Low temperature deposition and ultra fast annealing of integrated circuit thin film capacitor
Some embodiments of the invention include thin film capacitors formed on a package substrate of an integrated circuit package. At least one of the film capacitors includes a first electrode layer, a second electrode layer, and a dielectric layer between the first and second electrode layers. Each of the first and second electrode layers and the dielectric layer is formed individually and directly on the package substrate. Other embodiments are described and claimed.
Latest Intel Patents:
- USE OF A PLACEHOLDER FOR BACKSIDE CONTACT FORMATION FOR TRANSISTOR ARRANGEMENTS
- METHODS AND APPARATUS TO ENABLE SECURE MULTI-COHERENT AND POOLED MEMORY IN AN EDGE NETWORK
- DATA TRANSFER OVER AN INTERCONNECT BETWEEN DIES OF A THREE-DIMENSIONAL DIE STACK
- METHODS, SYSTEMS, ARTICLES OF MANUFACTURE AND APPARATUS TO GENERATE DYNAMIC COMPUTING RESOURCE SCHEDULES
- METHODS AND APPARATUS FOR EDGE PROTECTED GLASS CORES
Embodiments of the present invention relate to integrated circuit packaging, and particularly to capacitors in integrated circuit packages.
BACKGROUNDComputers and electronic devices usually include an integrated circuit package. The package may often have a die mounted on a base or substrate of the package. The die may include an integrated circuit for performing an electrical function. The package may also have one or more capacitors formed on the substrate. The capacitors may be used in various ways based on the function of the integrated circuit. The capacitor may be formed from multiple layers of thin films of conductive material and dielectric material.
In some conventional techniques, the capacitor is pre-formed in a separate process then the entire pre-formed capacitor is mounted or laminated onto the substrate of the package in another separate process. The process of mounting the pre-formed capacitor onto a substrate in the conventional techniques is often called capacitor-to-substrate lamination process.
Forming the capacitor in a package using the conventional techniques with the lamination process may require both a careful handling of the thin films of the preformed capacitor before the lamination and a high degree of alignment accuracy during the lamination. Some of these conventional techniques may also be expensive and time consuming.
Package 100 includes conductive contacts or pads 161, 162, 163, and 164 on one side of substrate 104 and conductive contacts or pads 181, 182, 183, and 184 on another side of substrate 104. Package 100 also includes conductive paths or interconnects 191, 192, 193, and 194 extending between contacts 161 through 164 and contacts 181 through 184. Die 102 couples to substrate 104 through conductive elements, for example, through solder balls 151, 152, 153, and 154.
In a system or a device, for example, a computer or a wireless communication device, conductive contacts 181 through 184 may be coupled to a platform such as a circuit board (not shown) to allow die 102 to exchange information or data with other components through conductive paths 191, 192, 193, and 194. A group of the conductive paths 191 through 194 may be coupled to power terminals as positive and ground terminals of a power source. Another group of the conductive paths 191 through 194 may be coupled to other components of the system or device to transfer data.
Substrate 104 includes a core layer 112, and buildup layers 113, 114, and 115. Core layer 112 may include organic material. Buildup layers 113, 114, and 115 may include organic material. In some embodiments, one or more of the buildup layers 113, 114, and 115 may include a polymer material or an Ajinomoto buildup film (ABF).
Substrate 104 further includes a barrier layer 130. Barrier layer 130 may be a non-conductive layer. Barrier layer 130 may include an inorganic material. In some embodiments, barrier layer 130 may include a partially or completely oxidized material. In other embodiments, barrier layer 130 may include a compound of at least one non-conductive material and oxygen or nitrogen, or both oxygen and nitrogen. In some other embodiments, barrier layer 130 may include a compound of at least one semiconductor material and oxygen or nitrogen, or both oxygen and nitrogen. The semiconductor material may include silicon. For example, barrier layer 130 may include silicon dioxide, silicon nitride, or silicon oxynitride. In some embodiments, barrier layer 130 has a thickness of about one micrometer.
A number of thin film capacitors 111 are formed on barrier layer 130 and are embedded in substrate 104. As shown in
TFC 111 includes conductive layers or electrode layers 121 and 122, and a dielectric layer 120. Conductive layers 121 and 122 may include copper, nickel, or other conductive materials. In some embodiments, at least one of the conductive layers 121 and 122 may be a foil or thin film with a thickness of about 10 micrometers. In other embodiments, at least one of the conductive layers 121 and 122 may be a thin film with a thickness of about 15 micrometers. In some other embodiments, at least one of the conductive layers 121 and 122 may be a thin film with a thickness between about 10 micrometers and about 15 micrometers.
Dielectric layer 120 may include a high dielectric constant (high k) material. In some embodiments, dielectric layer 120 may have a dielectric constant of about 400. In other embodiments, dielectric layer 120 may have a dielectric constant of about 6000. In some other embodiments, dielectric layer 120 may have a dielectric constant between about 400 and about 6000. Dielectric layer 120 may include a ceramic material. Some examples of materials of dielectric layer 120 include barium titanate BaTiO3, strontium titanate SrTiO3, and barium strontium titanate BaSrTiO3. In some embodiments, dielectric layer 120 has a thickness of about one micrometer.
In
In some embodiments, TFC 111 may be formed in an in-situ process such that each of the components of TFC 111 is formed individually and directly on one or more layers of substrate 104. For example, in the in-situ process, conductive layer 121 may be formed directly over barrier layer 130, core layer 112, and buildup layers 114 and 115. In the in-situ process, dielectric layer 120 may be formed directly on conductive layer 121 and then annealed while dielectric layer 120 is over conductive layer 121, barrier layer 130, core layer 112, and buildup layers 114 and 115. In the in-situ process, conductive layer 122 may be formed directly on dielectric layer 120 while dielectric layer 120 is over conductive layer 121, barrier layer 130, core layer 112, and buildup layers 114 and 115. The in-situ process for forming TFC 111 directly on substrate 104 may simply fabrication process and reduce fabrication time.
In some embodiments, one or more of layers of package 100 may be omitted. For example, buildup layer 114 may be omitted such that barrier layer 130 may be formed directly on core layer 112. In other embodiments, barrier layer 130 may be omitted such that TFC 111 may be formed directly on buildup layer 114. In some other embodiments, both barrier layer 130 and buildup layer 114 may be omitted such that TFC 111 may be formed directly on core layer 112.
In
In some embodiments, conductive layer 221 may be formed by deposition of a conductive material on barrier layer 230. Conductive layer 221 may include a single conductive material or a compound of multiple materials. In some embodiments, conductive layer 221 may include copper or nickel. In other embodiments, conductive layer 221 may include other conductive materials. In some embodiments, conductive layer 221 has a thickness of about 15 micrometers.
Dielectric layer 220 may be formed at a temperature such that thermal damage to layers underneath dielectric layer 220 may be avoided. In some embodiments, dielectric layer 220 may be formed at a temperature of about 200° C. In other embodiments, dielectric layer 220 may be formed at a temperature lower than 200° C. In some other embodiments, dielectric layer 220 may be formed at room temperature, for example, at about 25° C.
Forming dielectric layer 220 at a temperature of about 200° C. or lower, in some embodiments, may prevent thermal damage to the structure underneath dielectric layer 220, such as substrate portion 216. For example, substrate portion 216 may have a low melting point such that thermal damage may happen to substrate portion 216 when dielectric layer 220 is formed at a temperature higher than 200° C. Therefore, in some embodiments, forming dielectric layer 220 at a temperature at about 200° C. or lower may prevent thermal damage to layers underneath dielectric layer 220.
In
In some embodiments, dielectric layer 220 may be annealed at a temperature sufficient to allow the dielectric constant of dielectric layer 220 to be between about 400 and about 6000 without inducing thermal damage to substrate portion 216. In some embodiments, dielectric layer 220 is annealed at a temperature of about 600° C. In other embodiments, dielectric layer 220 is annealed at a temperature of about 800° C. In some other embodiments, dielectric layer 220 is annealed at a temperature between about 600° C. and about 800° C.
In some embodiments, dielectric layer 220 is rapidly annealed with a localized heating such that energy or heat from energy source 699 is mostly applied to dielectric layer 220. Using localized heating to anneal dielectric layer 220 may prevent heat from dissipating to substrate portion 216, thereby preventing thermal damage to substrate portion 216.
In some embodiments, dielectric layer 220 may be rapidly annealed by laser. For example, a laser beam from energy source 699 may be used to scan across the surface of dielectric layer 220 during a laser annealing process. In some embodiments, the laser beam may scan across each individual portion of dielectric layer 220 for less than ten microseconds. In some embodiments, the laser beam may have a pulse duration of about ten nanoseconds. Annealing dielectric layer 220 with laser allows for shallow thermal diffusion length inside dielectric layer 220 and prevents thermal energy from dissipating to substrate portion 216. Thus, thermal damage to substrate portion 216 may be avoided.
Further, the structure of
Moreover, barrier layer 230 may assist in preventing thermal damage to substrate portion 216 when dielectric layer 220 is annealed. For example, in some embodiments, substrate portion 216 may have a low melting point such that, in the absence of barrier layer 230, annealing dielectric layer 220 at certain temperatures may induce thermal damage to substrate portion 216. However, with the inclusion of barrier layer 230, according to an embodiment described herein, barrier layer 230 may function as a thermal barrier layer to prevent the thermal energy from energy source 699 from propagating through substrate portion 216 during the anneal process, thereby thermal damage to substrate portion 216 may further be avoided.
In some embodiments, a heat dissipating device 901 may be coupled or attached to substrate 904 to transfer or dissipate heat from substrate 904 when one or more of the components of substrate 904 or TFC 811 are formed. For example, heat dissipating device 901 may be used to dissipate heat that is generated when at least one of the first conductive layer 221, dielectric layer 220, and second conductive layer 222 is formed. Using a heat dissipating device such as heat dissipating device 901 may further reduce the affect of the generated heat to substrate portion 216 when dielectric layer 220 is annealed, thereby thermal damage to substrate portion 216 may further be avoided. In some embodiments, heat dissipating device 901 may include a heat sink.
In
In
As described above in
Forming a TFC in a package such as forming TFC 111 or TFC 811 according to the embodiments of the invention may remove the requirement for the careful handling of the pre-formed capacitor, eliminate the requirement for an accurate alignment of the lamination process, and may reduce cost and fabrication time. Further, forming the capacitor in a package such as forming TFC 111 or TFC 811 according to the embodiments of the invention may allow for an easy formation of the vias. For example, the vias may be formed subsequently on the different layers as each layer is being formed.
Moreover, forming the capacitor in a package such as forming TFC 111 or TFC 811 according to the embodiments of the invention may allow for an in-situ process of forming the TFC on the substrate because the TFC does not have to be pre-formed in a separate process. The in-situ process of forming the TFC directly on the substrate may simply fabrication process and reduce fabrication time.
