Combined In Integrated Structure Patents (Class 257/84)
  • Patent number: 8669569
    Abstract: A method for fabricating light emitting diode packages includes: providing a light emitting diode wafer which has a plurality of light emitting diode chips, each of the light emitting diode chips including a semiconductor unit that has p-type and n-type electrode regions, and two electrodes; forming a light-transmissive insulating layer on the light emitting diode chips; forming a reflective metal layer on a portion of the light-transmissive insulating layer; forming a layer of insulating material on the light-transmissive insulating layer and the reflective metal layer, and performing exposing and developing treatments to form the layer of insulating material into a plurality of protective insulating structures; forming a conductor-receiving insulating layer on the light-transmissive insulating layer and the protective insulating structures; and performing a cutting process to obtain a plurality of light emitting diode packages each having at least one of the light emitting diode chips.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: March 11, 2014
    Inventors: Yu-Nung Shen, Tsung-Chi Wang
  • Publication number: 20140061679
    Abstract: A semiconductor electricity converter is provided. The semiconductor electricity converter includes: an AC input module, for converting an input AC electric energy into a light energy, the AC input module including a plurality of semiconductor electricity-to-light conversion structures, each semiconductor electricity-to-light conversion structure including an electricity-to-light conversion layer; and an AC output module, for converting the light energy into an output AC electric energy, the AC output module including a plurality of semiconductor light-to-electricity conversion structures, each semiconductor light-to-electricity conversion structure including a light-to-electricity conversion layer; in which an emitting spectrum of each semiconductor electricity-to-light conversion structure and an absorption spectrum of each semiconductor light-to-electricity conversion structure are matched with each other.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 6, 2014
    Inventor: Lei Guo
  • Publication number: 20140054615
    Abstract: A semiconductor electricity conversion structure is provided. The semiconductor electricity conversion structure includes: a substrate; and at least one semiconductor electricity conversion structure formed on the substrate, the at least one semiconductor electricity conversion structure including: at least one semiconductor electricity-to-light conversion unit for converting an input electric energy into a light energy, and at least one semiconductor light-to-electricity conversion unit for converting the light energy back into an output electric energy, in which a number of the semiconductor electricity-to-light conversion unit is in proportion to a number of the semiconductor light-to-electricity conversion unit to realize an electricity conversion, and an emitting spectrum of the semiconductor electricity-to-light conversion unit and an absorption spectrum of the semiconductor light-to-electricity conversion unit are matched with each other.
    Type: Application
    Filed: November 9, 2012
    Publication date: February 27, 2014
    Inventor: Lei Guo
  • Publication number: 20140048680
    Abstract: An optoelectronic component includes a carrier on which at least one first light-emitting semiconductor chip and one first light-absorbing semiconductor chip connected antiparallel to the at least one first light-emitting semiconductor chip, at least one second light-emitting semiconductor chip and one second light-absorbing semiconductor chip connected antiparallel to the at least one second light-emitting semiconductor chip, wherein the semiconductor chips are arranged on the carrier such that light from each light-emitting semiconductor chip falls on at least one of the light-absorbing semiconductor chips not connected to the respective light-emitting semiconductor chip, and the light-absorbing semiconductor chips are formed as protection diodes.
    Type: Application
    Filed: March 19, 2012
    Publication date: February 20, 2014
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Markus Wicke
  • Patent number: 8653547
    Abstract: Provided are a light emitting device and a light emitting device package. The light emitting device includes a first electrode, a light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer on the first electrode, a second electrode on the light emitting structure, and a reflective member on at least lateral surface of the second electrode.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 18, 2014
    Assignee: LG Innotek Co., Ltd
    Inventors: Hwan Hee Jeong, Sang Youl Lee, June O Song, Kwang Ki Choi
  • Patent number: 8653522
    Abstract: There is provided an electric device which can prevent a deterioration in a frequency characteristic due to a large electric power external switch connected to an opposite electrode and can prevent a decrease in the number of gradations. The electric device includes a plurality of source signal lines, a plurality of gate signal lines, a plurality of power source supply lines, a plurality of power source control lines, and a plurality of pixels. Each of the plurality of pixels includes a switching TFT, an EL driving TFT, a power source controlling TFT, and an EL element, and the power source controlling TFT controls a potential difference between a cathode and an anode of the EL element.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 8643059
    Abstract: A substrate structure and method of manufacturing the same are disclosed. The substrate structure may includes a substrate on which a plurality of protrusions are formed on one surface thereof and a plurality of buffer layers formed according to a predetermined pattern and formed spaced apart from each other on the plurality of protrusions.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youn Kim, Su-hee Chae, Hyun-gi Hong, Young-jo Tak
  • Patent number: 8637875
    Abstract: Apparatuses and systems for photon detection can include a first optical sensing structure structured to absorb light at a first optical wavelength; and a second optical sensing structure engaged with the first optical sensing structure to allow optical communication between the first and the second optical sensing structures. The second optical sensing structure can be structured to absorb light at a second optical wavelength longer than the first optical wavelength and to emit light at the first optical wavelength which is absorbed by the first optical sensing structure. Apparatuses and systems can include a bandgap grading region.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 28, 2014
    Assignee: The Regents of the University of California
    Inventors: Hod Finkelstein, Sadik C. Esener, Yu-Hwa Lo, Kai Zhao, James Cheng, Sifang You
  • Patent number: 8629461
    Abstract: A light emitting device includes: a light emitting unit and a light receiving unit which are provided on a same substrate, wherein the light emitting unit includes an active layer sandwiched between a first clad layer and a second clad layer, a first electrode electrically connected to the first clad layer, and a second electrode electrically connected to the second clad layer.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: January 14, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Yasutaka Imai
  • Patent number: 8624269
    Abstract: A radiation-emitting thin film semiconductor chip is herein described which comprises a first region with a first active zone, a second region, separated laterally from the first region by a space, with a second active zone which extends parallel to the first active zone in a different plane, and a compensating layer, which is located in the second region at the level of the first active zone, the compensating layer not containing any semiconductor material.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 7, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Ralph Wirth
  • Patent number: 8624108
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut K. Dutta
  • Publication number: 20140001494
    Abstract: A light emitting diode includes a first illumination region, a second illumination region, and the third illumination, wherein a first fluorescent conversion layer and a second fluorescent conversion layer cover the first illumination region and the second illumination region, respectively. The fluorescent conversion layers can convert lights from the illumination regions to other lights with different wavelengths whereby the light emitting diode generates light with multiple wavelengths.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: CHIA-HUI SHEN, TZU-CHIEN HUNG, JIAN-SHIHN TSANG
  • Publication number: 20140001493
    Abstract: An integrated electronic device, delimited by a first surface and by a second surface and including: a body made of semiconductor material, formed inside which is at least one optoelectronic component chosen between a detector and an emitter; and an optical path which is at least in part of a guided type and extends between the first surface and the second surface, the optical path traversing the body. The optoelectronic component is optically coupled, through the optical path, to a first portion of free space and a second portion of free space, which are arranged, respectively, above and underneath the first and second surfaces.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 2, 2014
    Inventors: Alberto Pagani, Alessandro Motta, Sara Loi
  • Publication number: 20130341651
    Abstract: A sensor substrate includes a base substrate, a black matrix pattern, a sensing electrode pattern, a driving electrode pattern, and at least one bridge line. The black matrix pattern is disposed on the base substrate and divides the base substrate into a light transmission area and a light blocking area. The sensing electrode pattern includes a plurality of first unit patterns arranged in association with a first direction. The driving electrode pattern includes a plurality of second unit patterns arranged in association with a second direction and disposed adjacent to the plurality of first unit patterns. The at least one bridge line is connected between at least two of the plurality of first unit patterns or between at least two of the plurality of second unit patterns.
