Conductor-insulator-semiconductor Electrode, E.g., Mis Contact (epo) Patents (Class 257/E21.063)
  • Patent number: 10755920
    Abstract: A method for manufacturing a semiconductor device includes: thermally-oxidizing a surface of a to-be-processed base made by SiC as body material to form a silicon dioxide film, by supplying gas containing oxidation agent to the surface of the to-be-processed base; exchanging ambient gas containing the oxidation agent after forming the silicon dioxide film, by decreasing a partial pressure of the oxidation agent in the ambient gas to 10 Pa or less; and after exchanging the ambient gas, lowering a temperature of the to-be-processed base.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: August 25, 2020
    Assignees: FUJI ELECTRIC CO., LTD., OSAKA UNIVERSITY
    Inventors: Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Mitsuru Sometani
  • Patent number: 10079298
    Abstract: A semiconductor device includes on an n-type semiconductor substrate of silicon carbide, an n-type semiconductor layer, a p-type base region, an n-type source region, a p-type contact region, a gate insulating film, a gate electrode, and a source electrode. The semiconductor device has a drain electrode on a back surface of the semiconductor substrate. On a surface of the gate electrode, an interlayer insulating film is disposed. The interlayer insulating film has plural layers among which, one layer is formed by a silicon nitride film. With such a structure, degradation of semiconductor device properties are suppressed. Further, increases in the number of processes at the time of manufacturing are suppressed.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 18, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Akimasa Kinoshita, Yasuyuki Hoshi, Yuichi Harada, Yoshiyuki Sakai, Masanobu Iwaya, Mina Ryo
  • Patent number: 10002931
    Abstract: A silicon carbide semiconductor device capable of effectively increasing a threshold voltage and a method for manufacturing the silicon carbide semiconductor device. The silicon carbide semiconductor device includes a gate insulating film formed on part of surfaces of the well regions and the source region; and a gate electrode formed on a surface of the gate insulating film so as to be opposite to an end portion of the source region and the well regions. Furthermore, the gate insulating film has, in an interface region between the well regions and the gate insulating film, defects that each form a first trap having an energy level deeper than a conduction band end of silicon carbide and that include a bond between silicon and hydrogen.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 19, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masayuki Furuhashi, Naruhisa Miura
  • Patent number: 9922822
    Abstract: On a silicon carbide semiconductor substrate, heat treatment is performed after one layer or two or more layers of an oxide film, a nitride film, or an oxynitride film are formed as a gate insulating film. The heat treatment after the gate insulating film is formed is performed for a given period in an atmosphere that includes H2 and H2O without including O2. As a result, hydrogen or hydroxyl groups can be segregated in a limited region that includes the interface of the silicon carbide substrate and the gate insulating film. The width of the region to which the hydrogen or hydroxyl groups is segregated is from 0.5 nm to 10 nm. In such a manner, the interface state density can be lowered and high channel mobility can be realized.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 20, 2018
    Assignees: FUJI ELECTRIC CO., LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Youichi Makifuchi, Takashi Tsutsumi, Tsuyoshi Araoka, Mitsuo Okamoto, Kenji Fukuda
  • Patent number: 9577174
    Abstract: A process for forming a doped nc-Si thin film thermoelectric material. A nc-Si thin film is slowly deposited on a substrate, either by hot-wire CVD (HWCVD) with a controlled H2:SiH4 ratio R=6-10 or by plasma-enhanced (PECVD) with a controlled R=80-100, followed by ion implantation of an n- or p-type dopant and a final annealing step to activate the implanted dopants and to remove amorphous regions. A doped nc-Si thin film thermoelectric material so formed has both a controllable grain size of from a few tens of nm to 3 nm and a controllable dopant distribution and thus can be configured to provide a thermoelectric material having predetermined desired thermal and/or electrical properties. A final annealing step is used to activate the dopants and remove any residual amorphous regions.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: February 21, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Thomas H. Metcalf, Daniel R. Queen, Battogtokh Jugdersuren, Qi Wang, William Nemeth
  • Patent number: 9368351
    Abstract: [Problem] To provide an SiC semiconductor device, with which stabilization of high-temperature operation can be achieved by decreasing mobile ions in a gate insulating film, and a method for manufacturing the SiC semiconductor device. [Solution Means] A semiconductor device 1 has an MIS structure including an SiC epitaxial layer 3, a gate insulating film 9 and a gate electrode 10 formed on the gate insulating film 9. A gate insulating film 9 includes a silicon oxide film in contact with the SiC epitaxial layer 3. In the MIS structure, an area density QM of positive mobile ions in the gate insulating film 9 is made no more than 1×1012 cm?2.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 14, 2016
    Assignee: ROHM CO., LTD.
    Inventors: Heiji Watanabe, Takayoshi Shimura, Takuji Hosoi, Shuhei Mitani, Yuki Nakano, Ryota Nakamura, Takashi Nakamura
  • Patent number: 8742475
    Abstract: In one aspect of the present invention, a field effect transistor (FET) device includes a first FET including a dielectric layer disposed on a substrate, a first portion of a first metal layer disposed on the dielectric layer, and a second metal layer disposed on the first metal layer, a second FET including a second portion of the first metal layer disposed on the dielectric layer, and a boundary region separating the first FET from the second FET.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8736023
    Abstract: A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8461632
    Abstract: A method of manufacturing an SiC semiconductor device according to the present invention includes the steps of (a) by using a single mask, etching regions of an SiC semiconductor layer which serve as an impurities implantation region and a mark region, to form recesses, (b) by using the same mask as in the step (a), performing ion-implantation in the recesses of the regions which serve as the impurities implantation region and the mark region, at least from an oblique direction relative to a surface of the SiC semiconductor layer and (c) positioning another mask based on the recess of the region which serves as the impurities implantation region or the mark region, and performing well implantation in a region containing the impurities implantation region.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Noriaki Tsuchiya, Yoichiro Tarui
  • Patent number: 8435878
    Abstract: A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8377812
    Abstract: The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 ?m.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Kevin Sean Matocha, Gregory Keith Dudoff, William Gregg Hawkins, Zachary Matthew Stum, Stephen Daley Arthur, Dale Marius Brown
  • Patent number: 8026145
    Abstract: A process for the preparation of low resistivity arsenic or phosphorous doped (N+/N++) silicon wafers which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, reliably form oxygen precipitates.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 27, 2011
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Vladimir Voronkov, Gabriella Borionetti
  • Publication number: 20100075474
    Abstract: A gate electrode 18 formed on a silicon carbide substrate 11 includes a silicon lower layer 18A and a silicide upper layer 18B provided on the silicon lower layer 18A, the silicide upper layer 18B being made of a compound of a first metal and silicon. A source electrode 1as formed on the surface of the silicon carbide substrate 11 and in contact with an n type source region and a p+ region contains second metal silicide different from the first metal silicide. Side faces of the silicon lower layer 18A are covered with an insulator.
    Type: Application
    Filed: August 1, 2008
    Publication date: March 25, 2010
    Inventors: Chiaki Kudou, Kazuya Utsunomiya, Masashi Hayashi
  • Patent number: 7514756
    Abstract: A semiconductor device includes a substrate, a semiconductor region provided in the substrate, a group of transistors including a plurality of MIS transistors and provided in the semiconductor region, the MIS transistors including a plurality of gate electrodes which extend in a first direction and are provided on the semiconductor region via gate insulation films, an insulation film provided on the group of transistors, and a first contact layer and a second contact layer extending in the first direction and provided on the semiconductor region at opposite sides of the group of transistors.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: April 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Amane Oishi
  • Patent number: 7361555
    Abstract: A trench-gate transistor has an integral first layer of silicon dioxide extending from the upper surface of the semiconductor body over top corners of each cell array trench. The integral first layer also provides a thin gate dielectric insulating layer for a thick gate electrode and the integral first layer also provides a first part of a stack of materials which constitute a thick trench sidewall insulating layer for a thin field plate. Consistent with an example embodiment, there is a method of manufacture. A hardmask used to etch the trenches is removed before providing the silicon dioxide layer. The layer is then protected by successive selective etching of the oxide layer and the nitride layer in the upper parts of the trenches. After the gate electrodes are provided, layers for the channel accommodating regions and source regions may be formed through the oxide layer on the upper surface.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: April 22, 2008
    Assignee: NXP B.V.
    Inventors: Gerrit E. J. Koops, Michael A. A. In 'T Zandt
  • Patent number: 7338869
    Abstract: A semiconductor device and a method of manufacturing the device using a (000-1)-faced silicon carbide substrate are provided. A SiC semiconductor device having a high voltage resistancehigh blocking voltage and high channel mobility is manufactured by optimizing the heat-treatment method used following the gate oxidation. The method of manufacturing a semiconductor device includes the steps of forming a gate insulation layer on a semiconductor region formed of silicon carbide having a (000-1) face orientation, forming a gate electrode on the gate insulation layer, forming an electrode on the semiconductor region, cleaning the semiconductor region surface. The gate insulation layer is formed in an atmosphere containing 1% or more H2O (water) vapor at a temperature of from 800° C. to 1150° C. to reduce the interface trap density of the interface between the gate insulation layer and the semiconductor region.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: March 4, 2008
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Fukuda, Junji Senzaki
  • Patent number: 7315051
    Abstract: A method of forming a source/drain having a reduced junction capacitance and a transistor employing the same. In one embodiment, the method of forming the source/drain includes forming a recess in a substrate adjacent a gate of the transistor and forming a deep doped region below a bottom surface of the recess. The method also includes epitaxially growing a semiconductor material within the recess and forming a lightly doped drain region adjacent the gate.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: January 1, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shui-Ming Cheng
  • Patent number: 7235438
    Abstract: In one aspect the present invention provides a method for manufacturing a silicon carbide semiconductor device. A layer of silicon dioxide is formed on a silicon carbide substrate and nitrogen is incorporated at the silicon dioxide/silicon carbide interface. In one embodiment, nitrogen is incorporated by annealing the semiconductor device in nitric oxide or nitrous oxide. In another embodiment, nitrogen is incorporated by annealing the semiconductor device in ammonia. In another aspect, the present invention provides a silicon carbide semiconductor device that has a 4H-silicon carbide substrate, a layer of silicon dioxide disposed on the 4H-silicon carbide substrate and a region of substantial nitrogen concentration at the silicon dioxide/silicon carbide interface.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: June 26, 2007
    Assignees: Vanderbilt University, Auburn University
    Inventors: Gilyong Chung, Chin-Che Tin, John R. Williams, Kyle McDonald, Massimiliano Di Ventra, Robert A. Weller, Socrates T. Pantelides, Leonard C. Feldman