With Contoured External Surface (e.g., Dome Shape To Facilitate Light Emission) Patents (Class 257/95)
  • Patent number: 8847273
    Abstract: A light emitting diode that includes: a light source; a buffer layer disposed on the light source and including a first matrix polymer; a polymer layer disposed on the buffer layer and including an organic/inorganic hybrid polymer; and an emission layer disposed on the polymer layer and including a light emitting particle dispersed in a second matrix polymer, wherein one selected from the light source, the buffer layer, the emission layer, and a combination thereof includes one selected from sulfurous component, a nitrogenous component, and a combination thereof.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Hyun A Kang, Hyo Sook Jang, Soo Kyung Kwon
  • Publication number: 20140284637
    Abstract: According to one embodiment, a method for manufacturing a semiconductor light emitting device includes performing plasma processing of a stacked body. The stacked body has a first semiconductor layer and a second semiconductor layer provided on the first semiconductor layer. The plasma processing is performed on a surface of the stacked body where the second semiconductor layer is exposed such that the second semiconductor layer remains. The first semiconductor layer includes gallium and nitrogen. The second semiconductor layer includes aluminum and nitrogen. The method includes forming a plurality of protrusions by performing wet etching of the surface after the plasma processing is performed. At least a lower portion of the plurality of protrusions is made of the first semiconductor layer.
    Type: Application
    Filed: September 9, 2013
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuhiro Akiyama, Shuji Itonaga
  • Publication number: 20140284614
    Abstract: Epitaxial growth methods and devices are described that include a textured surface on a substrate. Geometry of the textured surface provides a reduced lattice mismatch between an epitaxial material and the substrate. Devices formed by the methods described exhibit better interfacial adhesion and lower defect density than devices formed without texture. Silicon substrates are shown with gallium nitride epitaxial growth and devices such as LEDs are formed within the gallium nitride.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Anton deVilliers, Erik Byers, Scott E. Sills
  • Patent number: 8835959
    Abstract: A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars, Hirokuni Asamizu
  • Patent number: 8829543
    Abstract: A semiconductor light emitting device including a first type doped semiconductor layer, a light emitting layer, a second type doped semiconductor layer, and a reflection layer is provided. The first type doped semiconductor layer has a mesa portion and a depression portion. The light emitting layer is disposed on the mesa portion and has a first surface, a second surface and a first side surface connecting the first surface with the second surface. The second type doped semiconductor layer is disposed on the light emitting layer and has a third surface, a fourth surface and a second side surface connecting the third surface with the fourth surface. Observing from a viewing direction parallel to the light emitting layer, the reflection layer covers at least part of the first side surface and at least part of the second side surface. A flip chip package device is also provided.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 9, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Yun-Li Li, Chih-Ling Wu, Yi-Ru Huang, Yu-Yun Lo
  • Patent number: 8831062
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallization layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallization layer opposite to the n-metallization layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallization layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallization layer is larger than a width of the active region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Patent number: 8829337
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8816358
    Abstract: Some embodiments of the present disclosure relate to an optical sensor. The optical sensor includes a first electrode disposed over a semiconductor substrate. A photoelectrical conversion element, which includes a p-type layer and an n-type layer, is arranged over the first electrode to convert one or more photons having wavelength falling within a predetermined wavelength range into an electrical signal. A second electrode is disposed over the photoelectrical conversion element. The second electrode is transparent in the predetermined wavelength range. A color filter element, which is made up of plasmonic nanostructures, is disposed over the second electrode.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shu-Ju Tsai, Yeur-Luen Tu, Cheng-Ta Wu, Cheng-Yuan Tsai, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 8816383