    Type: Application
    Filed: December 5, 2012
    Publication date: December 26, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: In-Cheol KIM, Ji-Hong PARK, Hyun-Ju LEE, Il-Ho LEE, Moon-Sung CHOI, Seong-Mo HWANG, Ki-Hyuk KIM, Seung-Ho NAM
  • Publication number: 20130341610
    Abstract: Provided is a transparent organic light emitting diode (OLED) lighting device in which opaque metal reflectors are formed to adjust light emitting directions. The transparent OLED lighting device includes a transparent substrate, a transparent anode formed on a predetermined region of the transparent substrate, a reflective anode formed adjacent to the transparent anode on another region of the transparent substrate, an organic layer formed on the transparent and reflective anodes, and a transparent cathode and an encapsulation substrate sequentially stacked on the organic layer. Directions of light emitted from the organic layer vary depending on the current applied to the transparent and reflective anodes.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Inventors: Hye Yong CHU, Jeong Ik Lee, Jong Hee Lee, Kyoung Ik Cho
  • Patent number: 8610134
    Abstract: A light emitting diode (LED) package may include a base, at least one light emitting die on the base, and a flextape on the base. The flextape includes at least one metal trace connected to the light emitting die. In a method of manufacturing the LED package, the base may be formed so as to include a basin and at least one light emitting die may be placed within the basin. The flextape may be provided to include at least one metal trace that is electrically connected to the light emitting die.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: December 17, 2013
    Assignee: Cree, Inc.
    Inventor: Peter Andrews
  • Publication number: 20130328067
    Abstract: An LED module includes a silicone substrate, an LED grain mounted on a face of the silicone substrate, a temperature sensor formed under the LED grain, a luminous sensor formed close to the LED grain and an encapsulation gel enclosing the LED grain, wherein the LED grain, the luminous sensor and the temperature sensor are electrically connected to electrodes for connection to foreign devices.
    Type: Application
    Filed: September 20, 2012
    Publication date: December 12, 2013
    Applicant: Feng Chia University
    Inventors: Ching-fu TSOU, Cheng-Han Huang, Kuo-Chun Tseng, Sheng-Wei Chang
  • Patent number: 8592821
    Abstract: It is an object of the present invention to provide an organic transistor having a low drive voltage. It is also another object of the present invention to provide an organic transistor, in which light emission can be obtained, which can be manufactured simply and easily. According to an organic light-emitting transistor, a composite layer containing an organic compound having a hole-transporting property and a metal oxide is used as part of the electrode that injects holes among source and drain electrodes, and a composite layer containing an organic compound having an electron-transporting property and an alkaline metal or an alkaline earth metal is used as part of the electrode that injects electrons, where either composite layer has a structure of being in contact with an organic semiconductor layer.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: November 26, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinobu Furukawa, Ryota Imahayashi
  • Patent number: 8586991
    Abstract: Solved is a problem of attenuation of output amplitude due to a threshold value of a TFT when manufacturing a circuit with TFTs of a single polarity. In a capacitor (105), a charge equivalent to a threshold value of a TFT (104) is stored. When a signal is inputted thereto, the threshold value stored in the capacitor (105) is added to a potential of the input signal. The thus obtained potential is applied to a gate electrode of a TFT (101). Therefore, it is possible to obtain the output having a normal amplitude from an output terminal (Out) without causing the amplitude attenuation in the TFT (101).
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: November 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 8575640
    Abstract: A polarized white light emitting diode provides a polarized white light to decrease glare, and increase the extinction ratio. A LED chip is disposed in a cavity between a reflection substrate and a metallic wire-grid polarizing layer, and emits a first color light. The metallic wire-grid polarizing layer is disposed under and in contact with a transparent substrate. A phosphor layer covers over the LED chip, and is disposed in the cavity with an air gap between the phosphor layer and the metallic wire-grid polarizing layer. A second color light is generated by the first color light. The metallic wire-grid polarizing layer multiply reflects a portion of first color light in plural directions in the cavity to produce secondary excitations. The polarized white light transmits through the metallic wire-grid polarizing layer by mixing a portion of first color light with the second color light excited by the first color light.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 5, 2013
    Assignee: National Taiwan University of Science and Technology
    Inventor: Jung-Chieh Su
  • Patent number: 8575626
    Abstract: A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 5, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hideki Watanabe, Takao Miyajima, Masao Ikeda, Hiroyuki Yokoyama, Tomoyuki Oki, Masaru Kuramoto
  • Patent number: 8575627
    Abstract: A semiconductor light emitting element of the present invention includes a support substrate, a semiconductor film including a light emitting layer, a surface electrode provided on the surface on a light-extraction-surface side of the semiconductor film, and a light reflecting layer. The surface electrode includes first electrode pieces that form ohmic contact with the semiconductor film and a second electrode piece electrically connected to the first electrode pieces. The light reflecting layer includes a reflecting electrode, and the reflecting electrode includes third electrode pieces that form ohmic contact with the semiconductor film and a fourth electrode piece electrically connected to the third electrode pieces and placed opposite to the second electrode piece. Both the second electrode piece and the fourth electrode piece form Schottky contact with the semiconductor film so as to form barriers to prevent forward current in the semiconductor film.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: November 5, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Takuya Kazama
  • Patent number: 8575471
    Abstract: Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a?) that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: November 5, 2013
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Andrew G. Norman, Aaron J. Ptak, William E. McMahon
  • Patent number: 8569778
    Abstract: A Plastic Leaded Chip Carrier (PLCC) package is disclosed. The PLCC package enables a narrow viewing angle without requiring a second lens. In particular, the PLCC package is provided with a reflector cup having multiple stages where the geometry or some other characteristic of one stage is different from the geometry or some other characteristic of another stage.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 29, 2013
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Eng Chuan Ong, Meng Ee Lee, Chiau Jin Lee
  • Patent number: 8569775
    Abstract: An LED array having N light-emitting diode units (N?3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: October 29, 2013
    Assignee: Epistar Corporation
    Inventors: Li-Ping Jou, Yu-Chen Yang, Jui-Hung Yeh
  • Patent number: 8563991
    Abstract: An optical semiconductor device has a semiconductor substrate, an optical semiconductor region and a heater. The optical semiconductor region is provided on the semiconductor substrate and has a width smaller than that of the semiconductor substrate. The heater is provided on the optical semiconductor region. The optical semiconductor region has a cladding region, an optical waveguide layer and a low thermal conductivity layer. The optical waveguide layer is provided in the cladding region and has a refractive index higher than that of the cladding region. The low thermal conductivity layer is provided between the optical waveguide layer and the semiconductor substrate and has a thermal conductivity lower than that of the cladding region.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 22, 2013
    Assignee: Eudyna Devices Inc.
    Inventor: Tsutomu Ishikawa
  • Patent number: 8564202
    Abstract: A LED package includes a LED die, and a memory device. The memory device is arranged for holding LED data information for driving the LED die. A LED driver arrangement includes a LED package as described above, a LED driver device and a microcontroller. The microcontroller is connected to the memory device for accessing the LED data information for driving the LED die and to the LED driver for sending an output flux settings signal. The LED driver device is connected to the LED die for providing a driving signal to the LED die, the driving signal being based on the output flux in package settings signal from the microcontroller.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 22, 2013
    Assignee: NXP B.V.
    Inventors: Gilles Ferru, Jacques Le Berre
  • Patent number: 8558234
    Abstract: Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 15, 2013
    Assignee: California Institute of Technology
    Inventors: Shouleh Nikzad, Chris Martin, Michael E. Hoenk
  • Patent number: 8552447
    Abstract: A semiconductor light-emitting element includes a semiconductor laminated structure including a light-emitting layer sandwiched between first and second conductivity type layers for extracting an emitted light from the light-emitting layer on a side of the second conductivity type layer, a transparent electrode in ohmic contact with the second conductivity type layer, an insulation layer formed on the transparent electrode, an upper electrode for wire bonding formed on the insulation layer, a lower electrode that penetrates the insulation layer, is in ohmic contact with the transparent electrode and the electrode for wire bonding, and has an area smaller than that of the upper electrode in top view, and a reflective portion for reflecting at least a portion of light transmitted through a region of the transparent electrode not in contact with the lower electrode.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 8, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Kosuke Yahata, Takashi Mizobuchi, Takahiro Mori, Masashi Deguchi, Shingo Totani
  • Patent number: 8546837
    Abstract: A light emitting device having a vertical structure, a package thereof and a method for manufacturing the same, which are capable of damping impact generated in a substrate separation process, and achieving an improvement in mass productivity, are disclosed. The method includes growing a semiconductor layer having a multilayer structure over a substrate, forming a first electrode on the semiconductor layer, separating the substrate including the grown semiconductor layer into unit devices, bonding each of the separated unit devices on a sub-mount, separating the substrate from the semiconductor layer, and forming a second electrode on a surface of the semiconductor layer exposed in accordance with the separation of the substrate.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: October 1, 2013
    Assignees: LG Electronics Inc., LG Innotek Co., Ltd.
    Inventors: Jun Ho Jang, Geun ho Kim
  • Patent number: 8536587
    Abstract: A method, structure, system of aligning a substrate to a photomask. The method includes: directing incident light through a pattern of clear regions transparent to the incident light in an opaque-to-the-incident-light region of a photomask, through a lens and onto a photodiode formed in a substrate, the photodiodes electrically connected to a light emitting diode formed in the substrate, the light emitting diode emitting light of different wavelength than a wavelength of the incident lights; measuring an intensity of emitted light from light emitting diode; and adjusting alignment of the photomask to the substrate based on the measured intensity of emitted light.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Axel Aguado Granados, Benjamin Aaron Fox, Nathaniel James Gibbs, Andrew Benson Maki, John Edward Sheets, II, Trevor Joseph Timpane
  • Patent number: 8525163
    Abstract: An organic EL device 1, for example, excellent in productivity and performance with reduced influence of a voltage drop can be provided at low fabrication cost. The organic EL device 1 includes band-shaped organic EL strips 3 arranged at spacings on a first substrate 2. Each of the organic EL strips 3 includes a second substrate 31, a negative electrode 32b, a positive electrode 32a, and an organic layer 33. The pair of the electrodes 32a and 32b and the organic layer 33 are stacked on the second substrate 2 with the organic layer 33 sandwiched between the electrodes 32a and 32b. The first substrate 2 includes a connection terminal electrode 5 and an auxiliary terminal electrode 6. For example, negative electrode 32b is electrically connected to the connection terminal electrode 5, and the positive electrode 32a is electrically connected to the auxiliary terminal electrode 6.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: September 3, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshimasa Fujita
  • Patent number: 8519428
    Abstract: A vertical stacked light emitting structure includes a substrate unit, a stacked type light emitting module, and a flip-chip type light emitting module. The substrate unit includes a substrate body. The stacked type light emitting module includes a first light emitting unit and a light guiding unit. The first light emitting unit includes at least one first LED bare chip disposed on and electrically connected to the substrate body, and the light guiding unit includes at least one light guiding body disposed on the first LED bare chip. The flip-chip type light emitting module includes a second light emitting unit. The second light emitting unit includes at least one second LED bare chip disposed on the light guiding body and electrically connected to the substrate body. Hence, the first LED bare chip, the light guiding body, and the second LED bare chip are stacked on top of one another sequentially.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 27, 2013
    Assignee: Azurewave Technologies, Inc.
    Inventors: Chi-Hsing Hsu, Chun-Yu Lu, Ming-Che Kuo
  • Publication number: 20130214293
    Abstract: A micro optical device 10 comprises a body 12. The body comprises a movable member 14, which is moveable relative to another part 26 of the body. An optical element, such as an optical source 16, is provided on or within the movable member. The moveable member may be subjected to a parameter, such as mass, to be sensed and by monitoring at detector 22 changes of an optical signal emitted by the optical source, the parameter may be monitored.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 22, 2013
    Applicant: Insiava(PTY)Limited
    Inventors: Monuko Duplessis, Alfons Willi Bogalecki
  • Patent number: 8507927
    Abstract: An aspect of the present invention provides a semiconductor device, in which densely packaging and high performance of optical elements are realized by a simple manufacturing process. The semiconductor device includes: a first chip module, a second chip module and a bonding layer. The first chip module includes a plurality of optical chips that are bonded within a substantially same plane with a first resin layer. The second chip module includes a plurality of control semiconductor chips and a plurality of connecting chips. The connecting chips include conductive materials piercing through the connecting chips. The control semiconductor chips and the connecting chips are bonded within a substantially same plane with a second resin layer. And the optical chips and the control semiconductor chips are electrically connected through the connecting chips.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Iida, Iwao Mitsuishi
  • Publication number: 20130193451
    Abstract: A photo-coupler is provided. The photo-coupler comprises a plurality of photo-coupling modules, a third package, a power lead and a ground lead. Each of the photo-coupling modules includes a light emitting component, a photosensitive component, a first transparent package and a second transparent package. In each of the photo-coupler modules, the photosensitive component is disposed opposite the light emitting component for receiving the light emitted by the light emitting component. In addition, the first transparent package encloses the light emitting component, while the second transparent package encloses the light emitting component and the first transparent package. The third package encloses both of the second transparent packages to block light from the outside. The photosensitive components electrically connect to the common power lead respectively and electrically connect to the common ground lead respectively inside the third package.
