With Specific Housing Or Contact Structure Patents (Class 257/81)
  • Patent number: 8471269
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 25, 2013
    Assignee: Cree, Inc.
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Patent number: 8471242
    Abstract: Disclosed is a light emitting device, including: a substrate, a light emitting structure provided on the substrate, which includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer laminated in sequential order, a transmissive electrode layer arranged on the light emitting structure, an electrode provided on the light emitting structure. Here, the electrode includes a pad electrode and a finger electrode, and an insertion element is placed between the finger electrode and the second conductive semiconductor layer, wherein the insertion element is formed such that at least one region thereof overlaps with the finger electrode in a vertical direction. Since the insertion element is formed under the finger electrode, it is possible to prevent light emitted by the active layer from being absorbed by the finger electrode. Accordingly, luminous efficacy of the light emitting device may be further enhanced.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 25, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: SungKyoon Kim, MinGyu Na, HyunSeoung Ju
  • Publication number: 20130153932
    Abstract: A method for manufacturing a photocoupler includes: mounting light emitting devices and light receiving devices on a lead frame sheet; positioning the lead frame sheet with respect to a die by cutting off the one set of column portions from a linking portion and inserting a first pilot pin formed on the die into a second pilot hole; opposing the light emitting devices and the light receiving devices to each other; connecting the light emitting side coupling bars and the light receiving side coupling bars to each other on the die; forming a resin body so as to cover a pair of the light emitting device and the light receiving device; and cutting off the light emitting side lead frame portion from the light emitting column portion and cutting off the light receiving side lead frame portion from the light receiving column portion.
    Type: Application
    Filed: May 18, 2012
    Publication date: June 20, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Teruo Takeuchi, Atsushi Takeshita
  • Patent number: 8461599
    Abstract: A light emitting diode (LED) with a stable color temperature includes at least one LED chip and at least one color sensor module. The LED chip has a main light emitting surface and a sub light emitting surface opposite to the main surface. The color sensor module senses the intensities of light emitting from sub light emitting surface of the LED chip for adjustment of a color temperature of the LED.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 11, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Jian-Shihn Tsang
  • Patent number: 8461617
    Abstract: Provided is a semiconductor light emitting element wherein generation of an open failure of the light emitting device can be eliminated by ensuring a current pathway when disconnection is generated in a transparent electrode layer. A semiconductor light emitting element (10) is provided with: a first semiconductor layer (12) on a substrate (11); a light emitting layer (13) on the first semiconductor layer (12); a second semiconductor layer (14) on the light emitting layer (13); an insulator layer (15) provided with a hole portion (19) in a partial region on the second semiconductor layer (14); a transparent electrode layer (16) covering the upper surface of the insulator layer (15) and the second semiconductor layer (14) without covering the hole portion (19); and a second pad electrode (18) brought into contact with the second semiconductor layer (14) through the hole portion (19) and faces the insulator layer (15) with the transparent electrode layer (16) therebetween.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: June 11, 2013
    Assignee: Nichia Corporation
    Inventors: Katsuyoshi Kadan, Yoshiki Inoue
  • Patent number: 8455886
    Abstract: A light emitting device is constituted by flip-chip mounting a GaN-based LED chip. The GaN-based LED chip includes a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, wherein the GaN-based semiconductor layer has a laminate structure containing an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side, wherein a positive electrode is formed on the p-type layer, the electrode containing a light-transmissive electrode of an oxide semiconductor and a positive contact electrode electrically connected to the light-transmissive electrode, and the area of the positive contact electrode is half or less of the area of the upper surface of the p-type layer.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: June 4, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takahide Joichi, Hiroaki Okagawa, Shin Hiraoka, Toshihiko Shima, Hirokazu Taniguchi
  • Patent number: 8457173
    Abstract: An apparatus that includes a silicon-based support member and a silicon-based alignment structure is provided. The silicon-based alignment structure is received on a receiving surface of the support member. The alignment structure includes a first surface and a second surface parallel to and facing the first surface with a gap defined therebetween and configured to receive a light-emitting device inside the gap with the first surface and the second surface in contact with the light-emitting device such that, when a collimating rod lens is disposed on the alignment structure and over the gap, a longitudinal center line of the collimating rod lens is not aligned with a mid-point of the gap.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: June 4, 2013