    Abstract: High performance light emitting diode with vias. In accordance with a first embodiment of the present invention, an article of manufacture includes a light emitting diode. The light emitting diode includes a plurality of filled vias configured to connect a doped region on one side of the light emitting diode to a plurality of contacts on the other side of the light emitting diode. The filled vias may comprise less that 10% of a surface area of the light emitting diode.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: August 26, 2014
    Assignee: Invensas Corporation
    Inventors: Ilyas Mohammed, Liang Wang
  • Patent number: 8809833
    Abstract: Certain embodiments provide a method for manufacturing a semiconductor light emitting device, including: providing a first stack film on a first substrate, the first stack film being formed by stacking a p-type nitride semiconductor layer, an active layer having a multiquantum well structure of a nitride semiconductor, and an n-type nitride semiconductor layer in this order; forming an n-electrode on an upper face of the n-type nitride semiconductor layer; and forming a concave-convex region on the upper face of the n-type nitride semiconductor layer by performing wet etching on the upper face of the n-type nitride semiconductor layer with the use of an alkaline solution, except for a region in which the n-electrode is formed.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kotaro Zaima, Toru Gotoda, Toshiyuki Oka, Shinya Nunoue
  • Patent number: 8809880
    Abstract: Light emitting diode (LED) chips and devices for providing failure mitigation in LED arrays are disclosed. In one aspect, an LED chip can include a body with an anode and a cathode in the form of electrically conductive bond pads. The anode and cathode can be configured to electrically communicate with more than two electrical components via electrical connectors.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 19, 2014
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Publication number: 20140225138
    Abstract: A light-emitting device is disclosed and comprises: a transparent substrate; a semiconductor light-emitting stack on the transparent substrate, wherein the semiconductor light-emitting stack comprises a first semiconductor layer close to the transparent substrate, a second semiconductor layer away from the transparent substrate, and a light-emitting layer capable of emitting a light disposed between the first semiconductor layer and the second semiconductor layer; and a bonding layer between the transparent substrate and the semiconductor light-emitting stack, wherein the bonding layer has a gradually changed refractive index, and each of critical angles at the bonding layer and the transparent substrate for the light emitted from the light-emitting layer towards the transparent substrate is larger than 35 degrees.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Applicant: Epistar Corporation
    Inventors: Tsung-Hsien YANG, Tzu-Chieh HSU, Yi-Ming CHEN, Yi-Tang LAI, Jhih-Jheng YANG, Chih-Wei WEI, Ching-Sheng CHEN, Shih-I CHEN, Chia-Liang HSU, Ye-Ming HSU
  • Patent number: 8801234
    Abstract: A light emitting module is provided with a light emitting element and an optical wavelength converting member. The optical wavelength converting member includes a light incident plane, a light output plane, and an outer plane which is a plane except for said light incident plane and said light output plane. The optical wavelength converting member converts a wavelength of light emitted on the light emitting element and entered from the light incident plane into the optical wavelength converting member and outputs the wavelength-converted light from the light output plane. An average roughness “Ra” of at least a portion of the outer plane is lower than an average roughness of the light output plane.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: August 12, 2014
    Assignee: Koito Manufacturing Co., Ltd.
    Inventors: Yasuaki Tsutsumi, Takashi Onishi
  • Patent number: 8803174
    Abstract: Disclosed is a method of manufacturing a light emitting device. The light emitting device includes a nitride semiconductor layer, an electrode on the nitride semiconductor layer, a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer under the nitride semiconductor layer, and a conductive layer under the light emitting structure. The nitride semiconductor layer has band gap energy lower than band gap energy of the first conductive type semiconductor layer.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: August 12, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hwan Hee Jeong, Sang Youl Lee, Ji Hyung Moon, June O Song, Kwang Ki Choi, Dae Sung Kang
  • Patent number: 8804414