    Type: Application
    Filed: November 23, 2010
    Publication date: August 1, 2013
    Inventor: Chao-Hsuan Su
  • Patent number: 8492784
    Abstract: A semiconductor device includes: a semiconductor chip including a nitride semiconductor layered structure including a carrier transit layer and a carrier supply layer; a first resin layer on the semiconductor chip, the first resin layer including a coupling agent; a second resin layer on the first resin layer, the second resin layer including a surfactant; and a sealing resin layer to seal the semiconductor chip with the first resin layer and the second resin layer.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 23, 2013
    Assignee: Fujitsu Limited
    Inventors: Keishiro Okamoto, Tadahiro Imada, Nobuhiro Imaizumi, Keiji Watanabe
  • Publication number: 20130181208
    Abstract: A semiconductor voltage transformation structure is provided. The semiconductor voltage transformation structure includes: a first electrode layer; an electricity-to-light conversion layer formed on the first electrode layer; a second electrode layer formed on the electricity-to-light conversion layer; a first isolation layer formed on the second electrode layer; a third electrode layer formed on the first isolation layer; a light-to-electricity conversion layer formed on the third electrode layer; and a fourth electrode layer formed on the light-to-electricity conversion layer, in which the first isolation layer, the second electrode layer and the third electrode layer are transparent to a working light emitted by the electricity-to-light conversion layer.
    Type: Application
    Filed: November 9, 2012
    Publication date: July 18, 2013
    Inventor: Lei Guo
  • Patent number: 8481992
    Abstract: A flat panel display capable of preventing a chipping phenomenon of a pixel definition layer, and a method for making the same are disclosed. The flat panel display includes a thin film transistor formed on a substrate; a planarization layer formed on the thin film transistor; a first electrode layer formed on the planarization layer and electrically connected with the thin film transistor through the via hole formed in the planarization layer; a pixel definition layer formed on the planarization layer and in which an opening for at least partially exposing the first electrode layer is formed; an adhesive reinforcement layer formed at least between the planarization layer and the pixel definition layer on the top of the planarization layer; an emitting layer formed on the first electrode layer; and a second electrode layer formed on the emitting layer and the pixel definition layer.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 9, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sam Il Kho, Nam Choul Yang, Mu Hyun Kim, Jae Ho Lee, Young Gil Kwon
  • Patent number: 8476647
    Abstract: A silicon-germanium, quantum-well, light-emitting diode. The light-emitting diode includes a p-doped portion, a quantum-well portion, and an p-doped portion. The quantum-well portion is disposed between the p-doped portion and the n-doped portion. The quantum-well portion includes a carrier confinement region that is configured to facilitate luminescence with emission of light produced by direct recombination with a hole confined within the carrier confinement region. The p-doped portion includes a first alloy of silicon-germanium, and the n-doped portion includes a second alloy of silicon-germanium.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 2, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
  • Patent number: 8471270
    Abstract: An indirect-bandgap-semiconductor, light-emitting diode. The indirect-bandgap-semiconductor, light-emitting diode includes a plurality of portions including a p-doped portion of an indirect-bandgap semiconductor, an intrinsic portion of the indirect-bandgap semiconductor, and a n-doped portion of the indirect-bandgap semiconductor. The intrinsic portion is disposed between the p-doped portion and the n-doped portion and forms a p-i junction with the p-doped portion, and an i-n junction with the n-doped portion. The p-i junction and the i-n junction are configured to facilitate formation of at least one hot electron-hole plasma in the intrinsic portion when the indirect-bandgap-semiconductor, light-emitting diode is reverse biased and to facilitate luminescence produced by recombination of a hot electron with a hole.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: June 25, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
  • Publication number: 20130153934
    Abstract: A concentrated photovoltaic and display apparatus includes a backplane substrate, a plurality of photovoltaic elements distributed over the backplane substrate, a plurality of display elements distributed over the backplane substrate between the photovoltaic elements, and an optical element positioned over the backplane substrate, the photovoltaic elements, and the display elements. The optical element is configured to concentrate incident light propagating in a direction substantially parallel to an optical axis thereof onto the photovoltaic elements. The optical element is further configured to direct light reflected or emitted from the display elements in a direction that is not substantially parallel to the optical axis of the optical element. Related fabrication methods and arrays including the apparatus are also discussed.
