Combined In Integrated Structure Patents (Class 257/84)
  • Patent number: 9721824
    Abstract: A bonding structure including a first substrate, a second substrate, and an adhesive layer is provided. The first substrate has a plurality of first trenches. The adhesive layer is located between the first substrate and the second substrate, and the first trenches are filled with the adhesive layer.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: August 1, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Kuan-Wei Chen, Pei-Jer Tzeng, Chien-Chou Chen, Po-Chih Chang
  • Patent number: 9671885
    Abstract: A high-accuracy flat touch display panel structure includes an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates, a thin film transistor and wiring layer, and a sensing electrode layer. The thin film transistor and wiring layer is disposed at one side of the lower substrate facing the liquid crystal layer, and includes a plurality of gate lines, a plurality of source lines, and a plurality of wirings. The sensing electrode layer is disposed at one side of the thin film transistor and wiring layer facing the liquid crystal layer, and has a plurality of sensing conductor lines. The plurality of sensing conductor lines are disposed corresponding to positions of the plurality of gate lines and the plurality of source lines.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: June 6, 2017
    Assignee: SuperC-Touch Corporation
    Inventor: Hsiang-Yu Lee
  • Patent number: 9559227
    Abstract: Provided are a nanostructure and an optical device including the nanostructure. The nanostructure is formed on a two-dimensional material layer such as graphene and includes nanopatterns having different shapes. The nanopattern may include a first nanopattern and a second nanopattern and may be spherical; cube-shaped; or poly-pyramid-shaped, including a triangular pyramid shape; or polygonal pillar-shaped.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: January 31, 2017
    Assignees: SAMSUNG ELECTRONICS CO., LTD., UNIST (Ulsan National Institute of Science and Technology)
    Inventors: Unjeong Kim, Younggeun Roh, Yeonsang Park, Changwon Lee, Soojin Park, Seungmin Yoo
  • Patent number: 9500823
    Abstract: An opto-electric integrated circuit includes an optical waveguide formed using a portion of an insulation layer on a silicon substrate to form a lower clad and using a portion of a semiconductor layer formed on the insulation layer to form a core. The opto-electric integrated circuit also includes an optical device connected to the optical waveguide, an electrical circuit connected to the optical device, a mesa-shaped connection section interconnecting the optical device and the electrical circuit, and an electrically conductive film formed in a region at least containing a flank surface of the connection section. The electrically conductive film is grounded while contacting the silicon substrate.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: November 22, 2016
    Assignees: NEC CORPORATION, FUJITSU LIMITED
    Inventors: Daisuke Okamoto, Yutaka Urino, Tatsuya Usuki
  • Patent number: 9466253
    Abstract: Provided is a liquid crystal display device that includes pixels and a pixel control unit. Each pixel individually includes: a display element; a first switching unit configured to sample subframe data; a first signal holding unit configured to form a static random access memory to store the subframe data; a second switching unit configured to output the subframe data stored; and a second signal holding unit configured to form a dynamic random access memory to apply output data to the pixel electrode. The pixel control unit performs, for individual subframes, operations of: after writing into all of the plurality of pixels by repeatedly writing the subframe data to the first signal holding unit for the individual pixels in units of rows; turning on the second switching units; and rewriting stored content in the second signal holding units with the subframe data stored in the first signal holding unit.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 11, 2016
    Assignee: JVC KENWOOD Corporation
    Inventor: Takayuki Iwasa
  • Patent number: 9461091
    Abstract: AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: October 4, 2016
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Yeo Jin Yoon, Jong Kyu Kim, Jun Hee Lee
  • Patent number: 9435822
    Abstract: The present invention relates to a sensor device. More particularly, the invention relates to a CMOS-based micro-optical-electromechanical-sensor (MOEMS) device with silicon light emitting devices, silicon waveguides and silicon detectors being fabricated using current Complementary Metal Oxide Semiconductor (CMOS) technology or Silicon on Insulator (SOI) technology. According to the invention there is provided a sensor comprising: a Silicon-based light emitting structure; an integrated electro-optical mechanical interface structure that is capable to sense mechanical deflections; an integrated electronic driving and processing circuitry so as to detect physical parameters such as vibration, motion, rotation, acceleration.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 6, 2016
    Assignee: Tshwane University of Technology
    Inventor: Lukas Willem Snyman
  • Patent number: 9412922
    Abstract: A wafer level light-emitting diode (LED) array includes: a growth substrate; a plurality of LEDs arranged over the substrate, each including a first semiconductor layer, an activation layer, and a second semiconductor layer; a plurality of upper electrodes formed from a common material and electrically connected to the first semiconductor layers of the corresponding LEDs; and first and second pads arranged over the upper electrodes. The LEDs are connected in series by the upper electrodes, the first pad is electrically connected to an input LED from among the LEDs connected in series, and the second pad is electrically connected to an output LED from among the LEDs connected in series. Accordingly, a flip chip-type LED array can be provided which can be driven with a high voltage.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: August 9, 2016
    Assignee: SEOUL VIOSYS CO., LTD.
    Inventors: Jong Min Jang, Jong Hyeon Chae, Joon Sup Lee, Daewoong Suh, Hyun A. Kim, Won Young Roh, Min Woo Kang
  • Patent number: 9413140
    Abstract: A semiconductor arrangement and a method of forming the same are described. A semiconductor arrangement includes a first layer including a first optical transceiver and a second layer including a second optical transceiver. A first serializer/deserializer (SerDes) is connected to the first optical transceiver and a second SerDes is connected to the second optical transceiver. The SerDes converts parallel data input into serial data output including a clock signal that the first transceiver transmits to the second transceiver. The semiconductor arrangement has a lower area penalty than traditional intra-layer communication arrangements that do not use optics for alignment, and mitigates alignment issues associated with conventional techniques.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: August 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hung-Chang Yu, Ying-Hao Kuo, Kai-Chun Lin, Yue-Der Chih
  • Patent number: 9312401
    Abstract: An imaging sensor system includes a single photon avalanche diode (SPAD) imaging array including N pixels formed in a first semiconductor layer of a first wafer. Substantially an entire thickness of the first semiconductor layer of each pixel is fully depleted such that a multiplication region included in each pixel near a front side is configured to be illuminated with photons through a back side and through the substantially entire thickness of the fully depleted first semiconductor layer. Deep n type isolation regions are disposed in the first semiconductor layer between the pixels to isolate the pixels. N digital counters are formed in a second semiconductor layer of a second wafer that is bonded to the first wafer. Each of the N digital counters is coupled to the SPAD imaging array and coupled to count output pulses generated by a respective one of the pixels.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventor: Eric A. G. Webster
  • Patent number: 9240426
    Abstract: A photoelectric conversion device in which a parasitic capacitance between an optical signal common output line for commonly transmitting an optical signal and a control signal line and a parasitic capacitance between an initial voltage common output line for commonly transmitting an initial voltage and the control signal line in a plurality of photoelectric conversion units are substantially equal is provided. The control signal line is arranged so that the length of the wiring part of the control signal line in parallel with the optical signal common output line and the length of the wiring part of the control signal line in parallel with the initial voltage common output line are substantially equal and the distance between the control signal line and the optical signal common output line and the distance between the control signal line and the initial voltage common output line are substantially equal.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 19, 2016
    Assignee: SEIKO INSTRUMENTS INC.
    Inventor: Masahiro Yokomichi
  • Patent number: 9155144
    Abstract: The invention relates to an operating circuit for illuminants, in particular one or more LED sections (17), comprising an actively clocked PFC circuit (11), which can be supplied by an AC voltage (UAC) and optionally also a DC voltage (UDC) and the output voltage of which is directly or indirectly supplied through the illuminant (17) to a unit (19) for generating a PWM-modulated current. The operating circuit also has a control unit (16) that detects a residual ripple in the voltage (UPFC) in the supply chain before (18a), in (18b) or after (18c) the PFC circuit (11) and causes the frequency of the PWM modulation of the current through the illuminant (17) to be selected as a function of the frequency of the residual ripple.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 6, 2015
    Assignee: TRIDONIC GMBH & CO KG
    Inventors: Andre Mitterbacher, Markus Mayrhofer
  • Patent number: 9148921
    Abstract: A system including first and second lamps, one of an inductor or a transformer, first and second switches, and a control module. The first lamp generates a first output of light having a first color. The second lamp generates a second output of light having a second color. The first and second outputs of light are mixed to provide a mixture of light having a third color. The transformer includes first and second coils. The first and second coils supply power respectively to the first and second lamps. The first and second switches are connected respectively to the first and second coils. The control module alters the third color by controlling (i) a state of the first switch to adjust a first amount of current supplied to the first lamp, and (ii) a state of the second switch to adjust a second amount of current supplied to the second lamp.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 29, 2015
    Assignee: Marvell Word Trade Ltd.
    Inventors: Wanfeng Zhang, Jinho Choi
  • Patent number: 9147815
    Abstract: A light emitting diode (LED) and a method for manufacturing the same is disclosed. The disclosed LED comprises a first substrate, an epitaxy layer, and a plurality of bumps. The first substrate is doped with YAG: Ce and is for converting a first light with a first range of wavelength to a second light with a second range of wavelength. The epitaxy layer is disposed on the first substrate and is for emitting the first light. The plurality of bumps are disposed on the epitaxy layer. With the first substrate doped with YAG: Ce, the disclosed LED does not need additional phosphor to convert the first light with the first range of wavelength to the second light with the second range of wavelength.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 29, 2015
    Assignee: LUXO-LED TAIWAN LIMITED
    Inventor: Percy Vanluchene
  • Patent number: 9136502
    Abstract: An organic light emitting diode display includes a substrate having organic light emitting diodes thereon. A thin film encapsulation layer is formed on the substrate such that the thin film encapsulation layer covers the organic light emitting diodes. A nonorganic layer is formed under the thin film encapsulation layer along the edge of the thin film encapsulation layer.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: September 15, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Ho Kwack, Dong-Won Han, Kyu-Sung Lee
  • Patent number: 9112123
    Abstract: [Problem] To provide a light-emitting device which does not undergo the deterioration in luminous efficiency associated with the long-term use. [Solution] A light-emitting device (1) comprises a light-emitting element (10) which can emit blue light and a phosphor (2) which is composed of a single kind of single crystal and can emit yellow light upon the irradiation with the light emitted from the light-emitting element (10) which serves as excitation light. Thus, it becomes possible to prevent the deterioration in luminous efficiency associated with the deterioration in a binder or the like compared with a light-emitting device which utilizes multiple kinds of granular phosphors, because any binder for binding phosphors to each other is not required in the light-emitting device (1).
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: August 18, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kazuo Aoki, Makoto Watanabe, Kiyoshi Shimamura, Villora Encarnacion Antonia Garcia
  • Patent number: 9082938
    Abstract: According to one embodiment, a light emitting device includes a base, a light emitting element, and a fluorescent body-containing layer. The light emitting element is installed on the base, has an upper surface and a lower surface, and includes a light emitting unit on the upper surface. The fluorescent body-containing layer is provided on the light emitting element and has a lower surface having an area smaller than an area of the light emitting unit and an upper surface having an area larger than an area of the light emitting unit.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: July 14, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayoshi Fujii, Haruhiko Okazaki, Toshihiro Kuroki, Toshitake Kitagawa
  • Patent number: 9068890
    Abstract: Disclosed herein is an optical molecular sensor, as well as methods and uses for such sensors in optical and medical devices. The sensor is based on traditionally inactive, limited or a combination thereof, materials that are regarded as such within surface-enhanced Raman spectroscopy (SERS). The disclosed invention essentially includes the said material or materials as the substrate, micro-pattern features developed from the substrate, and a three-dimensional (3D) architecture of nanoparticle fibers that generally surround and envelop the micro-pattern features. The nanoparticle fibers are specifically designed to have a desirable 3D network depth and porosity, as well as nanoparticle average diameter, standard deviation, and nanoparticle separation (i.e. nanogap), as well as nanoparticle crystal phase composition, stoichiometry, and crystallinity.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: June 30, 2015
    Inventors: Dmitry Maznichenko, Krishnan Venkatakrishnan, Bo Tan
  • Patent number: 9041295
    Abstract: A retrofit light emitting diode (LED) module may include a carrier with at least one LED, a retrofit connection for mechanical and electrical contact-connection to conventional lamp holders, and an electronic system for driving the at least one LED. At least one part of the electronic system is integrated into the carrier, and the electronic system comprises a sensor system. A retrofit LED module system may include at least two retrofit LED modules and at least one control unit which regulates the retrofit LED modules in an adaptive and synchronized manner.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 26, 2015
    Assignee: Tridonic Jennersdorf GmbH
    Inventors: Paul Hartmann, Hans Hoschopf, Stefan Gianordoli, Stefan Tasch
  • Patent number: 9041869
    Abstract: A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 26, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Duk-Sung Kim, Dong-Yoon Kim, Ju-Yong Park, Jae-Jin Pyun
  • Patent number: 9035327
    Abstract: A multi-chip light emitting device (LED) uses a low-cost carrier structure that facilitates the use of substrates that are optimized to support the devices that require a substrate. Depending upon the type of LED elements used, some of the LED elements may be mounted on the carrier structure, rather than on the more expensive ceramic substrate. In like manner, other devices, such as sensors and control elements, may be mounted on the carrier structure as well. Because the carrier and substrate structures are formed independent of the encapsulation and other after-formation processes, these structures can be tested prior to encapsulation, thereby avoiding the cost of these processes being applied to inoperative structures.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 19, 2015
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventor: Serge J. Bierhuizen
  • Patent number: 9035326
    Abstract: Disclosed is a light emitting module capable of representing improved heat radiation and improved light collection. there is provided a light emitting module. The light emitting module includes a metallic circuit board formed therein with a cavity, and a light emitting device package including a nitride insulating substrate attached in the cavity of the metallic circuit board, at least one pad part on the nitride insulating substrate, and at least one light emitting device attached on the pad part.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 19, 2015
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Yun Min Cho
  • Publication number: 20150129898
    Abstract: Methods for packaging a functional chip, methods for annealing a functional chip, and chip assemblies. A functional chip and an annealing chip are located inside a package. The functional chip includes an integrated circuit. The annealing chip includes an annealing element source comprised of an annealing element or a light source configured to emit electromagnetic radiation. The integrated circuit of the functional chip receives the annealing element, electromagnetic radiation, or both from the annealing chip in order to perform an annealing procedure that extends the useful lifetime of the packaged integrated circuit.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Applicant: International Business Machines Corporation
    Inventors: Terence B. Hook, Melanie J. Sherony, Christopher M. Schnabel
  • Patent number: 9024341
    Abstract: Two or more molded ellipsoid lenses are formed on a packaged LED die by injecting a glue material into a mold over the LED die and curing the glue material. After curing, the refractive index of the lens in contact with the LED die is greater than the refractive index of the lens not directly contacting the LED die. At least one phosphor material is incorporated into the glue material for at least one of the lenses not directly contacting the LED die. The lens directly contacting the LED die may also include one or more phosphor material. A high refractive index coating may be applied between the LED die and the lens.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Wen Lee, Shang-Yu Tsai, Tien-Ming Lin, Chyi Shyuan Chern, Hsin-Hsien Wu, Fu-Wen Liu, Huai-En Lai, Yu-Sheng Tang
  • Publication number: 20150108508
    Abstract: A display panel comprising a substrate, a meshed shielding pattern, a plurality of light-emitting devices and a solar cell is provided. The substrate has a first surface and a second surface opposite to the first surface, the substrate comprises a first circuit layer disposed over the first surface and a second circuit layer disposed over the second surface. The meshed shielding pattern is disposed on first surface of the substrate to define a plurality of pixel regions over the substrate. The light-emitting devices are disposed on the first surface of the substrate and electrically connected to the first circuit layer, and at least one of the light-emitting devices is disposed in one of the pixel regions. The solar cell is disposed on the second surface of the substrate and electrically connected to the second circuit layer.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventors: Ming-Hsien Wu, Chia-Hsin Chao, Yen-Hsiang Fang, Yi-Chen Lin, Ying-Chien Chu, Mu-Tao Chu
  • Publication number: 20150108507
    Abstract: A backside illuminated image sensor includes a semiconductor layer having a back-side surface and a front-side surface. The semiconductor layer includes a pixel array region including a plurality of photodiodes configured to receive image light through the back-side surface of the semiconductor layer. The semiconductor layer also includes a peripheral circuit region including peripheral circuit elements for operating the plurality of photodiodes that borders the pixel array region. The peripheral circuit elements emit photons. The peripheral circuit region also includes a doped semiconductor region positioned to absorb the photons emitted by the peripheral circuit elements to prevent the plurality of photodiodes from receiving the photons.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: OmniVision Technologies, Inc.
    Inventors: Qingfei Chen, Qingwei Shan, Yin Qian, Dyson H. Tai
  • Patent number: 9012950
    Abstract: A light emitting device package includes: a package main body having a chip mounting region surrounded by side walls; lead frames spaced apart from one another, at least one portion thereof being positioned in the chip mounting region; a light emitting device mounted on the chip mounting region; a wire connecting the lead frame and the light emitting device; a lens disposed on the light emitting device; and a lens support unit formed to be higher than the wire in the chip mounting region and supporting the lens such that the lens does not come into contact with the wire.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sun Choi
  • Patent number: 9000452
    Abstract: A display is provided. The display includes a light emitting element, a filter layer and a photosensor. The filter layer is disposed on a side of the light emitting element. The filter layer includes a black filter. The photosensor is disposed corresponding with the black filter. The photosensor is used for detecting an invisible light from the black filter.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: April 7, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Chen-Pang Kung, Wen-Jen Chiang
  • Publication number: 20150076527
    Abstract: Objects are to provide a small imaging device that can take an image of a thick book without distortion of an image of a gutter and to improve the portability of an imaging device by downsizing the imaging device. The imaging device has imaging planes on both surfaces. All elements included in the imaging device are preferably provided over one substrate. In other words, the imaging device has a first imaging plane and a second imaging plane facing opposite to the first imaging plane.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 19, 2015
    Inventor: Yoshiyuki KUROKAWA
  • Publication number: 20150069424
    Abstract: A semiconductor component includes an auxiliary semiconductor device configured to emit radiation. The semiconductor component further includes a semiconductor device. An electrical coupling and an optical coupling between the auxiliary semiconductor device and the semiconductor device are configured to trigger emission of radiation by the auxiliary semiconductor device and to trigger avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device. The semiconductor device includes a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Inventors: Joost Willemen, Michael Mayerhofer, Ulrich Glaser, Yiqun Cao, Andreas Meiser, Magnus-Maria Hell, Matthias Stecher, Julien Lebon
  • Patent number: 8969885
    Abstract: Disclosed herein is a light emitting device module comprising: a heat transfer member having a cavity; first conductive layer and second conductive layer contacting the heat transfer member via an insulating layer, the first conductive layer and the second conductive layer being electrically isolated from each other in accordance with exposure of the insulating layer or exposure of the heat transfer member; and at least one light emitting diode electrically connected to the first conductive layer and second conductive layer, the at least one light emitting device is thermally contacted to an exposed portion of the heat transfer member, wherein the heat transfer member has an exposed portion disposed within the cavity between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 3, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Gun Kyo Lee, Nam Seok Oh, Young Hun Ryu
  • Patent number: 8946731
    Abstract: Spalling is employed to generate a single crystalline semiconductor layer. Complementary metal oxide semiconductor (CMOS) logic and memory devices are formed on a single crystalline semiconductor substrate prior to spalling. Organic light emitting diode (OLED) driving circuitry, solar cells, sensors, batteries and the like can be formed prior to, or after, spalling. The spalled single crystalline semiconductor layer can be transferred to a substrate. OLED displays can be formed into the spalled single crystalline semiconductor layer to achieve a structure including an OLED display with semiconductor driving circuitry and other functions integrated on the single crystalline semiconductor layer.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ning Li, Devendra K. Sadana
  • Patent number: 8946732
    Abstract: A touch panel and fabricating method thereof are provided. The patterned transparent conductive layer, disposed on the substrate, includes first electrodes. The photo-sensing layers are disposed on the first electrodes. The first patterned conductive layer includes gate electrodes, scan lines and second electrodes. The gate electrodes and the scan lines are disposed on the substrate. The second electrodes are disposed on the photo-sensing layers. The first electrodes, the photo-sensing layers and the second electrodes constitute photo-sensors. The second patterned conductive layer includes source electrodes and drain electrodes, wherein the gate electrodes, the channel layers, the source electrodes and the drain electrodes constitute read-out transistors and each of the read-out transistors is electrically connected to the corresponding photo-sensor respectively.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Au Optronics Corporation
    Inventors: Chi-Wen Fan, Tien-Hao Chang, Zao-Shi Zheng, Chun Chang, Wei-Peng Weng, An-Thung Cho, Jiun-Jye Chang
  • Patent number: 8940563
    Abstract: A method for manufacturing an optoelectronic module is proposed. The method comprises the following steps: providing a top cover with a reflective surface. Then, a light-guiding structure is formed. A mounting device is provided. Next, an optoelectronic device is formed on the mounting device with a first precision. A control chip is formed on the mounting device with a second precision different from the first precision. The top cover combines with the mounting device, wherein the light-guiding structure is between the top cover and the mounting device, and the optoelectronic device faces the reflective surface.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Centera Photonics Inc.
    Inventors: Shang-Jen Yu, Chien-Chen Hsieh, Chun Chiang Yen
  • Patent number: 8941126
    Abstract: A semiconductor electricity converter is provided. The semiconductor electricity converter includes: an AC input module, for converting an input AC electric energy into a light energy, the AC input module including a plurality of semiconductor electricity-to-light conversion structures, each semiconductor electricity-to-light conversion structure including an electricity-to-light conversion layer; and an AC output module, for converting the light energy into an output AC electric energy, the AC output module including a plurality of semiconductor light-to-electricity conversion structures, each semiconductor light-to-electricity conversion structure including a light-to-electricity conversion layer; in which an emitting spectrum of each semiconductor electricity-to-light conversion structure and an absorption spectrum of each semiconductor light-to-electricity conversion structure are matched with each other.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 27, 2015
    Inventor: Lei Guo
  • Patent number: 8941129
    Abstract: An LAM/ICM assembly comprises an integrated control module (ICM) and an LED array member (LAM). The ICM includes interconnect through which power from outside the assembly is received. In a first novel aspect, active circuitry is embedded in the ICM. In one example, the circuitry monitors LED operation, controls and supplies power to the LEDs, and communicates information into and out of the assembly. In a second novel aspect, a lighting system comprises an AC-to-DC converter and a LAM/ICM assembly. The AC-to-DC converter outputs a substantially constant current or voltage. The magnitude of the current or voltage is adjusted by a signal output from the LAM/ICM. In a third novel aspect, the ICM includes a switching DC-to-DC converter. An AC-to-DC power supply supplies a roughly regulated supply voltage. The switching converter within the LAM/ICM receives the roughly regulated voltage and supplies a regulated LED drive current to its LEDs.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 27, 2015
    Assignee: Bridgelux, Inc.
    Inventors: Michael Neal Gershowitz, R. Scott West, Babak Imangholi
  • Publication number: 20150018611
    Abstract: A microelectronics chip contains an integrated CMOS imaging sensor integrated with a LED die. Circuitry is established on the chip for a shared power arrangement.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 15, 2015
    Inventors: Junzhao Lei, Guannho G. Tsau
  • Patent number: 8933467
    Abstract: A light emitting diode (LED) system includes a substrate, an application specific integrated circuit (ASIC), and at least one light emitting diode (LED) that includes a Group-III nitride based material such as GaN, InGaN, AlGaN, AlInGaN or other (Ga, In or Al) N-based materials. The light emitting diode (LED) system can also include a polymer lens, and a phosphor layer on the lens or light emitting diode (LED) for producing white light. In addition, multiple light emitting diodes (LEDs) can be mounted on the substrate, and can have different colors for smart color control lighting. The substrate and the application specific integrated circuit (ASIC) are configured to provide an integrated LED circuit having smart functionality. In addition, the substrate is configured to compliment and expand the functions of the application specific integrated circuit (ASIC), and can also include built in integrated circuits for performing additional electrical functions.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 13, 2015
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Tien Wei Tan, Wen-Huang Liu, Chen-Fu Chu, Yung Wei Chen
  • Patent number: 8928837
    Abstract: A circuit substrate including a base layer and a plurality of lead units arranged as an array is provided, wherein the base layer has a plurality of through grooves, and the lead units are disposed on the base layer. Each of the lead units includes a common terminal and at least three leads. The common terminal is capable of being divided into a plurality of electrodes connected with each other. The leads are extended outwards from the edge of the common terminal, and each of the leads is extended outwards from the edge of one of the electrodes. The through grooves expose the common terminals of the lead units.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: January 6, 2015
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Wen-Chieh Tsou
  • Patent number: 8900897
    Abstract: Devices are described including a component comprising an alloy of AlN and AlSb. The component has an index of refraction substantially the same as that of a semiconductor in the optoelectronic device, and has high transparency at wavelengths of light used in the optoelectronic device. The component is in contact with the semiconductor in the optoelectronic device. The alloy comprises between 0% and 100% AlN by weight and between 0% and 100% AlSb by weight. The semiconductor can be a III-V semiconductor such as GaAs or AlGaInP. The component can be used as a transparent insulator. The alloy can also be doped to form either a p-type conductor or an n-type conductor, and the component can be used as a transparent conductor. Methods of making and devices utilizing the alloy are also disclosed.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Philip Kraus, Thai Cheng Chua, Yoga Saripalli
  • Publication number: 20140346532
    Abstract: Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
    Type: Application
    Filed: October 24, 2013
    Publication date: November 27, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Gyungock KIM, Hyundai PARK, In Gyoo KIM, Sang Hoon KIM, Ki Seok JANG, Sang Gi KIM, Jiho JOO, Yongseok CHOI, Hyuk Je KWON, Jaegyu PARK, Sun Ae KIM, Jin Hyuk OH, Myung Joon KWACK
  • Patent number: 8895996
    Abstract: A light-emitting device and a lighting device each including a light-emitting element which can recover from a short circuit between a pair of electrodes by itself without adversely affecting the characteristics of the element is provided. An oxide layer is provided so as to be in contact with an electrode of the light-emitting element, whereby, due to heat generated when a short circuit is caused between a pair of electrodes, oxygen in the oxide layer and an electrode material in a short-circuited part are reacted with each other and the electrode material in the short-circuited part can be an insulator. Further, by providing an oxide layer in contact with an electron-injection layer containing an alkaline earth metal, an oxide of the alkaline earth metal can be formed, whereby moisture that enters the insulator formed by an insulation phenomenon in the short-circuited part can be adsorbed and removed.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo
  • Patent number: 8895955
    Abstract: Provided may be a display apparatus that uses oxide diodes having a nano rod structure, for example, nano-rod diodes formed of a ZnO group material. The display apparatus may include a substrate, a thin film transistor layer on the substrate, and a light emitting layer on the thin film transistor layer, wherein the light emitting layer may include a plug metal layer on the thin film transistor layer, a plurality of nano-rod diodes vertically formed on the plug metal layer, and a transparent electrode on the nano-rod diodes.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoungkook Kim, Youngsoo Park, Jaechul Park
  • Publication number: 20140340363
    Abstract: A novel transmissive imaging panel, a novel imaging panel with a display function, or a novel imaging device is provided. The imaging panel that includes a plurality of windows or pixels arranged in matrix, a photoelectric conversion element extending between the plurality of windows or pixels, and a sensor circuit supplied with a signal from the photoelectric conversion element has been devised.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 20, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takayuki IKEDA, Seiko INOUE, Hiroyuki MIYAKE, Kouhei TOYOTAKA, Takashi NAKAGAWA
  • Patent number: 8890149
    Abstract: There is provided an electric device which can prevent a deterioration in a frequency characteristic due to a large electric power external switch connected to an opposite electrode and can prevent a decrease in the number of gradations. The electric device includes a plurality of source signal lines, a plurality of gate signal lines, a plurality of power source supply lines, a plurality of power source control lines, and a plurality of pixels. Each of the plurality of pixels includes a switching TFT, an EL driving TFT, a power source controlling TFT, and an EL element, and the power source controlling TFT controls a potential difference between a cathode and an anode of the EL element.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 8884321
    Abstract: A light emitting device according to the embodiment includes a first conductive semiconductor layer; an active layer over the first conductive semiconductor layer; a second conductive semiconductor layer over the active layer; a bonding layer over the second conductive semiconductor layer; a schottky diode layer over the bonding layer; an insulating layer for partially exposing the bonding layer, the schottky diode layer, and the first conductive semiconductor layer; a first electrode layer electrically connected to both of the first conductive semiconductor layer and the schottky diode layer; and a second electrode layer electrically connected to the bonding layer.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 11, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: June O. Song
  • Patent number: 8879023
    Abstract: A circuit substrate including a base layer and a plurality of lead units arranged as an array is provided, wherein the base layer has a plurality of through grooves, and the lead units are disposed on the base layer. Each of the lead units includes a common terminal and at least three leads. The common terminal is capable of being divided into a plurality of electrodes connected with each other. The leads are extended outwards from the edge of the common terminal, and each of the leads is extended outwards from the edge of one of the electrodes. The through grooves expose the common terminals of the lead units.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: November 4, 2014
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Wen-Chieh Tsou
  • Patent number: 8878185
    Abstract: In order to improve the transmissivity of each pixel and the brightness of a high-definition screen, a TFT and a projection are disposed in each pixel, a source electrode of the TFT extends so as to cover the projection, an inorganic passivation film is formed over the TFT and the projection, an organic passivation film is formed on the inorganic passivation film on the TFT, an opposed electrode is formed on the organic passivation film, an upper insulation film is formed over the opposed electrode, a pixel electrode is formed on the upper insulation film, and the pixel electrode is connected to the source electrode through a connection hole formed in the inorganic passivation film and the upper insulation film on the projection. Accordingly, the diameter of a through-hole can be made smaller.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 4, 2014
    Assignee: Japan Display Inc.
    Inventors: Toshimasa Ishigaki, Fumio Takahashi, Hideki Kuriyama
  • Patent number: 8877532
    Abstract: A method of manufacturing an organic electroluminescence display device includes an organic compound layer which is placed between a pair of electrodes and includes at least an emission layer, the organic compound layer being two-dimensionally arranged, includes forming the organic compound layer which is insoluble in water in an entire emission region on a substrate, providing a mask layer containing a water-soluble material in at least a part of a region on the organic compound layer, removing a part of the organic compound layer which is provided in a region which is other than the region in which the mask layer is provided, removing the mask layer, and forming, after the removing of the mask layer, a layer containing at least an alkali metal or an alkaline-earth metal in a region including at least the emission region.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoyuki Hiroki, Taro Endo, Itaru Takaya, Koichi Ishige, Nobuhiko Sato
  • Patent number: 8877652
    Abstract: A substrate structure and method of manufacturing the same are disclosed. The substrate structure may includes a substrate on which a plurality of protrusions are formed on one surface thereof and a plurality of buffer layers formed according to a predetermined pattern and formed spaced apart from each other on the plurality of protrusions.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youn Kim, Su-hee Chae, Hyun-gi Hong, Young-jo Tak