    Abstract: Spin Torque Transfer (STT) memory cell structures and methods are described herein. One or more STT memory cell structures include a tunneling barrier material positioned between a ferromagnetic storage material and a pinned ferromagnetic material in contact with an antiferromagnetic material. The tunneling barrier material is a multiferroic material and the antiferromagnetic material, the ferromagnetic storage material, and the pinned ferromagnetic material are positioned between a first electrode and a second electrode.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Steven J. Kramer, Gurtej S. Sandhu
  • Patent number: 8796721
    Abstract: A semiconductor light emitting device including a substrate, an electrode and a light emitting region is provided. The substrate may have protruding portions formed in a repeating pattern on substantially an entire surface of the substrate while the rest of the surface may be substantially flat. The cross sections of the protruding portions taken along planes orthogonal to the surface of the substrate may be semi-circular in shape. The cross sections of the protruding portions may in alternative be convex in shape. A buffer layer and a GaN layer may be formed on the substrate.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 5, 2014
    Assignee: Nichia Corporation
    Inventors: Isamu Niki, Motokazu Yamada, Masahiko Sano, Shuji Shioji
  • Patent number: 8791359
    Abstract: Novel structures of photovoltaic cells (also called as solar cells) are provided. The cells are based on nanoparticles or nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 29, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8791480
    Abstract: A light emitting device according to the embodiment includes a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, a current spreading layer on the second conductive semiconductor layer, a bonding layer on the current spreading layer, and a light extracting structure on the bonding layer.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: July 29, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: June O Song
  • Patent number: 8786646
    Abstract: A light-emitting chip includes: a substrate; plural light-emitting elements arrayed in line on the substrate, each of the light-emitting elements including a light-emitting region having a length in an array direction of the array different from a length in a direction orthogonal to the array direction; and a light-up current supplying interconnection including plural connecting portions, each of the connecting portions being provided on the light-emitting region of a corresponding one of the light-emitting elements in a shorter direction of the light-emitting region either the array direction or the direction orthogonal to the array direction, each of the connecting portions being connected to an electrode provided on the light-emitting region, the light-up current supplying interconnection supplying a current for lighting up to the plural light-emitting elements through the plural connecting portions.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 22, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Taku Kinoshita, Yoshinao Kondoh, Seiji Ohno
  • Patent number: 8785952
    Abstract: A light emitting device is disclosed. The light emitting device includes a first electrode and a second electrode, which have different areas, thereby achieving enhanced bonding reliability.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: July 22, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dongwook Park
  • Patent number: 8779411
    Abstract: The present disclosure provides a light emitting diode and a method of manufacturing the same. The light emitting diode includes a graphene layer on a second conductive semiconductor layer and a plurality of metal nanoparticles formed on some region of the graphene layer, whereby adhesion between the second conductive semiconductor layer comprised of an inorganic material and the graphene layer is enhanced, thereby securing stability and reliability of the light emitting diode. In addition, the light emitting diode allows uniform spreading of electric current, thereby allowing stable emission of light through a surface area of the light emitting diode.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 15, 2014
    Assignee: Gwanju Institute of Science and Technology
    Inventors: Dong Seon Lee, Jae Phil Shim, Seong Ju Park, Min Hyeok Choe, Do Hyung Kim, Tak Hee Lee
  • Patent number: 8766296
    Abstract: A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: July 1, 2014
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tetsuo Fujii, Yan Gao, Evelyn L. Hu, Shuji Nakamura
  • Patent number: 8766295
    Abstract: A semiconductor device includes a first light emitting chip, the first light emitting chip having a first semiconductor layer, a second semiconductor layer, and a first active layer disposed therebetween, a second light emitting chip disposed on the first light emitting chip, the second light emitting chip having a third semiconductor layer, a fourth semiconductor layer, and a second active layer disposed therebetween, and a conductive layer disposed between the first semiconductor layer and the fourth semiconductor layer, the first semiconductor layer and the fourth semiconductor layer having different conductivity types.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: YuSik Kim
  • Patent number: 8766226
    Abstract: According to one embodiment, a memory cell includes a resistance change layer, an upper electrode layer, a lower electrode layer, a diode layer, a first oxide film, and a second oxide film. The upper electrode layer is arranged above the resistance change layer. The lower electrode layer is arranged below the resistance change layer. The diode layer is arranged above the upper electrode layer or below the lower electrode layer. The first oxide film exists on a side wall of at least one electrode layer of the upper electrode layer or the lower electrode layer. The second oxide film exists on a side wall of the diode layer. The film thickness of the first oxide film is thicker than a film thickness of the second oxide film.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 1, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuhiro Nojiri
  • Patent number: 8766293
    Abstract: A light-emitting device includes a first cladding layer, a light-emitting layer, a second cladding layer, an epitaxial structure including an indium-containing oxide, and an electrode unit for supplying external electricity, The electrode unit includes a first electrode disposed to be electrically connected to the first cladding layer, and a second electrode disposed above the epitaxial structure to be electrically connected to the second cladding layer through the epitaxial structure such that the external electricity is permitted to be transmitted to the light-emitting layer through the first and second electrodes. A method for manufacturing the light-emitting device is also disclosed.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jyun-De Wu, Yu-Chu Li
  • Patent number: 8759867
    Abstract: A semiconductor light emitting device, has a package constituted by the lamination of a first insulating layer having a pair of positive and negative conductive wires formed on its upper face, an inner-layer wire below the first insulating layer, and a second insulating layer below the inner-layer wire; a semiconductor light emitting element that has a pair of positive and negative electrodes on the same face side and that is disposed with these electrodes opposite the conductive wires; and a sealing member that covers the semiconductor light emitting element, wherein part of the conductive wires is formed extending in the outer edge direction of the sealing member from directly beneath the semiconductor light emitting element, on the upper face of the first insulating layer, and is connected to the inner-layer wire via a conductive wire disposed in the thickness direction of the package, and the inner-layer wire is disposed so as to be spaced apart from the outer periphery of the semiconductor light emitting
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: June 24, 2014
    Assignee: Nichia Corporation
    Inventors: Takuya Noichi, Yuichi Okada, Takahito Miki
  • Publication number: 20140167082
    Abstract: Enlightening device and method for making the same are disclosed. Individual light emitting devices such as LEDs are separated to form individual dies by process in which a first narrow trench cuts the light emitting portion of the device and a second trench cuts the substrate to which the light emitting portion is attached. The first trench can be less than 10 ?m. Hence, a semiconductor area that would normally be devoted to dicing streets on the wafer is substantially reduced thereby increasing the yield of devices. The devices generated by this method can also include base members that are electrically conducting as well as heat conducting in which the base member is directly bonded to the light emitting layers thereby providing improved heat conduction.
    Type: Application
    Filed: September 13, 2013
    Publication date: June 19, 2014
    Applicant: TOSHIBA TECHNO CENTER INC.
    Inventor: Long Yang
  • Publication number: 20140159082
    Abstract: A light-emitting device including a substrate, a photoelectric structure and a coarse structure is provided. The substrate has an upper surface and a lower surface opposite to each other, and an annular side surface connecting the upper surface and the lower surface. The photoelectric structure is disposed on the upper surface of the substrate. The coarse structure is formed on the annular side surface of the substrate. A ratio of a thickness of the substrate and a thickness of the coarse structure is greater than or equal to 1 and less than or equal to 20. Therefore, the overall light-emitting efficiency of the light-emitting device may be improved.
    Type: Application
    Filed: June 14, 2013
    Publication date: June 12, 2014
    Applicant: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Jing-En Huang, Chih-Ling Wu, Yu-Yun Lo
  • Patent number: 8742429
    Abstract: A semiconductor light emitting device includes a first semiconductor layer having a bottom surface with uneven patterns, an active layer formed on the first semiconductor layer, a second semiconductor layer formed on the active layer, a second electrode formed on the second semiconductor layer, and a first electrode formed under the first semiconductor layer.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 3, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jin Sik Choi
  • Patent number: 8742434
    Abstract: The present invention aims to provide a semiconductor light emitting device that may be firmly attached to a substrate with maintaining excellent light emitting efficiency, and a manufacturing method of the same, and a lighting apparatus and a display apparatus using the same. In order to achieve the above object, the semiconductor light emitting device according to the present invention includes a luminous layer, a light transmission layer disposed over a main surface of the luminous layer, and having depressions on a surface facing away from the luminous layer, and a transmission membrane disposed on the light transmission layer so as to follow contours of the depressions, and light from the luminous layer is irradiated so as to pass through the light transmission layer and the transmission membrane.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 3, 2014
    Assignee: Panasonic Corporation
    Inventor: Hideo Nagai
  • Patent number: 8742438
    Abstract: A nitride semiconductor light-emitting device includes a layered portion emitting light on a substrate. The layered portion includes an n-type semiconductor layer, an active layer, and a p-type semiconductor layer. The periphery of the layered portion is inclined, and the surface of the n-type semiconductor layer is exposed at the periphery. An n electrode is disposed on the exposed surface of the n-type semiconductor layer. This device structure can enhance the emission efficiency and the light extraction efficiency.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: June 3, 2014
    Assignee: Nichia Corporation
    Inventors: Takeshi Kususe, Takahiko Sakamoto
  • Patent number: 8735925
    Abstract: Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: May 27, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kotaro Zaima, Toru Gotoda, Toshiyuki Oka, Shinya Nunoue
  • Patent number: 8735927
    Abstract: The invention provides a Group III nitride semiconductor light-emitting device which has a light extraction face at the n-layer side and which provides high light emission efficiency. The light-emitting device is produced through the laser lift-off technique. The surface of the n-GaN layer of the light-emitting device is roughened. On the n-GaN layer, a transparent film is formed. The transparent film satisfies the following relationship: 0.28?n×d1×2/??0.42 or 0.63?n×d1×2/??0.77, wherein n represents the refractive index of the transparent film, d1 represents the thickness of the transparent film in the direction orthogonal to an inclined face thereof, and ? represents the wavelength of the light emitted from the MQW layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yuhei Ikemoto, Naoki Arazoe
  • Patent number: 8723336
    Abstract: According to an embodiment, a semiconductor light emitting device includes a light emitting body including a semiconductor light emitting layer, a support substrate supporting the light emitting body, and a bonding layer provided between the light emitting body and the support substrate, the bonding layer bonding the light emitting body and the support substrate together. The device also includes a first barrier metal layer provided between the light emitting body and the bonding layer, and an electrode provided between the light emitting body and the first barrier metal layer. The first barrier layer includes a first layer made of nickel and a second layer made of a metal having a smaller linear expansion coefficient than nickel, and the first layer and the second layer are alternately disposed in a multiple-layer structure. The electrode is electrically connected to the light emitting body.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuharu Sugawara
  • Publication number: 20140124805
    Abstract: A light emitting element having a recess-protrusion structure on a substrate is provided. A semiconductor light emitting element 100 has a light emitting structure of a semiconductor 20 on a first main surface of a substrate 10. The first main surface of the substrate 10 has substrate protrusion portion 11, the bottom surface 14 of each protrusion is wider than the top surface 13 thereof in a cross-section, or the top surface 13 is included in the bottom surface 14 in a top view of the substrate. The bottom surface 14 has an approximately polygonal shape, and the top surface 13 has an approximately circular or polygonal shape with more sides than that of the bottom surface 14.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: NICHIA CORPORATION
    Inventors: Shunsuke MINATO, Junya NARITA, Yohei WAKAI, Yukio NARUKAWA, Motokazu YAMADA
  • Publication number: 20140124804