    Inventor: Gerald Ho Kim
  • Patent number: 8450770
    Abstract: A light emitting diode (LED) package structure comprising a carrier, an LED chip, a first encapsulant, at least one bonding wire, a plurality of phosphor particles and a second encapsulant is provided. The LED chip is disposed on the carrier. The LED chip has at least one electrode. The first encapsulant is disposed on the carrier and covering the LED chip. The first encapsulant is provided with at least one preformed opening exposing at least a portion of the at least one electrode. The at least one bonding wire is electrically connected between the at least one electrode and the carrier via the at least one preformed opening. The phosphor particles are distributed within the first encapsulant. The second encapsulant is disposed on the carrier and encapsulates the LED chip, the first encapsulant and the at least one bonding wire.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 28, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Hyunsoo Jeong, Seongoo Lee, Ryungshik Park, Hyunil Lee
  • Patent number: 8450751
    Abstract: An optoelectronic semiconductor body includes a semiconductor layer sequence which has an active layer suitable for generating electromagnetic radiation, and a first and a second electrical connecting layer. The semiconductor body is provided for emitting electromagnetic radiation from a front side. The first and the second electrical connecting layer are arranged at a rear side opposite the front side and are electrically insulated from one another by means of a separating layer. The first electrical connecting layer, the second electrical connecting layer and the separating layer laterally overlap and a partial region of the second electrical connecting layer extends from the rear side through a breakthrough in the active layer in the direction of the front side. Furthermore, a method for producing such an optoelectronic semiconductor body is specified.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 28, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Engl, Patrick Rode, Lutz Hoeppel, Matthias Sabathil
  • Patent number: 8450760
    Abstract: One or more circuit elements such as silicon diodes, resistors, capacitors, and inductors are disposed between the semiconductor structure of a semiconductor light emitting device and the connection layers used to connect the device to an external structure. In some embodiments, the n-contacts to the semiconductor structure are distributed across multiple vias, which are isolated from the p-contacts by one or more dielectric layers. The circuit elements are formed in the contacts-dielectric layers-connection layers stack.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: May 28, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Jerome C. Bhat, Steven T. Boles
  • Patent number: 8445921
    Abstract: Light emitting LEDs devices comprised of LED chips that emit light at a first wavelength, and a thin film layer over the LED chip that changes the color of the emitted light. For example, a blue LED chip can be used to produce white light. The thin film layer beneficially consists of a florescent material, such as a phosphor, and/or includes tin. The thin film layer is beneficially deposited using chemical vapor deposition.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 21, 2013
    Assignee: LG Electronics, Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 8445922
    Abstract: The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a cross-sectional shape of the screen member is substantially rectangular, and a width of the cross-sectional shape of the screen member being larger than a height of the cross sectional shape of the screen member, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 21, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jun Seok Park
  • Patent number: 8446002
    Abstract: A multilayer wiring substrate has a through hole that passes from a first surface through to a second surface. The multilayer wiring substrate includes an electrical connection terminal formed in at least one of an inner edge portion which is a periphery of the through hole, an outer edge portion which is an outer periphery of the substrate, and a non-edge portion, on at least one of the first surface and the second surface. The electrical connection terminal has a castellation structure that does not pass through to a surface opposite to a formation surface.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 21, 2013
    Assignee: Sony Corporation
    Inventors: Noriko Shibuta, Tohru Terasaki, Tomoyasu Yamada, Nobuo Naito, Yukihiko Tsukuda, Ryu Nonoyama
  • Patent number: 8445928
    Abstract: A light-emitting diode (LED) light source module is described, comprising: a heat conduction substrate, wherein a surface of the heat conduction substrate includes a plurality of recesses; a plurality of light-emitting diode chips respectively disposed in the recesses; an insulation layer disposed on the surface of the heat conduction substrate outside of the recesses; an electric conduction layer disposed on the insulation layer, wherein the light-emitting diode chips are electrically connected to the electric conduction layer; and an encapsulation layer covering the light-emitting diode chips, the electric conduction layer and the insulation layer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 21, 2013
    Assignee: CHI MEI Lighting Technology Corp.
    Inventors: Shi-Ming Cheng, Wen-Liang Li, Chang-Hsin Chu, Hsing-Mao Wang
  • Patent number: 8440477
    Abstract: A method for manufacturing an LED (light emitting diode) includes following steps: providing a first electrode, a second electrode and a Zener diode, the Zener diode being electrically connected to the first and second electrodes; providing a mold; the first electrode, the second electrode and the Zener diode being received in the mold; injecting a liquid molding material into the mold, thereby integrally forming a base, a dam, and a reflective cup, the Zener diode being encapsulated in the dam; setting first and second LED chips respectively on the first and second electrodes; filling an encapsulation material in the reflective cup to encapsulate the first and second LED chips. The first and second LED chips are separated from each other by the dam.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: May 14, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventor: Hsing-Fen Lo
  • Patent number: 8441019
    Abstract: Disclosed are a light emitting device, a light emitting device package, and a lighting system. The light emitting device comprises a substrate; a light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, which are formed on the substrate such that a part of the first conductive semiconductor layer is exposed upward; schottky contact regions on the second conductive semiconductor layer; a second electrode on the second conductive semiconductor layer; and a first electrode on the exposed first conductive semiconductor layer, wherein a distance between the schottky contact regions narrowed as the schottky contact regions are located closely to a mesa edge region.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 14, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sung Min Hwang
  • Patent number: 8436380
    Abstract: In a lighting package, a printed circuit board supports at least one light emitting die. A light transmissive cover is disposed over the at least one light emitting die. A phosphor is disposed on or inside of the light transmissive dome-shaped cover. The phosphor outputs converted light responsive to irradiation by the at least one light emitting die. An encapsulant substantially tills an interior volume defined by the light-transmissive cover and the printed circuit board.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 7, 2013
    Assignee: GE Lighting Solutions, LLC
    Inventors: Srinath K. Aanegola, Emil V. Radkov, James Reginelli, Larry R. Stadelman, Matthew Mrakovich, Tomislav J. Stimac
  • Patent number: 8431817
    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may be a multi junction solar cell. The optoelectronic device may have a bi-layer electrical interconnect that is physically and electrically connected to sidewalls of the array of nanostructures. The optoelectronic device may be operated as a multi junction solar cell, wherein each junction is associated with one portion of the device. The bi-layer electrical interconnect allows current to pass from one portion to the next. Thus, the bi-layer electrical interconnect may serve as a replacement for a tunnel junction, which is used in some conventional multi junction solar cells.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Sundiode Inc.
    Inventors: James C. Kim, Sungsoo Yi, Danny E. Mars
  • Patent number: 8426879
    Abstract: An object of the present invention is to provide a light emitting device that shows high adhesion between a sealing member and a package member. A light emitting device 100 of the present invention comprises a package 20 with a recess 60 having a bottom face 20a and a side wall 20b, a light emitting element 10 mounted on the bottom face 20a of the recess 60 of the package 20, and a sealing member 40 filled in the recess 60 of the package 20, with which the light emitting element 10 is coated, wherein the package 20 contains, against the entire monomer component, from 5 to 70% by weight of potassium titanate fibers and/or wollastonite, from 10 to 50% by weight of titanium oxide, and from 15 to 85% by weight of a semiaromatic polyamide containing 20 mol % or more of an aromatic monomer, a part of the side wall 20b of the recess 60 of the package 20 has a thickness of 100 ?m or less, and the sealing member 40 is made of silicone.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: April 23, 2013
    Assignee: Nichia Corporation
    Inventors: Motohisa Kitani, Hirofumi Ichikawa, Tomoya Tsukioka, Tomohide Miki, Masafumi Kuramoto
  • Patent number: 8426873
    Abstract: The present invention discloses an LED package structure which has a housing, an LED chip and a transparent encapsulant. The housing has a recess and a plurality of protrusions. The LED chip is mounted in the recess of the housing, and covered in the recess by the transparent encapsulant. The protrusions are formed in the recess or on the edge of the housing. The protrusions of the present invention can form the uneven shape of the surface of the transparent encapsulant, so as to increase the diffusion angle of the light and enhance the light extraction efficiency.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: April 23, 2013
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Kuangyao Chang, Weiwei Zheng
  • Patent number: 8421098
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer below the first conductive semiconductor layer, and a second conductive semiconductor layer below the active layer; a channel layer below the light emitting structure, in which an inner portion of the channel layer is disposed along an outer peripheral portion of the light emitting structure and an outer portion of the channel layer extends out of the light emitting structure; and a second electrode layer below the light emitting structure.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: April 16, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Patent number: 8417081
    Abstract: An optocoupler including: a substrate comprising a photodetector; a transparent electrically-insulating layer disposed over the photodetector; and an organic electroluminescent device having an organic electroluminescent layer disposed between a first and a second electrode disposed over the transparent electrically-insulating layer; the photodetector arranged to detect light emitted from the organic electroluminescent device; wherein the optocoupler comprises a second current path between the first and second electrodes in addition to a first current path between the first and second electrode which in operation causes the organic electroluminescent layer to emit light.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: April 9, 2013
    Assignee: Cambridge Display Technology Limited
    Inventors: Julian Carter, Jonathan Halls
  • Patent number: 8410512
    Abstract: Provided are apparatus and methods corresponding to a solid state light emitting element. Such methods include mounting, to a thermally conductive component, a solid state light emitting element that includes first and second electrical connection points that are configured to be conductively engaged on a first side of a circuit structure. The solid state light emitting element is electrically insulated from the thermally conductive component to provide that electrical connections are arranged on the first side of the circuit structure and heat is conducted to a second side of the circuit structure that is opposite the first side of the circuit structure.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 2, 2013
    Assignee: Cree, Inc.
    Inventor: Peter S. Andrews
  • Patent number: 8410471
    Abstract: A light emitting device includes a substrate, and an LED chip mounted on the substrate. The chip includes: a body comprising a transparent conductor which comprises a base and sticks out of the base to taper off from the base; a light source comprising light emitting parts separately formed on the base; a first terminal formed on the base; and second terminals formed on the light emitting parts, respectively. A conductive pattern of the substrate includes: a first conductor electrically connected with the first terminal; and second conductors electrically connected with the second terminals, respectively.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 2, 2013
    Assignee: Panasonic Corporation
    Inventor: Akihiko Murai
  • Patent number: 8410687
    Abstract: An emitting device in an organic electroluminescent device is disclosed, in which a lower electrode pattern is formed on a substrate, an emitting layer pattern is formed on the lower electrode pattern, and a transparent electrode is formed on the emitting layer pattern and an emitting body having a structure in which an organic thin film emits light when an application current is applied to it. The pattern of the transparent electrode completely covers and is larger than that of the lower electrode. The pattern of the transparent electrode is formed over the entire area of the pattern of the lower electrode.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: April 2, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kazuhiko Hayashi, Takashi Fukuchi, Shinzo Tsuboi, Ichiro Fujieda
  • Patent number: 8410463
    Abstract: Optocoupler devices and methods for making and using such devices are described. The optocoupler devices contain a light emitting component (a light emitting diode [LED]) and a light receiving component (a phototransistor [PT]) device that are embedded within the substrate, rather than being attached to the surface of the pre-molded substrate. Such a configuration eliminates the bond wires that are often used when the LED and PT are attached on the substrate, improves the electrical performance, and allows the final optocoupler package to be made smaller and thinner. Other embodiments are described.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 2, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Yong Liu
  • Patent number: 8410513
    Abstract: Provided is a light emitting device package. The light emitting device package comprises a first conductive type package body, an insulating layer comprising an opening on the package body, a plurality of compound semiconductor layers disposed on the package body through the opening of the insulating layer, an electrode electrically connected to the plurality of compound semiconductor layers, a first metal layer electrically connected to the package body and disposed on a part of the insulating layer, and a second metal layer electrically connected to the electrode and disposed on the other part of the insulating layer.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: April 2, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bum Chul Cho
  • Patent number: 8410491
    Abstract: Semiconductor light emitting device packaging methods include fabricating a substrate configured to mount a semiconductor light emitting device thereon. The substrate may include a cavity configured to mount the semiconductor light emitting device therein. The semiconductor light emitting device is mounted on the substrate and electrically connected to a contact portion of the substrate. The substrate is liquid injection molded to form an optical element bonded to the substrate over the semiconductor light emitting device. Liquid injection molding may be preceded by applying a soft resin on the electrically connected semiconductor light emitting device in the cavity. Semiconductor light emitting device substrate strips are also provided.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 2, 2013
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Nicholas W. Madendorp, Jr.
  • Publication number: 20130075763
    Abstract: A display apparatus includes a first substrate including a plurality of pixels, and a second substrate facing the first substrate, the second substrate comprising a sensor area and a peripheral area, the sensor area comprising a plurality of sensors. The second substrate includes an insulating layer, and a plurality of lines disposed on the insulating layer corresponding to the peripheral area and connected to the sensors. A void is formed in the insulating layer between two adjacent lines of the plurality of lines at a boundary of the sensor area and the peripheral area.
    Type: Application
    Filed: September 28, 2012
    Publication date: March 28, 2013
    Applicant: Samsung Display Co., Ltd.
    Inventor: Samsung Display Co., Ltd.
  • Publication number: 20130075762
    Abstract: According to one embodiment, an optically transmissive metal electrode includes a plurality of first and second metal wires. The first metal wires are disposed along a first direction, and extend along a second direction intersecting the first direction. The second metal wires are disposed along a third direction parallel with a plane including the first and second directions and intersecting the first direction, contact the first metal wires, and extend along a fourth direction parallel with the plane and intersecting the third direction. A first pitch between centers of the first metal wires is not more than a shortest wavelength in a waveband including visible light. A second pitch between centers of the second metal wires exceeds a longest wavelength in the waveband. A thickness of the first and second metal wires along a direction vertical to the plane is not more than the shortest wavelength.
    Type: Application
    Filed: February 27, 2012
    Publication date: March 28, 2013
    Inventors: Kenji NAKAMURA, Akira Fujimoto, Tsutomu Nakanishi, Ryota Kitagawa, Shinji Nunotani, Takanobu Kamakura
  • Patent number: 8405096
    Abstract: An LED package structure includes an LED die, a lead frame and a housing connecting to the lead frame. The LED die is located on a surface of the lead frame. The housing includes an inner face surrounding the LED die. The inner face has a bottom edge connected to the surface of the lead frame, a top edge and a waist line between the bottom edge and top edge. The bottom edge surrounds an area less than an area surrounded by the waist line. The area surrounded by the waist line is less than an area surrounded by the top edge. The inner face has a curved surface between the waist line and the bottom edge.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: March 26, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chien-Min Chen, Ko-Wei Chien, Hung-Chin Lin
  • Patent number: 8404501
    Abstract: A semiconductor package structure includes a package substrate, at least a chip, solder balls, a light emitting/receiving device, a optical intermediary device and an optical transmission device. The package substrate has a first surface, a second surface, a circuit and solder ball pads, wherein each solder ball pad is electrically connected to the circuit. The chip is disposed on the first surface and electrically connected to the circuit. The solder balls are respectively disposed on the solder ball pads. The light emitting/receiving device is disposed on the package substrate and electrically connected to the circuit. The optical intermediary device is disposed above the light emitting/receiving device. The optical transmission device is inserted in the optical intermediary device, wherein a light emitting by the light emitting/receiving device is emitted to the optical transmission device via the optical intermediary device so that an optical signal is transmitted through the optical transmission device.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 26, 2013
    Assignee: Faraday Technology Corp.
    Inventors: Po-Yao Huang, Chia-Yu Jin, Yeong-Jar Chang
  • Patent number: 8399909
    Abstract: The present invention is directed to a position sensing detector made of a photodiode having a semi insulating substrate layer; a buffered layer that is formed directly atop the semi-insulating substrate layer, an absorption layer that is formed directly atop the buffered layer substrate layer, a cap layer that is formed directly atop the absorption layer, a plurality of cathode electrodes electrically coupled to the buffered layer or directly to the cap layer, and at least one anode electrode electrically coupled to a p-type region in the cap layer. The position sensing detector has a photo-response non-uniformity of less than 2% and a position detection error of less than 10 ?m across the active area.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: March 19, 2013
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8395178
    Abstract: A light emitting device package and a method of manufacturing the light emitting device package are provided. A base is first provided and a hole is formed on the base. After a light emitting portion is formed on the base, a mold die is placed on the light emitting portion and a molding material is injected through the hole. The mold die is removed to complete the package.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 12, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jun Seok Park, Seok Hoon Kang
  • Patent number: 8395568
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 12, 2013
    Assignees: NthDegree Technologies Worldwide Inc, The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 8390007
    Abstract: A semiconductor light emitting device has a light emitting element, and first and second electrodes. The light emitting element has a nitride-based III-V compound semiconductor on a substrate. The first and second electrodes are disposed on both sides of the light emitting element, respectively. The light emitting element has a light emitting layer, a first conductive type semiconductor layer, and a second conductive type semiconductor layer. The first conductive type semiconductor layer is disposed between the light emitting layer and the first electrode. The second conductive type semiconductor layer is disposed between the light emitting layer and the second electrode. One surface of the first conductive type semiconductor layer contacts the first electrode and is a light extraction surface which is roughly processed so as to have two or more kinds of oblique angles.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: March 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toru Gotoda, Takahiro Sato, Toshiyuki Oka, Shinya Nunoue, Kotaro Zaima
  • Patent number: 8390009
    Abstract: A package system includes a substrate having at least one first thermally conductive structure through the substrate. At least one second thermally conductive structure is disposed over the at least one first thermally conductive structure. At least one light-emitting diode (LED) is disposed over the at least one second thermally conductive structure.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chung Yu Wang
  • Publication number: 20130049019
    Abstract: Exemplary embodiments of the described technology relate generally to display devices including dye-sensitized solar cells. The display device according to an exemplary embodiment includes a display element for displaying an image, and a dye-sensitized solar cell for converting light into electricity to offset the power consumption of the display element. The dye-sensitized solar cell includes a selective photo-absorption material for selectively absorbing light from at least one wavelength band.
    Type: Application
    Filed: November 29, 2011
    Publication date: February 28, 2013
    Inventor: Chang-Yun Moon
  • Publication number: 20130049018
    Abstract: An optical/electrical transducer device has housing, formed of a thermally conductive section and an optically transmissive member. The section and member are connected together to form a seal for a vapor tight chamber. Pressure within the chamber configures a working fluid to absorb heat during operation of the device, to vaporize at a relatively hot location as it absorbs heat, to transfer heat to and condense at a relatively cold location, and to return as a liquid to the relatively hot location. The transducer device also includes a wicking structure mounted within the chamber to facilitate flow of condensed liquid of the working fluid from the cold location to the hot location. At least a portion of the wicking structure comprises semiconductor nanowires, configured as part of an optical/electrical transducer within the chamber for emitting light through and/or driven by light received via the transmissive member.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: David P. RAMER, Jack C. Rains, JR.
  • Patent number: 8382335
    Abstract: A light emitting diode module is produced using at least one LED and at least two selectable components that form a light mixing chamber. First and second selectable components have first and second types of wavelength converting materials with different wavelength converting characteristics. The first and second wavelength converting characteristics alter the spectral power distribution of the light produced by the LED to produce light with a color point that is a predetermined tolerance from a predetermined color point. Moreover, a set of LED modules may be produced such that each LED module has the same color point within a predetermined tolerance. The LED module may be produced by pre-measuring the wavelength converting characteristics of the different components selecting components with wavelength converting characteristics that convert the spectral power distribution of the LED to a color point that is a predetermined tolerance from a predetermined color point.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 26, 2013
    Assignee: Xicato, Inc.
    Inventors: Gerard Harbers, Peter K. Tseng, Christopher R. Reed
  • Patent number: 8384630
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 26, 2013
    Assignees: NthDegree Technologies Worldwide Inc, NASA, an agency of the United States
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 8384093
    Abstract: Provided is a semiconductor light emitting device. The semiconductor light emitting device includes: a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second conductive semiconductor layers; an insulation layer on the second conductive semiconductor layer and including a first hole therein; a second electrode on the second conductive semiconductor layer; and a first electrode on the insulation layer and including a connection portion electrically connected to the first conductive semiconductor layer. The second electrode includes a plurality of line patterns. The connection portion of the first electrode is disposed between the plurality of line patterns of the second electrode and is disposed in the first hole of the insulation layer.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 26, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jae Cheon Han
  • Patent number: 8378360
    Abstract: The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 19, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jun Seok Park
  • Patent number: 8378358
    Abstract: A light emitting device includes a carrier, a light emitting element electrically connected to the carrier, a transparent plate having at least one through hole formed therein and including a flat-portion and a lens-portion and a permeable membrane structure disposed on a surface of the transparent plate. The lens-portion covers the light emitting element and has a light incident surface, a light emitting surface, a first and a second side surfaces. A first partial beam of the light beam passes through the light incident surface and leaves from the light emitting surface. A second partial beam of the light beam passes through the light incident surface and is transmitted to the first or the second side surface. The first or the second side surface reflects at least a part of the second partial beam of the light beam to be passed through the light emitting surface.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 19, 2013
    Assignee: Everlight Electronics Co., Ltd.
    Inventors: Hsin-Chang Tsai, Chia-Hao Liang, Jen-Ta Chiang
  • Patent number: 8378359
    Abstract: Provided are a light emitting device and a method of fabricating the same. The light emitting device comprises a first conductive type substrate, first to fourth metal electrodes, and a light emitting diode. The first conductive type substrate comprises P-N junction first to fourth diodes. The first metal electrode is connected to the first diode and the fourth diode. The second metal electrode is connected to the third diode and the second diode. The third metal electrode is connected to the first diode and the third diode. The fourth metal electrode is connected to the second diode and the fourth diode. The light emitting diode is electrically connected to the third metal electrode and the fourth metal electrode.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 19, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jae Cheon Han
  • Patent number: 8378375
    Abstract: The present invention provides a light emitting apparatus comprising a three-color light emitting device unit including at least three light emitting diode (LED) chips for respectively emitting red, green and blue light; a white light emitting device unit including at least one blue LED chip with a fluorescent substance formed thereon; and a substrate provided with a first electrode connected in common to ends of the LED chips and second electrodes formed to correspond respectively to the LED chips.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: February 19, 2013
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventor: Jae Hong Lee
  • Publication number: 20130037826
    Abstract: A light emitting diode (LED) package module and the manufacturing method thereof are presented. A plurality of LEDs and a plurality of semiconductor elements are disposed on a silicon substrate, and then a plurality of lenses is formed above the positions of the plurality of the LEDs, and the plurality of the lenses is corresponding to the plurality of the LEDs. Then, a plurality of package units is defined on the silicon substrate, and each package unit has a semiconductor element and at least one LED. After that, the silicon substrate is cut to form a plurality of LED package modules, and each LED package module has at least one package unit.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 14, 2013
    Inventor: Wei-Jen Chou
  • Patent number: 8373177
    Abstract: An LED light source can include protection members to protect bonding wires. The LED can include a substrate including electrode patterns, a sub mount substrate located on the substrate, at least one flip LED chip mounted on the sub mount substrate and a phosphor rein covering the LED chip. The bonding wires can connect each of the electrode patterns to conductor patterns connecting to electrodes of the LED chip. The protection members can be located so as to surround both sides of the bonding wires. In addition, because each height of the protection members is higher than each maximum height of the bonding wires and is lower than a height of the phosphor resin, the protection members can protect the bonding wires from external pressure while the light flux is not reduced. Thus, the disclosed subject matter can provide a reliable LED light source having a favorable light distribution.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 12, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroshi Kotani, Takahiko Nozaki
  • Patent number: 8373180
    Abstract: A side-view type light emitting diode package for emitting light, emitted from a light emitting diode chip, toward a side surface is disclosed. The side-view type light emitting diode package comprises a package body having an opening portion for exposing the light emitting diode chip in a light emitting direction; and a light-transmittable resin covering the light emitting diode chip, wherein at least a portion of an inner wall of the opening portion is formed with a step projection for partitioning the opening portion into upper and lower sections, and the lower section of the opening portion below the step projection is filled with the light-transmittable resin. Accordingly, the light-transmittable resin with the convex lens shape may be easily formed, so that the light emission efficiency thereof can be improved.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 12, 2013
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Hwa Ja Kim, Nam Young Kim, Myung Hee Lee, Kyoung Bo Han, Tae Kwang Kim, Ji Seop So
  • Patent number: 8368110
    Abstract: A side view light emitting diode (LED) package structure includes a package housing, a side view LED chip and a thermal conductive member. The side view LED chip is enclosed by the package housing and an emitting direction of the side view LED chip is perpendicular to a thickness direction of a substrate. The thermal conductive member connected with the side view LED chip is disposed inside the package housing and a portion of which extends out of a dissipation opening of the package housing to be exposed so that heat of the side view LED chip is dissipated.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: February 5, 2013
    Assignee: Everlight Electronics Co., Ltd.
    Inventors: Yi-Tsuo Wu, Chung-Chuan Hsieh, Chia-Hsien Chang