In
Activity 1120 of
Activity 1130 of method 1100 forms a dielectric layer on the first conductive layer. The dielectric layer may be formed by depositing a dielectric material directly on the first conductive layer. The dielectric material may include a ceramic material. In some embodiments, the dielectric material may be deposited at a temperature of about 200° C. or lower. At least a portion of the dielectric layer may directly contact the barrier layer through the opening of the first conductive layer. In some embodiments, activity 1130 may be used to form dielectric layer 220 as described in
Activity 1140 of method 1100 anneals the dielectric layer. A laser may be used to rapidly anneal the dielectric layer. In some embodiments, excimer laser annealing is used to locally anneal the dielectric layer to avoid thermal damage to the substrate portion underneath the dielectric layer. In some embodiments, the dielectric layer may be annealed at a temperature between about 600° C. and about 800° C. The dielectric layer may have a dielectric constant between about 400 and about 6000. In some embodiments, a heat dissipating device may be attached to the substrate to transfer or dissipate heat that is generated when the dielectric layer is annealed to further prevent thermal damage to the substrate. In some embodiments, activity 1140 may be used to anneal dielectric layer 220 as described in
Activity 1150 of method 1100 patterns the dielectric layer. The dielectric layer may be patterned before or after the dielectric layer is annealed. In some embodiments, activity 1150 may be used to pattern dielectric layer 220 as described in
Activity 1160 of method 1100 forms a second conductive layer on the dielectric layer. The second conductive layer may include copper, nickel, or other conductive materials. The second conductive layer may be patterned to separate a portion of the second conductive layer from the first conductive layer to create electrodes of a capacitor. In some embodiments, activity 1160 may be used to form conductive layer 222 as described in
Activity 1170 of method 1100 forms an additional substrate portion on the second conductive layer. The additional substrate portion may include an organic material, for example a polymer material. In some embodiments, activity 1170 may be used to form substrate portion 913 as described in
Activity 1180 of method 1100 forms a number of conductive paths to allow connections to the first and second conductive layers. The conductive paths may include conductive segments that are formed in one or more of the activities 1110 through 1170.
In the structure formed by method 1100, a portion of the first conductive layer, a portion of the dielectric layer, and a portion of the second conductive layer formed by activity 1110 through activity 1180 are parts of the integrated TFC that is embedded in the substrate of the package. As described in method 1100, each of the components of the integrated TFC is formed individually and directly on the substrate in an in-situ process and without using a lamination process.
The individual activities of method 1100 do not have to be performed in the order shown or in any particular order. Some activities may be repeated, and others may occur only once. Various embodiments may have more or fewer activities than those shown in
Processor 1210 may be a general purpose processor or an application specific integrated circuit (ASIC). Memory device 1220 may be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, a flash memory device, or a combination of these memory devices. I/O controller 1250 may include a communication module for wired or wireless communication.
One or more or the components shown in system 1200 may be included in one or more integrated circuit packages. For example, processor 1210, or memory device 1220, or at least a portion of I/O controller 1250, or a combination of these components may be included in an integrated circuit package such as package 100 of
System 1200 may include computers (e.g., desktops, laptops, hand-helds, servers, Web appliances, routers, etc.), wireless communication devices (e.g., cellular phones, cordless phones, pagers, personal digital assistants, etc.), computer-related peripherals (e.g., printers, scanners, monitors, etc.), entertainment devices (e.g., televisions, radios, stereos, tape and compact disc players, video cassette recorders, camcorders, digital cameras, MP3 (Motion Picture Experts Group, Audio Layer 3) players, video games, watches, etc.), and the like.
The above description and the drawings illustrate some specific embodiments of the invention sufficiently to enable those skilled in the art to practice the embodiments of the invention. Other embodiments may incorporate structural, logical, electrical, process, and other changes. In the drawings, like features or like numerals describe substantially similar features throughout the several views. Examples merely typify possible variations. Portions and features of some embodiments may be included in, or substituted for, those of others. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. Therefore, the scope of various embodiments is determined by the appended claims, along with the full range of equivalents to which such claims are entitled.
Claims
1. A method comprising: forming a first conductive layer over an organic substrate, such that the first conductive layer includes a first portion having an upper surface and a second portion having an upper surface and electrically isolated from the first portion, the organic substrate including multiple organic material layers; forming a dielectric layer conformal over the first conductive layer, such that the dielectric layer includes a dielectric portion between the first and second portions of the first conductive layer, the dielectric portion having an upper surface below the upper surface of each of the first and second portions of the first conductive layer; annealing the dielectric layer after the dielectric layer is formed over the first conductive layer and the organic substrate; and forming a second conductive layer over the dielectric layer, such that the second conductive layer includes an additional first portion and an additional second portion electrically isolated from the additional first portion, the additional first portion of the second conductive layer directly contacts the first portion of the first conductive layer, and the additional second portion of the second conductive layer directly contacts the second portion of the first conductive layer, wherein a part of the additional second portion of the second conductive layer is below the upper surface of each of the first and second portions of the first conductive layer and contacts the upper surface of the dielectric portion.