    Abstract: A hetero-substrate, a nitride-based semiconductor light emitting device, and a method of manufacturing the same are provided. The hetero-substrate may include a substrate including a silicon semiconductor, a buffer layer disposed on the substrate, a first semiconductor layer disposed on the buffer layer and including a nitride semiconductor, a second semiconductor layer disposed on the first semiconductor layer and including a first conductive type nitride semiconductor having a first doping concentration, and a stress control structure disposed between the first semiconductor layer and the second semiconductor layer and including at least one stress compensation layer and at least one third semiconductor layer including a first conductive type nitride semiconductor having a second doping concentration that is the same or lower than the first doping concentration.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Inventors: Kiseong Jeon, Hojun Lee, Kyejin Lee
  • Patent number: 8716738
    Abstract: A semiconductor light-emitting device includes a light emitting structure on a substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer. A plurality of transparent layers is disposed on the light emitting structure. A metal layer is disposed between the plurality of transparent layers. An electrode is electrically connected to the metal layer and contacts a portion of the metal layer.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 6, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Jung Hyeok Bae
  • Patent number: 8710524
    Abstract: Fine asperities are simply formed in the surface of a light emission surface to improve an luminous efficiency of a light emitting element. An LED element 10 is prepared as an example of a luminous body, and a thermally deformable heat mode recording material layer 12 is formed in the light emission surface 18 of the LED element 10. The recording material layer 12 is then illuminated with condensed light so that a plurality of recessed portions 15 are formed at a pitch of 0.01-100 times a center wavelength of the light emitted from the LED element 10.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 29, 2014
    Assignee: Fujifilm Corporation
    Inventors: Yoshihisa Usami, Tadasuke Takahashi, Tetsuya Watanabe
  • Publication number: 20140103376
    Abstract: The disclosure provides a light-emitting device. The light-emitting device comprises: a substrate having a first patterned unit; and a light-emitting stack on the substrate and having an active layer with a first surface; wherein the first patterned unit, protruding in a direction from the substrate to the light-emitting stack, has side surfaces abutting with each other and substantially non-parallel to the first surface in cross-sectional view, and has a non-polygon shape in top view.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: EPISTAR CORPORATION
    Inventors: Chen Ou, Chiu-Lin Yao
  • Patent number: 8698173
    Abstract: Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 15, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Patent number: 8692277
    Abstract: Light emitting diodes include a diode region comprising a gallium nitride-based n-type layer, an active region and a gallium nitride-based p-type layer. A substrate is provided on the gallium nitride-based n-type layer and optically matched to the diode region. The substrate has a first face remote from the gallium nitride-based n-type layer, a second face adjacent the gallium nitride-based n-type layer and a sidewall therebetween. At least a portion of the sidewall is beveled, so as to extend oblique to the first and second faces. A reflector may be provided on the gallium nitride-based p-type layer opposite the substrate. Moreover, the diode region may be wider than the second face of the substrate and may include a mesa remote from the first face that is narrower than the first face and the second face.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: April 8, 2014
    Assignee: Cree, Inc.
    Inventors: David B. Slater, Jr., Robert C. Glass, Charles M. Swoboda, Bernd Keller, James Ibbetson, Brian Thibeault, Eric J. Tarsa
  • Patent number: 8692267
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region, and extending to said light emitting region.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8692285
    Abstract: A semiconductor light emitting device has a multilayer epitaxial structure for emitting light by a light emitting layer located between a first conductive layer and a second conductive layer. The multilayer epitaxial structure can be grown directly on a base substrate. A reflective layer can be provided in the multilayer epitaxial structure between the base substrate and the first conductive layer. A distributive Bragg reflector can be positioned adjacent the substrate. A surface of the multilayer epitaxial structure can be conformed to provide improved light extraction. A phosphorus film encapsulates the multilayer epitaxial structure and its respective side surfaces.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 8, 2014
    Assignee: Panasonic Corporation
    Inventor: Hideo Nagai
  • Patent number: 8686447
    Abstract: A light emitting unit including plural kinds of light emitting elements with different light emitting wavelengths, wherein, among the light emitting elements, at least one kind of light emitting element includes a semiconductor layer configured by laminating a first conductive layer, an active layer and a second conductive layer and having a side surface exposed by the first conductive layer, the active layer and the second conductive layer; a first electrode electrically connected to the first conductive layer; a second electrode electrically connected to the second conductive layer; a first insulation layer contacting at least an exposed surface of the active layer in the surface of the semiconductor layer; and a metal layer contacting at least a surface, which is opposite to the exposed surface of the active layer, in the surface of the first insulation layer, and electrically separated from the first electrode and the second electrode.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 1, 2014