    Type: Application
    Filed: June 7, 2011
    Publication date: June 20, 2013
    Inventors: Matthew Meitl, Joseph Carr, Scott Burroughs
  • Patent number: 8466475
    Abstract: A light detecting chip includes at least one detection region configured to accommodate a sample that is capable of emitting fluorescent light, and a light reflecting section configured to reflect at least a portion of the fluorescent light emitted from the sample in a direction toward a light detector.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 18, 2013
    Assignee: Sony Corporation
    Inventors: Isao Ichimura, Masanobu Yamamoto, Shinichi Kai
  • Publication number: 20130147764
    Abstract: A multi-functional active matrix display comprises a transparent front sheet, a semi-transparent layer of light emissive devices adjacent the rear side of the front sheet and forming a matrix of display pixels, and a solar cell layer located behind the light emissive devices for converting both ambient light and internal light7 from the light emissive devices into electrical energy, the solar cell layer including an array of electrodes on the front surface of the solar cell layer for use in detecting the location of a change in the amount of light impinging on a portion of the front surface of the solar cell layer.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 13, 2013
    Applicant: IGNIS INNOVATION INC.
    Inventor: Ignis Innovation Inc.
  • Patent number: 8461608
    Abstract: Light converting constructions are disclosed. The light converting construction includes a phosphor slab that has a first index of refraction for converting at least a portion of light at a first wavelength to light at a longer second wavelength; and a structured layer that is disposed on the phosphor slab and has a second index of refraction that is smaller than the first index of refraction. The structured layer includes a plurality of structures that are disposed directly on the phosphor slab and a plurality of openings that expose the phosphor slab. The light converting construction further includes a structured overcoat that is disposed directly on at least a portion of the structured layer and a portion of the phosphor slab in the plurality of openings. The structured overcoat has a third index of refraction that is greater than the second index of refraction.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 11, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Terry L. Smith, Michael A. Haase, Jun-Ying Zhang
  • Patent number: 8461599
    Abstract: A light emitting diode (LED) with a stable color temperature includes at least one LED chip and at least one color sensor module. The LED chip has a main light emitting surface and a sub light emitting surface opposite to the main surface. The color sensor module senses the intensities of light emitting from sub light emitting surface of the LED chip for adjustment of a color temperature of the LED.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 11, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Jian-Shihn Tsang
  • Patent number: 8455886
    Abstract: A light emitting device is constituted by flip-chip mounting a GaN-based LED chip. The GaN-based LED chip includes a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, wherein the GaN-based semiconductor layer has a laminate structure containing an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side, wherein a positive electrode is formed on the p-type layer, the electrode containing a light-transmissive electrode of an oxide semiconductor and a positive contact electrode electrically connected to the light-transmissive electrode, and the area of the positive contact electrode is half or less of the area of the upper surface of the p-type layer.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: June 4, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takahide Joichi, Hiroaki Okagawa, Shin Hiraoka, Toshihiko Shima, Hirokazu Taniguchi
  • Publication number: 20130134327
    Abstract: Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventor: Lucile C. Teague
  • Patent number: 8450760
    Abstract: One or more circuit elements such as silicon diodes, resistors, capacitors, and inductors are disposed between the semiconductor structure of a semiconductor light emitting device and the connection layers used to connect the device to an external structure. In some embodiments, the n-contacts to the semiconductor structure are distributed across multiple vias, which are isolated from the p-contacts by one or more dielectric layers. The circuit elements are formed in the contacts-dielectric layers-connection layers stack.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: May 28, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Jerome C. Bhat, Steven T. Boles
  • Patent number: 8450752
    Abstract: The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 28, 2013
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki