Using Selective Deposition Of Single Crystal Silicon, I.e., Seg Technique (epo) Patents (Class 257/E21.571)
  • Patent number: 11670686
    Abstract: A method for forming III-N structures of desired nanoscale dimensions is disclosed. The method is based on, first, providing a material to serve as a shell inside which a cavity can be formed, followed by using epitaxial growth to fill the cavity with III-N semiconductor(s). Filling a cavity of specified shape and dimensions with a III-N semiconductor results in formation of a III-N structure which has shape and dimensions defined by those of the cavity in the shell, advantageously enabling formation of III-N structures on a nanometer scale without having to rely on etching of III-N materials. Ensuring that at least a part of the III-N material in the cavity is formed by lateral epitaxial overgrowth allows obtaining high quality III-N semiconductor in that part without having to grow a thick layer. Disclosed III-N nanostructures can serve as foundation for fabricating III-N device components, e.g. III-N transistors, having non-planar architecture.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 9508800
    Abstract: An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5×1018 dopant atoms per cm3. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: November 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lucian Shifren, Pushkar Ranade, Paul E. Gregory, Sachin R. Sonkusale, Weimin Zhang, Scott E. Thompson
  • Patent number: 8673737
    Abstract: An array or moat isolation structure for eDRAM and methods of manufacture is provided. The method includes forming a deep trench for a memory array and an isolation region. The method includes forming a node dielectric on exposed surfaces of the deep trench for the memory array and the isolation region. The method includes filling remaining portions of the deep trench for the memory array with a metal, and lining the deep trench of the isolation region with the metal. The method includes filling remaining portions of the deep trench for the isolation region with a material, on the metal within the deep trench for the memory array. The method includes recessing the metal within the deep trench for the memory array and the isolation region. The metal in the deep trench of the memory array is recessed to a greater depth than the metal in the isolation region.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Naoyoshi Kusaba, Oh-jung Kwon, Zhengwen Li, Hongwen Yan
  • Patent number: 8673706
    Abstract: The invention includes methods of forming layers comprising epitaxial silicon. In one implementation, an opening is formed within a first material received over a monocrystalline material. Opposing sidewalls of the opening are lined with a second material, with monocrystalline material being exposed at a base of the second material-lined opening. A silicon-comprising layer is epitaxially grown from the exposed monocrystalline material within the second material-lined opening. At least a portion of the second material lining is in situ removed. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: March 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Nirmal Ramaswamy, Gurtej S. Sandhu, Chris M. Carlson, F. Daniel Gealy
  • Patent number: 8492273
    Abstract: A method is disclosed comprising providing a substrate comprising an insulating material and a second semiconductor material and pre-treating the substrate with a plasma produced from a gas selected from the group consisting of a carbon-containing gas, a halogen-containing gas, and a carbon-and-halogen containing gas. The method further comprises depositing a first semiconductor material on the pre-treated substrate by chemical vapor deposition, where the first semiconductor material is selectively deposited on the second semiconductor material. The method may be used to manufacture a semiconducting device, such as a microelectromechanical system device, or to manufacture a semiconducting device feature, such as an interconnect.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: July 23, 2013
    Assignee: IMEC
    Inventors: George Bryce, Simone Severi, Peter Verheyen
  • Patent number: 8445336
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 ? to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 21, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
  • Patent number: 8357562
    Abstract: A structure to diminish high voltage instability in a high voltage device when under stress includes an amorphous silicon layer over a field oxide on the high voltage device.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 22, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jifa Hao
  • Patent number: 8288757
    Abstract: A recess along a sidewall is formed in a pMOS region and an nMOS region. An SiC layer of which thickness is thicker than a depth of the recess is formed in the recess. A sidewall covering a part of the SiC layer is formed at both lateral sides of a gate electrode in the pMOS region. A recess is formed by selectively removing the SiC layer in the pMOS region. A side surface of the recess at the gate insulating film side is inclined so that the upper region of the side surface, the closer to the gate insulating film in a lateral direction at a region lower than the surface of the silicon substrate. An SiGe layer is formed in the recess in the pMOS region.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 16, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hiroyuki Ohta, Yosuke Shimamune
  • Patent number: 8232149
    Abstract: An SOI device includes an SOI substrate having a stacked structure including a buried oxide layer and a first silicon layer sequentially stacked on a silicon substrate. The SOI substrate possesses grooves having a depth that extends from an upper surface of the first silicon layer to a partial depth of the buried oxide layer. An insulation layer is formed on the lower surfaces of the grooves and a second silicon layer is formed filling the grooves having the insulation layer formed thereon. Gates are formed on the second silicon layer and junction regions are formed in the first silicon layer on both sides of the gates to contact the insulation layer.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 31, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Bo Youn Kim
  • Patent number: 8093150
    Abstract: Methods of manufacturing semiconductor devices are disclosed. A preferred embodiment comprises a method of manufacturing a semiconductor device, the method including providing a workpiece, disposing an etch stop layer over the workpiece, and disposing a material layer over the etch stop layer. The material layer includes a transition layer. The method includes patterning the material layer partially with a first pattern, and patterning the material layer partially with a second pattern. Patterning the material layer partially with the second pattern further comprises simultaneously completely patterning the material layer with the first pattern.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies AG
    Inventors: Michael Beck, Erdem Kaltalioglu
  • Patent number: 7825476
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
  • Patent number: 7683362
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Hiroyuki Ohta, Takashi Sakuma, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7605074
    Abstract: Provided is a CMP method. According to the CMP method, an interlayer insulating layer having two or more layers is etched to form a trench and/or via hole, and a combined thickness of the two or more layers are measured. A barrier metal layer and a metal layer are sequentially formed in the trench and/or via hole. Portions of the metal layer, the barrier metal layer and the interlayer insulating layer are removed. After that, the combined thickness of the two or more insulating layers is measured again.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: October 20, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Young Seok Jeong
  • Patent number: 7588980
    Abstract: A first aspect of the invention provides a method of selectively forming an epitaxial layer on a substrate. The method includes heating the substrate to a temperature of less than about 800° C. and employing both silane and dichlorosilane as silicon sources during epitaxial film formation. Numerous other aspects are provided.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: September 15, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Andrew M. Lam
  • Patent number: 7579254
    Abstract: A process for realizing an integrated electronic circuit makes it possible to obtain transistors with p-type conduction and transistors with n-type conduction, in respective active zones having crystal orientations adapted to each conduction type. In addition, each active zone is electrically insulated from a primary substrate of the circuit, so that the entire circuit is compatible with SOI technology.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: August 25, 2009
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Frederic Boeuf
  • Patent number: 7579617
    Abstract: A method of fabricating a semiconductor device is disclosed that is able to suppress a short channel effect and improve carrier mobility. In the method, trenches are formed in a silicon substrate corresponding to a source region and a drain region. When epitaxially growing p-type semiconductor mixed crystal layers to fill up the trenches, the surfaces of the trenches are demarcated by facets, and extended portions of the semiconductor mixed crystal layers are formed between bottom surfaces of second side wall insulating films and a surface of the silicon substrate, and extended portion are in contact with a source extension region and a drain extension region.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: August 25, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Yosuke Shimamune, Hiroyuki Ohta, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
  • Patent number: 7573123
    Abstract: Provided are a semiconductor device, and a method of forming the same. In one embodiment, the semiconductor device includes a semiconductor layer, first and second semiconductor fins, an insulating layer, and an inter-fin connection member. The first and second semiconductor fins are placed on the semiconductor layer, and have different crystal directions. The first semiconductor fin is connected to the semiconductor layer, and has the equivalent crystal direction as that of the semiconductor layer. The insulating layer is interposed between the second semiconductor fin and the semiconductor layer, and has an opening in which the first semiconductor fin is inserted. The inter-fin connection member connects the first semiconductor fin and the second semiconductor fin together on the insulating layer.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Park, Kyoo-Chul Cho, Hee-Sung Kim, Tae-Soo Kang, Sam-Jong Choi
  • Patent number: 7531395
    Abstract: Methods of forming layers comprising epitaxial silicon, and methods of forming field effect transistors are disclosed. A method of forming a layer comprising epitaxial silicon includes etching an opening into a silicate glass-comprising material received over a monocrystalline material. The etching is conducted to the monocrystalline material effective to expose the monocrystalline material at a base of the opening. A silicon-comprising layer is epitaxially grown within the opening from the monocrystalline material exposed at the base of the opening. The silicate glass-comprising material is etched from the substrate effective to leave a free-standing projection of the epitaxially grown silicon-comprising layer projecting from the monocrystalline material which was at the base of the opening. Other implementations and aspects are contemplated.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: May 12, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Eric R. Blomiley, Gurtej S. Sandhu, Cem Basceri, Nirmal Ramaswamy
  • Patent number: 7528493
    Abstract: A damascene wire and method of forming the wire. The method including: forming a mask layer on a top surface of a dielectric layer; forming an opening in the mask layer; forming a trench in the dielectric layer where the dielectric layer is not protected by the mask layer; recessing the sidewalls of the trench under the mask layer; forming a conformal conductive liner on all exposed surface of the trench and the mask layer; filling the trench with a core electrical conductor; removing portions of the conductive liner extending above the top surface of the dielectric layer and removing the mask layer; and forming a conductive cap on a top surface of the core conductor. The structure includes a core conductor clad in a conductive liner and a conductive capping layer in contact with the top surface of the core conductor that is not covered by the conductive liner.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Andrew P. Cowley, Timothy J. Dalton, Meeyoung H. Yoon
  • Publication number: 20090108395
    Abstract: The disclosed semiconductor device includes a plurality of active patterns including first active patterns which protrude from a semiconductor substrate and have a first width and second active patterns which are connected to upper ends of the respective first active patterns and have a second width greater than the first width. The semiconductor device further includes isolation patterns respectively located between the active patterns to insulate the active patterns from one another.
    Type: Application
    Filed: May 9, 2008
    Publication date: April 30, 2009
    Inventor: Shin Gyu CHOI
  • Patent number: 7525137
    Abstract: There is provided a monolithic three dimensional TFT mask ROM array. The array includes a plurality of device levels. Each of the plurality of device levels contains a first set of enabled TFTs and a second set of partially or totally disabled TFTs.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: April 28, 2009
    Assignee: Sandisk Corporation
    Inventors: Andrew J. Walker, Christopher Petti
  • Patent number: 7364990
    Abstract: First and second preliminary epitaxial layers are grown from single-crystalline seeds in openings in an insulation layer until the first and second epitaxial layers are connected to each other. While the first and second preliminary epitaxial layers are being grown, a connection structure of a material having an amorphous state is formed on a portion of the insulation layer located between the first and second preliminary epitaxial layers. The material having an amorphous state is then changed into material having a single-crystalline state. Thus, portions of the first and second epitaxial layers are connected to each other through the connection structure so that the epitaxial layers and the connection structure constitute a single-crystalline structure layer that is free of voids for use as a channel layer or the like of a semiconductor device.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee