: Chien-Tsai Tsai
  • Patent number: 8729572
    Abstract: A light emitting diode package includes an electrically insulated base, first and second electrodes, an LED chip, a voltage stabilizing module, and an encapsulative layer. The base has a first surface and an opposite second surface. The first and second electrodes are formed on the first surface of the base. The LED chip is electrically connected to the first and second electrodes. The voltage stabilizing module is formed on the first surface of the base, positioned between and electrically connected to the first and second electrodes. The voltage stabilizing module connects to the LED chip in reverse parallel and has a polarity arranged opposite to that of the LED chip. The voltage stabilizing module has an annular shape and encircles the first electrode. The encapsulative layer is formed on the base and covers the LED chip.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 20, 2014
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hou-Te Lin, Chao-Hsiung Chang
  • Patent number: 8723191
    Abstract: An electronic device performing as a light emitting diode and a solar cell, and which comprises: a solar cell unit including a first electrode layer, an energy-level compensation layer formed on the first electrode layer, a photoelectric-conversion layer formed on the energy level compensation layer, and a shared electrode layer formed on the photoelectric-conversion layer; and a light emitting diode unit including the shared electrode layer, and a light emitting layer formed on the shared electrode layer and a second electrode layer formed on the light emitting layer, wherein a LUMO energy-level of the energy-level compensation layer is smaller than a work function of the first electrode layer and is larger than a LUMO energy level of the photoelectric-conversion layer, thereby increasing the generating efficiency of the solar cell unit or the luminous efficiency of the light emitting diode unit due to high electron mobility among the respective layers.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: May 13, 2014
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Kwanghee Lee, Inwook Hwang, Hongkyu Kang, Geunjin Kim
  • Patent number: 8723160
    Abstract: A light emitting diode (LED) die includes a first-type semiconductor layer, a multiple quantum well (MQW) layer and a second-type semiconductor layer. The light emitting diode (LED) die also includes a peripheral electrode on the first-type semiconductor layer located proximate to an outer periphery of the first-type semiconductor layer configured to spread current across the first-type semiconductor layer. A method for fabricating the light emitting diode (LED) die includes the step of forming an electrode on the outer periphery of the first-type semiconductor layer at least partially enclosing and spaced from the multiple quantum well (MQW) layer configured to spread current across the first-type semiconductor layer.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 13, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Feng-Hsu Fan, Hao-Chun Cheng, Trung Tri Doan
  • Patent number: 8723336
    Abstract: According to an embodiment, a semiconductor light emitting device includes a light emitting body including a semiconductor light emitting layer, a support substrate supporting the light emitting body, and a bonding layer provided between the light emitting body and the support substrate, the bonding layer bonding the light emitting body and the support substrate together. The device also includes a first barrier metal layer provided between the light emitting body and the bonding layer, and an electrode provided between the light emitting body and the first barrier metal layer. The first barrier layer includes a first layer made of nickel and a second layer made of a metal having a smaller linear expansion coefficient than nickel, and the first layer and the second layer are alternately disposed in a multiple-layer structure. The electrode is electrically connected to the light emitting body.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuharu Sugawara
  • Patent number: 8723192
    Abstract: A method for producing an optoelectronic semiconductor component includes providing a carrier; arranging at least one optoelectronic semiconductor chip at a top side of the carrier; shaping a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body covers all side areas of the at least one optoelectronic semiconductor chip, and wherein a surface facing away from the carrier at the top side and/or a surface facing the carrier at the underside of the at least one semiconductor chip remains substantially free of the shaped body or is exposed, and removing the carrier.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 13, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 8716721
    Abstract: A light emitting device comprises a substrate having a plurality of light emitting elements mounted thereon; a side wall structure having a partition wall portion separating a plurality of light emitting areas that each include at least one of the light emitting elements; and encapsulating resin filled in the light emitting areas to bury the light emitting elements therein. The side wall structure is separated by a space from the substrate at, at least, the partition wall portion so as to be in noncontact with the substrate, and the encapsulating resin is formed so as to integrally, continuously fill the light emitting areas and the space without producing any interface therein.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 6, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Kaori Tachibana
  • Patent number: 8716933
    Abstract: A light-emitting device having the quality of an image high in homogeneity is provided. A printed wiring board (second substrate) (107) is provided facing a substrate (first substrate) (101) that has a luminous element (102) formed thereon. A PWB side wiring (second group of wirings) (110) on the printed wiring board (107) is electrically connected to element side wirings (first group of wirings) (103, 104) by anisotropic conductive films (105a, 105b). At this point, because a low resistant copper foil is used to form the PWB side wiring (110), a voltage-drop of the element side wirings (103, 104) and a delay of a signal can be reduced. Accordingly, the homogeneity of the quality of an image is improved, and the operating speed of a driver circuit portion is enhanced.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: May 6, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takeshi Fukunaga
  • Patent number: 8716738
    Abstract: A semiconductor light-emitting device includes a light emitting structure on a substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer. A plurality of transparent layers is disposed on the light emitting structure. A metal layer is disposed between the plurality of transparent layers. An electrode is electrically connected to the metal layer and contacts a portion of the metal layer.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 6, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jung Hyeok Bae
  • Patent number: 8716720
    Abstract: A method for manufacturing a photocoupler includes: mounting light emitting devices and light receiving devices on a lead frame sheet; positioning the lead frame sheet with respect to a die by cutting off the one set of column portions from a linking portion and inserting a first pilot pin formed on the die into a second pilot hole; opposing the light emitting devices and the light receiving devices to each other; connecting the light emitting side coupling bars and the light receiving side coupling bars to each other on the die; forming a resin body so as to cover a pair of the light emitting device and the light receiving device; and cutting off the light emitting side lead frame portion from the light emitting column portion and cutting off the light receiving side lead frame portion from the light receiving column portion.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 6, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Teruo Takeuchi, Atsushi Takeshita
  • Patent number: 8710513
    Abstract: A light-emitting device package and a method of manufacturing the light-emitting device package. The light-emitting device package includes a wiring substrate; a Zener diode mounted on a first region of the wiring substrate; a light-emitting device chip mounted on the first region and a second region of the wiring substrate; and a molding member for fixing at least a portion of the wiring substrate, wherein the Zener diode is embedded in the molding member.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheol-jun Yoo, Young-hee Song
  • Patent number: 8710514
    Abstract: A light emitting die package is provided which includes a metal substrate having a first surface and a first conductive lead on the first surface. The first conductive lead is insulated from the substrate by an insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes a metal lead electrically connected to the first conductive lead and extending away from the first surface.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Ban P. Loh
  • Patent number: 8704248
    Abstract: Implementations and techniques for coupled asymmetric quantum confinement structures are generally disclosed.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: April 22, 2014
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Patent number: 8698168
    Abstract: A method of crystal growth is provided which can suppress development of dislocations and cracks and a warp in a substrate. The method of crystal growth of a group III nitride semiconductor has: a step of heating a silicon substrate; and a step of forming a depressed structure on the substrate surface by advance-feeding onto the heated silicon substrate a gas containing at least TMA (trimethylaluminum).
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 15, 2014
    Assignees: Sharp Kabushiki Kaisha, The Ritsumeikan Trust
    Inventors: Yoshihiro Ueta, Masataka Ohta, Yoshinobu Aoyagi, Misaichi Takeuchi
  • Patent number: 8697461
    Abstract: There is provided a manufacturing method of an LED module including: forming an insulating film on a substrate; forming a first ground pad and a second ground pad separated from each other on the insulating film; forming a first division film that fills a space between the first and second ground pads, a second division film deposited on a surface of the first ground pad, and a third division film deposited on a surface of the second ground pad; forming a first partition layer of a predetermined height on each of the division films; sputtering seed metal to the substrate on which the first partition layer is formed; forming a second partition layer of a predetermined height on the first partition layer; forming a first mirror connected with the first ground pad and a second mirror connected with the second ground pad by performing a metal plating process to the substrate on which the second partition layer is formed; removing the first and second partition layers; connecting a zener diode to the first mirror
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 15, 2014
    Assignee: Daewon Innost Co., Ltd.
