Having Horizontal Extensions (epo) Patents (Class 257/E21.015)
  • Patent number: 10176860
    Abstract: The present disclosure includes apparatuses and methods related to refresh in memory. An example apparatus can refresh a memory cell of an array of memory cells in response to the array of memory cells being accessed a threshold number of accesses.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: January 8, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Sai Krishna Mylavarapu
  • Patent number: 9837312
    Abstract: Atomic layer etching (ALE) enables effective filling of small feature structures on semiconductor and other substrates, such as contacts and vias, by bottom-up fill, for example electroless deposition (ELD) of cobalt.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: December 5, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Samantha Tan, Taeseung Kim, Jengyi Yu, Praveen Nalla, Novy Tjokro, Artur Kolics, Keren Jacobs Kanarik
  • Patent number: 9177909
    Abstract: A semiconductor capacitor is includes a substrate, a plurality of odd layers formed on the substrate, and a plurality of even layers formed on the substrate. Each odd layer includes a plurality of first odd fingers and a first odd terminal electrically connected thereto, and a plurality of second odd fingers and a second odd terminal electrically connected thereto. Each even layer includes a plurality of first even fingers and a first even terminal electrically connected thereto, and a plurality of second even fingers and a second even terminal electrically connected thereto. The semiconductor capacitor further includes at least a first odd connecting structure electrically connecting the first odd terminals, at least a second odd connecting structure electrically connecting the second odd terminals, at least a first even connecting structure electrically connecting the first even terminals, and at least a second even connecting structure electrically connecting the second even terminals.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 3, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Hsueh-Hao Shih
  • Patent number: 8853783
    Abstract: A device which includes a substrate defined with a device region having an ESD protection circuit is disclosed. The ESD protection circuit has a transistor. The transistor includes a gate having first and second sides. A first diffusion region is disposed adjacent to the first side of the gate and a second diffusion region is disposed in the device region displaced away from the second side of the gate. The first and second diffusion regions include dopants of a first polarity type. A drift isolation region is disposed between the gate and the second diffusion region. A first device well encompasses the device region and a second device well is disposed within the first device well. A drain well having dopants of the first polarity type is disposed under the second diffusion region and within the first device well.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 7, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Da-Wei Lai, Ming Li, Jeoung Mo Koo, Purakh Raj Verma
  • Patent number: 8569820
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes a plurality of first parallel conductive members, and a plurality of second parallel conductive members disposed over the plurality of first parallel conductive members. A first base member is coupled to an end of the plurality of first parallel conductive members, and a second base member is coupled to an end of the plurality of second parallel conductive members. A connecting member is disposed between the plurality of first parallel conductive members and the plurality of second parallel conductive members, wherein the connecting member includes at least one elongated via.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 29, 2013
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Erwin Ruderer, Alexander Von Glasow, Philipp Riess, Erdem Kaltalioglu, Peter Baumgartner, Thomas Benetik, Helmut Horst Tews
  • Patent number: 8457451
    Abstract: A semiconductor optical element having a mesa structure formed by wet etching, includes a mesa structure having a ridge-type mesa structure or a high-mesa-type mesa structure, the mesa structure being disposed on a semiconductor substrate, and an extended mesa on the semiconductor substrate, the extended mesa being connected to a corner of the mesa structure and being the same material as the mesa structure.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: June 4, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takeshi Yamatoya, Yoshimichi Morita, Chikara Watatani
  • Patent number: 8288240
    Abstract: A method of forming an MIM capacitor having interdigitated capacitor plates. Metal and dielectric layers are alternately deposited in an opening in a layer of insulator material. After each deposition of the metal layer, the metal layer is removed at an angle from the side to form the capacitor plate. The side from which the metal layer is removed is alternated with every metal layer that is deposited. When all the capacitor plates have been formed, the remaining opening in the layer of insulator material is filled with dielectric material then planarized, followed by the formation of contacts with the capacitor plates. There is also an MIM capacitor structure having interdigitated capacitor plates.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roger Allen Booth, Jr., Kangguo Cheng
  • Patent number: 8183689
    Abstract: A printed circuit board and a flip chip package using the same are designed to minimize thermal stress due to different thermal coefficients present in areas having metal lines and solder resist versus other areas on the printed circuit board. The printed circuit board includes an insulation layer; a first metal line formed on one surface of the insulation layer and having at one end thereof a bump land and a projection which integrally extends from the bump land; a second metal line formed on the other surface of the insulation layer and having at one end thereof a ball land; a via metal line formed through the insulation layer to connect the first and second metal lines to each other; and solder resists formed on the upper and lower surfaces of the insulation layer to expose the bump land and the ball land.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: May 22, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seong Cheol Kim, Myung Geun Park
  • Patent number: 8138539
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes a plurality of first parallel conductive members, and a plurality of second parallel conductive members disposed over the plurality of first parallel conductive members. A first base member is coupled to an end of the plurality of first parallel conductive members, and a second base member is coupled to an end of the plurality of second parallel conductive members. A connecting member is disposed between the plurality of first parallel conductive members and the plurality of second parallel conductive members, wherein the connecting member includes at least one elongated via.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 20, 2012
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Erwin Ruderer, Alexander Von Glasow, Philipp Riess, Erdem Kaltalioglu, Peter Baumgartner, Thomas Benetik, Helmut Horst Tews
  • Patent number: 8003479
    Abstract: Some embodiments of the invention include thin film capacitors formed on a package substrate of an integrated circuit package. At least one of the film capacitors includes a first electrode layer, a second electrode layer, and a dielectric layer between the first and second electrode layers. Each of the first and second electrode layers and the dielectric layer is formed individually and directly on the package substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: August 23, 2011
    Assignee: Intel Corporation
    Inventors: Islam A. Salama, Yongki Min
  • Patent number: 7994561
    Abstract: A semiconductor device for preventing the leaning of storage nodes and a method of manufacturing the same is described. The semiconductor device includes support patterns that are formed to support a plurality of cylinder type storage nodes. The support patterns are formed of a BN layer and have a hexagonal structure. The BN layer forming the support patterns has compressive stress as opposed to tensile stress and can therefore withstand cracking in the support patterns.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 9, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hun Kim, Byung Soo Eun
  • Patent number: 7968374
    Abstract: A layered chip package has a main body including pairs of layer portions, and wiring disposed on a side surface of the main body. Each layer portion includes a semiconductor chip. The pairs of layer portions include at least one specific pair of layer portions including a first-type layer portion and a second-type layer portion. The first-type layer portion includes electrodes each connected to the semiconductor chip and each having an end face located at the side surface of the main body on which the wiring is disposed, whereas the second-type layer portion does not include such electrodes.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: June 28, 2011
    Assignees: Headway Technologies, Inc., TDK Corporation, SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Tatsuya Harada, Nobuyuki Okuzawa, Satoru Sueki, Hiroshi Ikejima
  • Patent number: 7867916
    Abstract: A modified coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a solution puddle on a target substrate, and then controlling the peripheral boundary shape of the puddle using a control structure that contacts the puddle's upper surface. The solution is made up of a fine particle solute dispersed in a liquid solvent wets and becomes pinned to both the target substrate and the control structure. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the target substrate surface that is contacted by the peripheral puddle boundary. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: January 11, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
  • Patent number: 7759200
    Abstract: A lateral trench MOSFET includes a trench containing a device segment and a gate bus segment. The gate bus segment of the trench is contacted by a conductive plug formed in a dielectric layer overlying the substrate, thereby avoiding the need for the conventional surface polysilicon bridge layer. The conductive plug is formed in a substantially vertical hole in the dielectric layer. The gate bus segment may be wider than the device segment of the trench. A method includes forming a shallow trench isolation (STI) while the conductive material in the trench is etched.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 20, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Cho Chiu Ma
  • Patent number: 7759160
    Abstract: This publication discloses a method for forming electrically conducting structures on a substrate. According to the method nanoparticles containing conducting or semiconducting material are applied on the substrate in a dense formation and a voltage is applied over the nanoparticles so as to at least locally increase the conductivity of the formation. According to the invention, the voltage is high enough to cause melting of the nanoparticles in a breakthrough-like manner. With the aid of the invention, small-linewidth structures can be created without high-precision lithography.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: July 20, 2010
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Tomi Mattila, Ari Alastalo, Mark Allen, Heikki Seppä