2. The method of claim 1 further comprising:
- forming a barrier layer before the first conductive layer is formed, wherein the barrier layer is between the organic substrate and the first conductive layer after the first conductive layer is formed.
3. The method of claim 2, wherein the barrier layer includes a material different from a material of the organic substrate to prevent thermal damage to the organic substrate.
4. The method of claim 3, wherein the dielectric layer includes a ceramic material.
5. The method of claim 4, wherein the first conductive layer, the dielectric layer, and the second conductive layer are parts of a capacitor.
6. The method of claim 1 further comprising:
- forming a first conductive path through a first opening of the dielectric layer, the first conductive path being coupled to the first conductive layer; and
- forming a second conductive path through a second opening of the dielectric layer, the second conductive path being coupled to the second conductive layer.
7. The method of claim 2 further comprising:
- forming an opening in the first conductive layer before the dielectric layer is formed to expose a portion of the barrier layer such that at least a portion of the dielectric layer directly contacts the barrier layer after the dielectric layer is formed.
8. The method of claim 1, wherein the dielectric layer is formed at a temperature lower than about 200° C.
9. The method of claim 8, wherein the dielectric layer is annealed at a temperature between about 600° C. and about 800° C.
10. The method of claim 9, wherein the dielectric layer has a dielectric constant between about 400 and about 6000.
11. The method of claim 10, wherein the dielectric layer is annealed by a laser.
12. A method comprising: forming a capacitor directly on a substrate of an integrated circuit package, the substrate including multiple organic material layers, wherein the capacitor includes a first electrode layer, a second electrode layer, and a dielectric layer between the first and second electrode layers, wherein each of the first and second electrode layers and the dielectric layer is directly formed on the substrate, wherein the capacitor is formed such that the first electrode layer includes a first portion having an upper surface and a second portion having an upper surface and electrically isolated from the first portion, the second electrode layer includes an additional first portion and an additional second portion electrically isolated from the additional first portion, the first portion of the second electrode layer directly contacts the first portion of the first electrode layer, and the additional second portion of the second electrode layer directly contacts the second portion of the first electrode layer, the dielectric layer including a dielectric portion between the first and second portions of the first electrode layer, the dielectric portion having an upper surface below the upper surface of each of the first and second portions of the first electrode layer, wherein a part of the additional second portion of the second electrode layer is below the upper surface of each of the first and second portions of the first electrode layer and contacts the upper surface of the dielectric portion.
13. The method of claim 12, wherein forming the capacitor includes: depositing the first electrode layer over the substrate; depositing the dielectric layer over the first electrode layer; annealing the dielectric layer after the dielectric layer is formed over the first conductive layer and the substrate; and depositing the second electrode layer over the dielectric layer.
14. The method of claim 13, further comprising: forming a barrier layer before the first electrode layer is formed such that the barrier layer is between the substrate and the first electrode layer after the first electrode layer is formed.
15. The method of claim 14 further comprising:
- transferring heat from the substrate to a heat dissipation device to reduce heat from the substrate when at least one of the first electrode layer, the dielectric layer, and the second electrode layer is formed.
16. The method of claim 14, wherein the dielectric material includes a ceramic material, and wherein the barrier layer includes an oxide material.
17. The method of claim 16, wherein the dielectric layer is formed at room temperature, and wherein the dielectric layer has a dielectric constant between about 2000 and about 4000 after the dielectric layer is annealed.
18. The method of claim 1 further comprising:
- forming a barrier layer before the first conductive layer is formed, the barrier layer including silicon oxide, wherein the barrier layer is between the organic substrate and the first conductive layer after the first conductive layer is formed.
19. The method of claim 1 further comprising:
- forming a barrier layer before the first conductive layer is formed, the barrier layer including silicon nitride, wherein the barrier layer is between the organic substrate and the first conductive layer after the first conductive layer is formed.
20. The method of claim 1 further comprising:
- forming a barrier layer before the first conductive layer is formed, the barrier layer including silicon oxynitride, wherein the barrier layer is between the organic substrate and the first conductive layer after the first conductive layer is formed.
21. The method of claim 1, wherein the multiple organic material layers include a first organic material layer and a second organic material layer, and wherein one of the first and second organic material layers includes a polymer.
6326258 | December 4, 2001 | Iizuka |
6326285 | December 4, 2001 | Behfar et al. |
6326316 | December 4, 2001 | Kiyotoshi et al. |
6477034 | November 5, 2002 | Chakravorty et al. |
6812130 | November 2, 2004 | Brase |
6829133 | December 7, 2004 | Wermer et al. |
6852416 | February 8, 2005 | Zhang et al. |
6955925 | October 18, 2005 | Donohue et al. |
7025607 | April 11, 2006 | Das et al. |
20020134581 | September 26, 2002 | Figueroa |
20030205406 | November 6, 2003 | Wermer et al. |
20040147139 | July 29, 2004 | Jiang |
20050094452 | May 5, 2005 | Lee et al. |
20050185486 | August 25, 2005 | Lee et al. |
20060000542 | January 5, 2006 | Min et al. |
20060091495 | May 4, 2006 | Pallanduz et al. |
20060097246 | May 11, 2006 | Palanduz et al. |
20060099803 | May 11, 2006 | Min |
20060220167 | October 5, 2006 | Min et al. |
20060228855 | October 12, 2006 | Min et al. |
20060281278 | December 14, 2006 | Min |
20060289976 | December 28, 2006 | Min |
20080145622 | June 19, 2008 | Roy et al. |
1992-9171 | October 1992 | KR |
WO-2007117873 | October 2007 | WO |
- “International Application No. PCT/2007/064275 PCT Search Report”, (Sep. 4, 2007),5 pgs.
- Achar, B. N., et al., “Phthalocyanine Polymers. II Synthesis and Characterization of Some Metal Phthalocyanine Sheet Oligomers.”, J. Polym. Sci. Polym. Chem., 20, (1982), 1785-1790.
- Min, Y., et al., “Integrated Thin Film Capacitors With Adhesion Holes for the Improvement of Adhesion Strength”, U.S. Appl. No. 11/304,649, filed Dec. 14, 2005.
- Min, Y., “Method of Providing a Via Opening in a Dielectric Film of a Thin Film of a Thin Film Capacitor”, U.S. Appl. No. 11/297,854, filed Dec. 8, 2005.
- Zhang, Q. M., et al., “An All-Organic Composite Actuator Material With a High Dielectric Constant”, Nature, 419(6904), (Sep. 19, 2002), 284-287.
- “U.S. Appl. No. 11/610,601 Non-Final Office Action mailed Aug. 24, 2009”, 15 Pgs.
- “U.S. Appl. No. 11/610,601, Final Office Action mailed Jan. 6, 2010”, 19 pgs.
- “U.S. Appl. No. 11/610,601, Response filed Sep. 24, 2009 to Non Final Office Action mailed Aug. 24, 2009”, 10 pgs.
- “Chinese Application Serial No. 200780010702.6, Office Action mailed Jun. 8, 2010”, 15 pgs.
- “Korean Application Serial No. 2008-7023433, Office Action mailed Aug. 4, 2010”, 7 pgs.
- “Korean Application Serial No. 2008-7023433, Office Action mailed Jan. 12, 2011”, 7 pgs.
- “Taiwan Application Serial No. 96109527 ,Office Action mailed Nov. 11, 2010”, 9 pgs.
Type: Grant
Filed: Mar 27, 2006
Date of Patent: Aug 23, 2011
Patent Publication Number: 20070222030
Assignee: Intel Corporation (Santa Clara, CA)
Inventors: Islam A. Salama (Chandler, AZ), Yongki Min (Phoenix, AZ)
Primary Examiner: Matthew C Landau
Assistant Examiner: Daniel Luke
Attorney: Schwegman, Lundberg & Woessner, P.A.
Application Number: 11/277,606
International Classification: H01L 21/20 (20060101);