    Inventors: Won Sang Lee, Young Keun Kim
  • Patent number: 8698191
    Abstract: Ultraviolet light emitting illuminator, and method for fabricating same, comprises an array of ultraviolet light emitting diodes and a first and second terminal. When an alternating current is applied across the first and second terminals and thus to each of the diodes, the illuminator emits ultraviolet light at a frequency corresponding to that of the alternating current. The illuminator includes a template with ultraviolet light emitting quantum wells, a first buffer layer with a first type of conductivity and a second buffer layer with a second type of conductivity, all deposited preferably over strain-relieving layer. A first and second metal contact are applied to the semiconductor layers having the first and second type of conductivity, respectively, to complete the LED. The emission spectrum ranges from 190 nm to 369 nm. The illuminator may be configured in various materials, geometries, sizes and designs.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 15, 2014
    Assignee: Nitek, Inc.
    Inventors: Asif Khan, Vinod Adivarahan, Qhalid Fareed
  • Patent number: 8698197
    Abstract: The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 ?m across the active area.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: April 15, 2014
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8698270
    Abstract: A semiconductor light receiving device includes: a substrate having a rectangular shape with first through fourth corners, a multilayer structure formed on the substrate, a light receiving part having a mesa structure positioned at a first corner side from a center part of the rectangular shape of the substrate, a first electrode pad provided on the semiconductor substrate, and a second electrode pad provided on the semiconductor substrate so as to be close to a second corner diagonally opposite to the first corner, a first minimum distance between the second electrode pad and an edge of the substrate being longer than a second minimum distance between the first electrode pad and the edge of the substrate.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Ryuji Yamabi
  • Patent number: 8692281
    Abstract: This invention relates to the thermal management, extraction of light, and cost effectiveness of Light Emitting Diode, or LED, electrical circuits. An integrated circuit LED submount is described, for the packaging of high power LEDs. The LED submount provides high thermal conductivity while preserving electrical insulation. In particular, a process is described for anodizing a high thermal conductivity aluminum alloy sheet to form a porous aluminum oxide layer and a non-porous aluminum oxide layer. This anodized aluminum alloy sheet acts as a superior electrical insulator, and also provides surface morphology and mechanical properties that are useful for the fabrication of high-density and high-power multilevel electrical circuits.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: April 8, 2014
    Assignee: DiCon Fiberoptics Inc.
    Inventors: Wen-Herng Su, Junying Lu, Ho-Shang Lee
  • Patent number: 8692262
    Abstract: Disclosed is an LED package. The LED package includes a package body, a first frame and a second frame on the package body and a light emitting device chip on the first frame. The first frame is separated from the second frame, and the first frame includes a bottom frame on the package body and at least two sidewall frames extending from the bottom frame and inclined with respect to the bottom frame.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: April 8, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sung Min Kong, Choong Youl Kim, Hee Seok Choi
  • Patent number: 8692273
    Abstract: The present application is to provide a light-emitting device comprising a metal reflective layer; a first transparent conductive oxide layer having a first refractive index; a second transparent conductive oxide layer having a second refractive index different from the first refractive index, and being between the metal reflective layer and the first transparent conductive oxide layer; and a light-emitting stack layer electrically connected to the second transparent conductive oxide layer substantially through the first transparent conductive layer; wherein there is no light absorbing material between the metal reflective layer and the first transparent conductive oxide layer.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 8, 2014
    Assignee: Epistar Corporation
    Inventors: Jin-Ywan Lin, Ya-Lang Yang
  • Publication number: 20140091326
    Abstract: A semiconductor proximity sensor (100) has a flat leadframe (110) with a first (110a) and a second (110b) surface, the second surface being solderable; the leadframe includes a first (111) and a second (112) pad, a plurality of leads (113, 114), and fingers (115, 118) framing the first pad, the fingers spaced from the first pad by a gap (116) which is filled with a clear molding compound. A light-emitting diode (LED) chip (120) is assembled on the first pad and encapsulated by a first volume (140) of the clear compound, the first volume outlined as a first lens (141). A sensor chip (130) is assembled on the second pad and encapsulated by a second volume (145) of the clear compound, the second volume outlined as a second lens (146). Opaque molding compound (150) fills the space between the first and second volumes of clear compound, forms shutters (151) for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Application
    Filed: July 30, 2013
    Publication date: April 3, 2014
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 8686461
    Abstract: A light emitting diode (LED) die includes a first substrate having a first surface and an opposing second surface; a second substrate on the second surface of the first substrate; a p-type semiconductor layer on the first surface of the first substrate; a multiple quantum well (MQW) layer on the p-type semiconductor layer configured to emit light; and an n-type semiconductor layer on the multiple quantum well (MQW) layer.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 1, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Jiunn-Yi Chu, Chen-Fu Chu, Chao-Chen Cheng
  • Patent number: 8680540
    Abstract: The optical semiconductor apparatus includes, on an n-GaAs substrate, a surface-emitting semiconductor laser device and a photodiode integrated on the periphery of the laser device with an isolation region interposed there between. The laser device is composed of an n-DBR mirror, an active region, and a p-DBR mirror and includes a columnar layered structure with its sidewall covered with an insulating film. The photodiode is formed on the substrate and has a circular layered structure wherein an i-GaAs layer and a p-GaAs layer surrounds the laser device with an isolating region interposed between the i-GaAs and p-GaAs layers and the laser device. The diameter of the photodiode is smaller than the diameter of the optical fiber core optically coupled with the optical semiconductor apparatus. Since the laser device and the photodiode are monolithically integrated, the devices do not require optical alignment, and thus, facilitate optical coupling with an optical fiber.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: March 25, 2014
    Assignee: Sony Corporation
    Inventors: Hironobu Narui, Tomonori Hino, Nobukata Okano, Jugo Mitomo
  • Patent number: 8680586
    Abstract: A semiconductor light emitting device including: a substrate made of GaAs; and a semiconductor layer formed on the substrate, in which part of the substrate on a side opposite to the semiconductor layer is removed by etching so that the semiconductor light emitting device has a thickness of not more than 60 ?m.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: March 25, 2014
    Assignee: ROHM Co., Ltd.
    Inventors: Tadahiro Hosomi, Kentaro Mineshita
  • Patent number: 8679868
    Abstract: An improved bifacial solar cell is disclosed. In some embodiments, the front side includes an n-type field surface field, while the back side includes a p-type emitter. In other embodiments, the p-type emitter is on the front side. To maximize the diffusion of majority carriers and lower the series resistance between the contact and the substrate, the regions beneath the metal contacts are more heavily doped. Thus, regions of higher dopant concentration are created in at least one of the FSF or the emitter. These regions are created through the use of selective implants, which can be performed on one or two sides of the bifacial solar cell to improve efficiency.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: March 25, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Atul Gupta, Nicholas P. T. Bateman
  • Publication number: 20140070101
    Abstract: An optical path of infrared rays (see the broken lines in FIG. 1) is modified to a substantially U-like shape by a first reflecting mirror and a second reflecting mirror. An incidence angle of the infrared rays incident on the wavelength filter (an angle between the infrared rays incident on the surface of the wavelength filter and the line perpendicular to the surface of the wavelength filter) is nearly zero. For this reason, as compared with a conventional example, the influence of the incidence angle dependence of the wavelength filter can be reduced. As a result, the amount of the infrared rays reaching the light receiving unit through the wavelength filter is increased, thereby suppressing a decline in the detection accuracy of the gas component.
    Type: Application
    Filed: April 5, 2012
    Publication date: March 13, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Shunsuke Matsushima, Eiichi Furukubo
  • Patent number: 8669581
    Abstract: Provided is a light emitting device package, which includes a ceramic body, an ultraviolet light emitting diode, a support member, and a glass film. The ceramic body defines a cavity. The ultraviolet light emitting diode is disposed within the cavity. The support member is disposed on the body, and surrounds the cavity. The glass film is coupled to the support member, and covers the cavity. Since the light emitting device package includes the ceramic body to efficiently dissipate heat, and the glass film is directly attached to the ceramic body to decrease the number of components, thereby simplifying the manufacturing process thereof, and reducing the manufacturing costs thereof.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: March 11, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jung Su Jung, Byung Mok Kim, Yu Dong Kim, Gun Kyo Lee
  • Patent number: 8664656
    Abstract: Methods and devices for embedding semiconductors in printed circuit boards (PCBs) are provided. In one example, a method of manufacturing a PCB having a die assembly embedded therein includes removing a release film from an adhesive layer of the die assembly. The method also includes disposing the die assembly on a first layer of the PCB such that the adhesive layer contacts the first layer of the PCB. The method includes disposing a second layer of the PCB over the first layer such that the die assembly is within an intermediate portion between the first layer and the second layer. The method also includes filling the intermediate portion with resin and subjecting the PCB to a press cycle to cure the resin.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 4, 2014
    Assignee: Apple Inc.
    Inventors: Shawn X. Arnold, Dennis Pyper
  • Patent number: 8664683
    Abstract: A method for providing, on a carrier (40), an insulative spacer layer (26) which is patterned such that a cavity (27) is formed which enables connection of an optical semiconductor element (41) to the intended conductor structure (22) when placed inside the cavity (27). The cavity (27) is formed such that it, through its shape, extension and/or depth, accurately defines a location of an optical element (45; 61) in relation to the optical semiconductor element (41). Through the provision of such a patterned insulative spacer layer, compact and cost-efficient optical semiconductor devices can be mass-produced based on such a carrier without the need for prolonged development or acquisition of new and expensive manufacturing equipment.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 4, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Gerardus Henricus Franciscus Willebrordus Steenbruggen
  • Patent number: 8659033
    Abstract: A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: February 25, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Ding-Yuan Chen, Chia-Lin Yu, Hung-Ta Lin
  • Patent number: 8653539
    Abstract: In accordance with certain embodiments, an illumination system comprising a plurality of power strings features elements facilitating compensation for failure of one or more light-emitting elements connected along each power string.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 18, 2014
    Assignee: Cooledge Lighting, Inc.
    Inventors: Michael Tischler, Philippe Schick, Calvin Wade Sheen, Paul Jungwirth
  • Patent number: 8653540
    Abstract: An optoelectronic semiconductor body includes a semiconductor layer sequence which has an active layer suitable for generating electromagnetic radiation, and a first and a second electrical connecting layer. The semiconductor body is provided for emitting electromagnetic radiation from a front side. The first and the second electrical connecting layer are arranged at a rear side opposite the front side and are electrically insulated from one another by means of a separating layer. The first electrical connecting layer, the second electrical connecting layer and the separating layer laterally overlap and a partial region of the second electrical connecting layer extends from the rear side through a breakthrough in the active layer in the direction of the front side. Furthermore, a method for producing such an optoelectronic semiconductor body is specified.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: February 18, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Engl, Patrick Rode, Lutz Hoeppel, Matthias Sabathil
  • Publication number: 20140034972
    Abstract: A housing for optoelectronic components, such as LEDs, and to a method for producing such a housing are provided. The housing has a base body with an upper surface that at least partially defines a mounting area for at least one optoelectronic functional element, such that the base body provides a heat sink for an optoelectronic functional element. The base body also has a lower surface and a lateral surface. The housing has a connecting body for the optoelectronic functional element, which is joined to the base body at least by a glass layer. The connecting body is arranged at a lateral side of the base body and at least partially extends around a periphery of the base body.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 6, 2014
    Applicant: SCHOTT AG
    Inventors: Robert Hettler, Matthias Rindt
  • Patent number: 8643033
    Abstract: A light emitting device includes a substrate elongated in a lengthwise direction; a plurality of LED chips disposed on the substrate in an intermediate region in widthwise direction, and aligned along the lengthwise direction at a distance of 80 ?m or less; and interconnection wirings formed on regions outside the intermediate region in the widthwise direction; wherein each of the LED chips has a p-side electrode disposed on the substrate, a p-type semiconductor layer disposed on the p-side electrode, an active layer formed on the p-type semiconductor layer, and an n-type semiconductor layer formed on the active layer, and has a region in which the n-type semiconductor layer, the active layer, and the p-type semiconductor layer are patterned, and an n-side electrode formed selectively on a surface of the n-type semiconductor layer and connected to the p-side electrode of an adjacent LED chip through the interconnection wiring.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 4, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Tatsuma Saito, Mamoru Miyachi
  • Patent number: 8637891
    Abstract: A light-emitting device includes first and second semiconductor layers and a light-emitting layer between the first and second semiconductor layers. The light-emitting device also includes an improved electrode structures.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 28, 2014
    Assignee: Toshiba Techno Center Inc.
    Inventors: Steven D. Lester, Chao-Kun Lin
  • Patent number: 8633498
    Abstract: A display substrate includes a base substrate, a data line, a gate line, a switching element, a self assembled monolayer (SAM) and a pixel electrode. The data line is formed on the base substrate. The gate line is formed across the data line. The switching element includes a source electrode electrically connected to the data line, a drain electrode spaced apart from the source electrode, a semiconductor pattern covering the source and drain electrodes, and a gate electrode electrically connected to the gate line and facing the semiconductor pattern. The SAM is disposed around the semiconductor pattern and a conductive pattern including the data line. The pixel electrode is electrically connected to the switching element.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Young Choi, Kang-Moon Jo, Bo-Sung Kim, Young-Min Kim
  • Patent number: 8629347
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 14, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8628984
    Abstract: A package system includes a substrate having at least one first thermally conductive structure through the substrate. At least one second thermally conductive structure is disposed over the at least one first thermally conductive structure. At least one light-emitting diode (LED) is disposed over the at least one second thermally conductive structure.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: January 14, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventor: Chung Yu Wang
  • Patent number: 8624268
    Abstract: A light emitting device package is provided. The light emitting device package comprises a substrate comprising a plurality of protrusions, an insulating layer on the substrate, a metal layer on the insulating layer, and a light emitting device on the substrate electrically connected to the metal layer.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 7, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Bum Chul Cho, Jin Soo Park
  • Patent number: 8624108
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut K. Dutta
  • Patent number: 8624107
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8614446
    Abstract: A semiconductor device includes a semiconductor layer (1) containing GaN and an electrode. The electrode includes an electrode main body (6), a connection-use electrode (8) containing Al and formed at a position farther from the semiconductor layer (1) than the electrode main body (6), and a barrier layer (7) formed between the electrode main body (6) and the connection-use electrode (8), the barrier layer (7) containing at least one selected from the group consisting of W, TiW, WN, TiN, Ta, and TaN. A surface roughness RMS of the barrier layer (7) is 3.0 nm or less.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: December 24, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tomihito Miyazaki, Makoto Kiyama, Taku Horii
  • Patent number: 8610134
    Abstract: A light emitting diode (LED) package may include a base, at least one light emitting die on the base, and a flextape on the base. The flextape includes at least one metal trace connected to the light emitting die. In a method of manufacturing the LED package, the base may be formed so as to include a basin and at least one light emitting die may be placed within the basin. The flextape may be provided to include at least one metal trace that is electrically connected to the light emitting die.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: December 17, 2013
    Assignee: Cree, Inc.
    Inventor: Peter Andrews
  • Patent number: 8610135
    Abstract: A frame body surrounding a perimeter of each light-emitting element is provided one surface of a substrate. Glass films having apertures are formed on the substrate by glass printing to form the frame body.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 17, 2013
    Assignees: Stanley Electric Co., Ltd., Nippon Carbide Industries Co., Inc.
    Inventors: Dai Aoki, Makoto Ida, Shigehiro Kawaura
  • Patent number: 8610143
    Abstract: An object of the present invention is to provide a light emitting device that has high output power and long service life where a package is suppressed from discoloring due to heat generation. The light emitting device 1 of the present invention contains a light emitting element 10, a package 40 formed of a thermosetting resin, the package having a recess 43 wherein the light emitting element 10 is mounted, a first lead electrode 20 which is exposed at the bottom of the recess 43 of the package 40 and whereon the light emitting element 10 is mounted, and a second lead electrode 30 which is exposed at the bottom of the recess 43 of the package 40 and is electrically connected to the light emitting element 10. The light emitting element 10 is bonded to the first lead electrode 20 through a eutectic layer 70, and at least a surface of the first electrode 20 is coated with an Ag film 22, a thickness of the Ag film 22 being in the range from 0.5 ?m to 20 ?m.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: December 17, 2013
    Assignee: Nichia Corporation
    Inventor: Masaki Hayashi