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Naoki Hirao, Goshi Biwa
  • Patent number: 8680561
    Abstract: A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light emitting layer, a first electrode layer, and a second electrode layer. The light emitting layer is between the first semiconductor layer and the second semiconductor layer. The first electrode layer is on a side of the second semiconductor layer opposite to the first semiconductor layer. The first electrode layer includes a metal portion and a plurality of opening portions piercing the metal portion along a direction from the first semiconductor layer toward the second semiconductor layer. The metal portion contacts the second semiconductor layer. An equivalent circular diameter of a configuration of the opening portions as viewed along the direction is not less than 10 nanometers and not more than 5 micrometers.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Eishi Tsutsumi, Takanobu Kamakura, Shinji Nunotani, Masaaki Ogawa
  • Publication number: 20140077234
    Abstract: An apparatus comprises a substrate, a first buried layer formed over the substrate, the first buried layer comprising one or more raised mesa structures, a second buried layer formed over the first buried layer, an active layer formed over the second buried layer, and a capping layer formed over the active layer. The apparatus may further comprise a third buried layer formed over the active layer, the third buried layer comprising one or more raised mesa structures, and a fourth buried layer formed over the third buried layer. The one or more raised mesa structures of the first buried layer may be offset from the one or more raised mesa structures of the third buried layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: LSI Corporation
    Inventor: Joseph M. Freund
  • Patent number: 8674383
    Abstract: A light emitting device includes a conductive substrate having a first substrate surface and comprising a conductive material, a protrusion formed on the conductive substrate, wherein the protrusion is defined in part by a first protrusion surface that is not parallel to the first substrate surface, and light emission layers disposed over the first protrusion surface. The light emission layers can emit light when an electric field is applied across the light emission layers.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 18, 2014
    Assignee: SiPhoton Inc.
    Inventor: Shaoher X. Pan
  • Patent number: 8674384
    Abstract: According to one embodiment, a light emitting element includes a light emitting layer, a cladding layer, a current spreading layer, a second layer, and an electrode. The light emitting layer is capable of emitting emission light. The current spreading layer includes a surface processed layer and a first layer. The surface processed layer has a surface including convex portions and bottom portions provided adjacent to the convex portions. The first layer is provided between the surface processed layer and the cladding layer. The second layer is provided between the surface processed layer and the cladding layer and includes a region having an impurity concentration higher than an impurity concentration of the current spreading layer. The electrode is provided in a region of the surface of the surface processed layer where the convex portions and the bottom portions are not provided.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kataoka, Yukie Nishikawa, Hironori Yamasaki
  • Patent number: 8674381
    Abstract: A nitride semiconductor light emitting device is provided with a substrate, an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, an n-side pad electrode, a translucent electrode and a p-side pad electrode, wherein the translucent electrode is formed from an electrically conductive oxide, the n-side pad electrode adjoins the periphery of the translucent electrode and the p-side pad electrode is disposed so as to satisfy the following relationships: 0.3L?X?0.5L and 0.2L?Y?0.5L where X is the distance between ends of the p-side pad electrode and the n-side pad electrode, Y is the distance between the end of the p-side pad electrode and the periphery of the translucent electrode, L is the length of the translucent electrode on the line connecting the centroids of the p-side pad electrode and the n-side pad electrode minus the outer diameter d of the p-side pad electrode.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Nichia Corporation
    Inventors: Takahiko Sakamoto, Yasutaka Hamaguchi
  • Patent number: 8669571
    Abstract: A light distribution controller of a light-emitting device includes a first optical member formed of ZnO disposed over an LED interposing a transparent adhesive, and a second optical member which covers the first optical member. The first optical member includes a first concave portion having an opening in a regular hexagon shape whose area gradually increases. In the first concave portion, inner wall surfaces having inclined surfaces, each of whose bases is formed by one side of the hexagon of the opening shape, are formed. Outside of the first optical member, outer wall surfaces each having a trapezoidal shape are formed. The second optical member includes a second concave portion arranged so that light at an annular peak in the light distribution characteristic of the light traveled through the first optical member is totally reflected.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: March 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Akihiko Murai, Masahiro Kume, Akiko Nakamura, Tooru Aoyagi, Kiyoshi Fujihara