Deposition On Insulating Or Metallic Substrate (epo) Patents (Class 257/E21.099)
  • Patent number: 8853030
    Abstract: The present invention discloses a method for production of selective growth masks using underfill dispensing and sintering. The method includes steps of: providing a sapphire substrate, growing a gallium nitride base layer on the sapphire substrate, coating a photoresist layer, performing imprint lithography, exposure and development, performing underfill dispensing, and performing sintering. The production method of the present invention can be applied in the atmosphere, and vacuum chambers as known production approaches are unnecessary. The selective growth masks produced by the method of the present invention make the growth of nanowires cylindrical and perpendicular to the gallium nitride base layer, and each nanowire is parallel to one another.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: October 7, 2014
    Assignee: Nanocrystal Asia Inc.
    Inventors: Chong-Ming Lee, Andrew Eng-Jia Lee
  • Patent number: 8823025
    Abstract: III-N material grown on a silicon substrate includes a single crystal buffer positioned on a silicon substrate. The buffer is substantially crystal lattice matched to the surface of the silicon substrate and includes aluminum oxynitride adjacent the substrate and aluminum nitride adjacent the upper surface. A first layer of III-N material is positioned on the upper surface of the buffer. An inter-layer of aluminum nitride (AlN) is positioned on the first III-N layer and an additional layer of III-N material is positioned on the inter-layer. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 2, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Michael Lebby, Andrew Clark, Rytis Dargis
  • Patent number: 8623747
    Abstract: A method of forming a template on a silicon substrate includes providing a single crystal silicon substrate. The method further includes forming an aluminum oxide coating on the surface of the silicon substrate, the aluminum oxide being substantially crystal lattice matched to the surface of the silicon substrate and epitaxially depositing a layer of aluminum nitride (AlN) on the aluminum oxide coating substantially crystal lattice matched to the surface of the aluminum nitride.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 7, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Michael Lebby, Andrew Clark
  • Patent number: 8492243
    Abstract: Semiconductor structures are produced by providing a 3C—SiC semiconductor layer containing a monocrystalline 3C—SiC layer by implantation of carbon in silicon on a first silicon substrate and applying an epitaxial layer of nitride compound semiconductor suitable for the generation of optoelectronic components onto the 3C—SiC semiconductor layer structure, wherein the epitaxial layer of nitride semiconductor is transferred onto a second substrate by bonding the nitride layer onto the second substrate surface and mechanically or chemically removing silicon and layers containing SiC, the second substrate being a metal with a reflectivity ?80% or being substantially transparent.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 23, 2013
    Assignee: Siltronic AG
    Inventors: Maik Haeberlen, Brian Murphy
  • Patent number: 8188573
    Abstract: A nitride semiconductor substrate and a method for manufacturing the same are provided. The nitride semiconductor substrate includes an epitaxy substrate, a nitride pillar layer, a nitride semiconductor layer, and a mask layer. The nitride pillar layer includes a plurality of first patterned arranged pillars and a plurality of second patterned arranged pillars. The nitride pillar layer is formed on the epitaxy substrate. A width of a cross-section of each of the second patterned arranged pillars is smaller than a width of a cross-section of each of the first patterned arranged pillars, and a distance among each of the second patterned arranged pillars is longer than a distance among each of the first patterned arranged pillars. Surfaces of the epitaxy substrate, the first patterned arranged pillars, and the second patterned arranged pillars are covered by the mask layer. The nitride semiconductor layer is formed on the nitride pillar layer.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Der Guo, Suh-Fang Lin, Wei-Hung Kuo
  • Publication number: 20120104556
    Abstract: The present power device includes a metal-made support substrate, and a group III nitride conductive layer, a group III nitride active layer and an electrode successively formed on one main surface side of the metal-made support substrate. In addition, the present method for manufacturing a power device includes the steps of preparing a conductive-layer-joined metal-made support substrate in which a group III nitride conductive layer is joined to a metal-made support substrate, forming a group III nitride active layer on the group III nitride conductive layer, and forming an electrode on the group III nitride active layer. Thus, an inexpensive power device low in on-resistance and a method for manufacturing the same can be provided.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Makoto KIYAMA, Hiromu SHIOMI, Kazuhide SUMIYOSHI, Akihiro HACHIGO
  • Publication number: 20110195562
    Abstract: [Object] To provide a sputtering apparatus, a thin-film forming method, and a manufacturing method for a field effect transistor, which are capable of reducing damage of a base layer. [Solving Means] A sputtering apparatus according to an embodiment of the present invention is a sputtering apparatus for forming a thin-film on a surface to be processed of a substrate 10, and includes a vacuum chamber 61, a supporting portion 93, a target 80, and a magnet 83. The magnet 83 generates plasma forming a region to be sputtered 80a, and moves the region to be sputtered 80abetween a first position in which the region to be sputtered 80a is not opposed to the surface to be processed and a second position in which the region to be sputtered is opposed to the surface to be processed. With this, it is possible to weaken incident energy of sputtered particles incident on the surface to be processed of the substrate 10 from the region to be sputtered 80a, and to protect the base layer.
    Type: Application
    Filed: October 14, 2009
    Publication date: August 11, 2011
    Applicant: ULVAC, INC.
    Inventors: Takaomi Kurata, Junya Kiyota, Makoto Arai, Yasuhiko Akamatsu, Satoru Ishibashi, Kazuya Saito
  • Patent number: 7955959
    Abstract: A method for manufacturing GaN-based film LED based on masklessly transferring photonic crystal structure is disclosed. Two dimensional photonic crystals are formed on a sapphire substrate. Lattice quality of GaN-based epitaxy on the sapphire substrate is improved, and the internal quantum efficiency of GaN-based LED epitaxy is increased. After the GaN-based film is transferred onto heat sink substrate, the two dimensional photonic crystals structure is masklessly transferred onto the light exiting surface of the GaN-based film by using different etching rates between the GaN material and the SiO2 mask, so that light extraction efficiency of the GaN-based LED is improved. That is, the GaN-based film LED according to the invention has a relatively high illumination efficiency and heat sink.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: June 7, 2011
    Assignee: Xiamen Sanan Optoelectronics Technology Co., Ltd.
    Inventors: Jyh Chiarng Wu, Xuejiao Lin, Qunfeng Pan, Meng Hsin Yeh, Huijun Huang
  • Patent number: 7811902
    Abstract: A method for manufacturing a nitride based single crystal substrate and a method for manufacturing a nitride based light emitting diode using the same. The method for manufacturing the nitride based single crystal substrate includes forming a ZnO layer on a base substrate; forming a low-temperature nitride buffer layer on the ZnO layer using dimethyl hydragine (DMHy) as an N source; growing a nitride single crystal on the low-temperature nitride buffer layer; and separating the nitride single crystal from the base substrate by chemically eliminating the ZnO layer.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 12, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Dong Joon Kim
  • Patent number: 7790584
    Abstract: A method of growing a semi-polar nitride single crystal thin film. The method includes forming a semi-polar nitride single crystal base layer on an m-plane hexagonal system single crystal substrate, forming a dielectric pattern layer on the semi-polar nitride single crystal base layer, and growing the semi-polar nitride single crystal thin film on the semi-polar nitride single crystal base layer having the dielectric pattern layer in a lateral direction. The growing of the semi-polar nitride single crystal thin film in a lateral direction includes primarily growing the semi-polar nitride single crystal thin film in the lateral direction such that part of a growth plane on the semi-polar nitride single crystal base layer has an a-plane, and secondarily growing the semi-polar nitride single crystal thin film in the lateral direction such that sidewalls of the primarily grown semi-polar nitride single crystal thin film are combined to have a (11 22) plane.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: September 7, 2010
    Assignee: Samsung Led Co., Ltd.
    Inventors: Ho Sun Paek, Jeong Wook Lee, Youn Joon Sung
  • Patent number: 7439165
    Abstract: A process for forming both tensile and compressive strained silicon layers to accommodate channel regions of MOSFET or CMOS devices has been developed. After formation of shallow trench isolation structures as well as application of high temperature oxidation and activation procedures, the fabrication sequences used to obtain the strained silicon layers is initiated. A semiconductor alloy layer is deposited followed by an oxidation procedure used to segregate a germanium component from the overlying semiconductor alloy layer into an underlying single crystalline silicon body. The level of germanium segregated into the underlying single crystalline silicon body determines the level of strain, which is in tensile state of a subsequently selectively grown silicon layer.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: October 21, 2008
    Assignee: Agency for Sceince, Technology and Reasearch
    Inventors: Patrick Guo Oiang Lo, Lakshmi Kanta Bera, Wei Yip Loh, Balakumar Subramanian, Narayanan Balasubramanian
  • Patent number: 7244977
    Abstract: A semiconductor memory device includes a vertical MISFET having a source region, a channel forming region, a drain region, and a gate electrode formed on a sidewall of the channel forming region via a gate insulating film. In manufacturing the semiconductor memory device, the vertical MISFET in which leakage current (off current) is less can be realized by: counter-doping boron of a conductivity type opposite to that of phosphorus diffused into a poly-crystalline silicon film (10) constituting the channel forming region from an n type poly-crystalline silicon film (7) constituting the source region of the vertical MISFET, and the above-mentioned poly-crystalline silicon film (10); and reducing an effective impurity concentration in the poly-crystalline silicon film (10).
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: July 17, 2007
    Assignee: Elpida Memory, Inc.
    Inventors: Tsuyoshi Tabata, Kazuo Nakazato, Hiroshi Kujirai, Masahiro Moniwa, Hideyuki Matsuoka, Teruo Kisu, legal representative, Haruko Kisu, legal representative, Satoru Haga, Teruaki Kisu, deceased