Substrate Is Group Ii-vi Semiconductor (epo) Patents (Class 257/E21.698)
-
Patent number: 8685848Abstract: A silicon oxide film is formed on an epitaxial layer by dry thermal oxidation, an ohmic electrode is formed on a back surface of a SiC substrate, an ohmic junction is formed between the ohmic electrode and the back surface of the SiC substrate by annealing the SiC substrate, the silicon oxide film is removed, and a Schottky electrode is formed on the epitaxial layer. Then, a sintering treatment is performed to form a Schottky junction between the Schottky electrode and the epitaxial layer.Type: GrantFiled: January 23, 2012Date of Patent: April 1, 2014Assignee: Mitsubishi Electric CorporationInventors: Yoshinori Matsuno, Yoichiro Tarui
-
Publication number: 20130069052Abstract: A memory cell is disclosed. The memory cell includes a transistor and a capacitor. The transistor includes a source region, a drain region, and a channel region including an indium gallium zinc oxide (IGZO, which is also known in the art as GIZO) material. The capacitor is in operative communication with the transistor, and the capacitor includes a top capacitor electrode and a bottom capacitor electrode. Also disclosed is a semiconductor device including a dynamic random access memory (DRAM) array of DRAM cells. Also disclosed is a system including a memory array of DRAM cells and methods for forming the disclosed memory cells and arrays of cells.Type: ApplicationFiled: September 16, 2011Publication date: March 21, 2013Applicant: MICRON TECHNOLOGY, INC.Inventor: Gurtej S. Sandhu
-
Publication number: 20120168744Abstract: A method of fabricating MO TFTs on transparent substrates by positioning opaque gate metal on the front surface of the substrate defining a gate area, depositing gate dielectric material on the front surface of the substrate, overlying the gate metal and a surrounding area, and depositing metal oxide semiconductor material on the gate dielectric material. Depositing etch stop material on the semiconductor material. Positioning photoresist on the etch stop material, the etch stop material and the photoresist being selectively removable, and the photoresist defining an isolation area in the semiconductor material. Removing uncovered portions of the etch stop. Exposing the photoresist from the rear surface of the substrate using the gate metal as a mask and removing exposed portions so as to leave the etch stop material uncovered except for a portion overlying and aligned with the gate metal. Etching uncovered portions of the semiconductor material to isolate the TFT.Type: ApplicationFiled: August 2, 2011Publication date: July 5, 2012Inventors: Chan-Long Shieh, Gang Yu, Fatt Foong
-
Publication number: 20120052606Abstract: An object is to simplify a manufacturing process of a transistor, and to manufacture a light-emitting display device not only with a smaller number of photomasks compared to the number of photomasks used in the conventional method but also without an additional step. By using an intrinsic or substantially intrinsic high-resistance oxide semiconductor for a semiconductor layer included in the transistor, so that a step of processing the semiconductor layer into an island shape in each transistor can be omitted. Unnecessary portions of the semiconductor layer are etched away at the same time as a step of forming an opening in an insulating layer formed in an upper layer of the semiconductor layer, so that the number of photolithography steps is reduced.Type: ApplicationFiled: August 24, 2011Publication date: March 1, 2012Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Shunpei Yamazaki
-
Publication number: 20110215317Abstract: Disclosed is a semiconductor device including an insulating layer, a source electrode and a drain electrode embedded in the insulating layer, an oxide semiconductor layer in contact with the insulating layer, the source electrode, and the drain electrode, a gate insulating layer covering the oxide semiconductor layer, and a gate electrode over the gate insulating layer. The upper surface of the surface of the insulating layer, which is in contact with the oxide semiconductor layer, has a root-mean-square (RMS) roughness of 1 nm or less. There is a difference in height between an upper surface of the insulating layer and each of an upper surface of the source electrode and an upper surface of the drain electrode. The difference in height is preferably 5 nm or more. This structure contributes to the suppression of defects of the semiconductor device and enables their miniaturization.Type: ApplicationFiled: March 1, 2011Publication date: September 8, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Shunpei YAMAZAKI, Hiromichi GODO
-
Publication number: 20110104841Abstract: A method of fabricating a thin film transistor for an active matrix display using reduced masking operations includes patterning a gate on a substrate. A gate dielectric is formed over the gate and a semiconducting metal oxide is deposited on the gate dielectric. A channel protection layer is patterned on the semiconducting metal oxide overlying the gate to define a channel area and to expose the remaining semiconducting metal oxide. A source/drain metal layer is deposited on the structure and etched through to the channel protection layer above the gate to separate the source/drain metal layer into source and drain terminals and the source/drain metal layer and the semiconducting metal oxide are etched through at the periphery to isolate the transistor. A nonconductive spacer is patterned on the transistor and portions of the surrounding source/drain metal layer.Type: ApplicationFiled: November 4, 2009Publication date: May 5, 2011Inventors: Chan-Long Shieh, Fatt Foong, Gang Yu
-
Patent number: 7696073Abstract: The present invention relates to a method for producing an n-type ZnTe system compound semiconductor single crystal having high carrier concentration and low resistivity, the ZnTe system compound semiconductor single crystal, and a semiconductor device produced by using the ZnTe system compound semiconductor as a base member. Concretely, a first dopant and a second dopant are co-doped into the ZnTe system compound semiconductor single crystal so that the number of atoms of the second dopant becomes smaller than the number of atoms of the first dopant, the first dopant being for controlling a conductivity type of the ZnTe system compound semiconductor to a first conductivity type, and the second dopant being for controlling the conductivity type to a second conductivity type different from the first conductivity type. By the present invention, a desired carrier concentration can be achieved with a doping amount smaller than in earlier technology, and crystallinity of the obtained crystal can be improved.Type: GrantFiled: November 26, 2007Date of Patent: April 13, 2010Assignee: Nippon Mining & Metals Co., Ltd.Inventors: Tetsuya Yamamoto, Atsutoshi Arakawa, Kenji Sato, Toshiaki Asahi
-
Publication number: 20100085081Abstract: To provide an enhancement-depletion (E/D) inverter which can be easily manufactured, in the present invention, a method of manufacturing an inverter which is composed of an oxide semiconductor in which a channel layer includes at least one element selected from In, Ga and Zn formed on a same substrate, the inverter being the E/D inverter having plural thin film transistors, is characterized by comprising the steps of: forming a first transistor and a second transistor, the thicknesses of the channel layers of the first and second transistors being mutually different; and executing heat treatment to at least one of the channel layers of the first and second transistors.Type: ApplicationFiled: May 15, 2008Publication date: April 8, 2010Applicant: CANON KABUSHIKI KAISHAInventors: Masato Ofuji, Katsumi Abe, Ryo Hayashi, Masafumi Sano, Hideya Kumomi
-
Patent number: 7553746Abstract: A method for manufacturing electrodes on a semiconducting material of type II-VI or on a compound of this material. The electrodes are preferably in gold or platinum and are formed by electrochemical deposition of gold or platinum from a solution of gold or platinum chloride in pure hydrochloric acid.Type: GrantFiled: September 19, 2003Date of Patent: June 30, 2009Assignee: Commissariat a l'Energie AtomiqueInventor: GĂ©rard Petroz
-
Patent number: 7172939Abstract: An MONOS integrated circuit device. The device has a semiconductor substrate comprising a silicon bearing material and a shallow trench isolation region formed within the substrate. A P-type well region is formed within the substrate and adjacent to the shallow trench isolation region. The first word gate comprising a first edge and a second edge. The first word gate comprises a first control gate coupled to the first edge and a second control gate coupled to the second edge. Preferably, the second word gate comprises a first edge and a second edge. The second word gate comprises a first control gate coupled to the first edge and a second control gate coupled to the second edge. A common buried bit line is formed within the P-type well region and between the second edge of the first word gate and the first edge of the second word gate.Type: GrantFiled: November 15, 2005Date of Patent: February 6, 2007Assignee: Winbond Electronics CorporationInventors: Kai Cheng Chou, Harry Laun, Kenlin Huang, J. C. Young, Arthur Wang