Additional Leads Being Multilayer (epo) Patents (Class 257/E23.035)
  • Patent number: 11715681
    Abstract: A method comprises embedding a semiconductor structure in a molding compound layer, depositing a plurality of photo-sensitive material layers over the molding compound layer, developing the plurality of photo-sensitive material layers to form a plurality of openings, wherein a first portion and a second portion of an opening of the plurality of openings are formed in different photo-sensitive material layers and filling the first portion and the second portion of the opening with a conductive material to form a first via in the first portion and a first redistribution layer in the second portion.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Wei Chiu, Sao-Ling Chiu
  • Patent number: 8975738
    Abstract: A structure may include a spacer element overlying a first portion of a first surface of a substrate; first terminals at a second surface of the substrate opposite the first surface; and second terminals overlying a third surface of the spacer element facing away from the first surface. Traces extend from the second terminals along an edge surface of the spacer element that extends from the third surface towards the first surface, and may be electrically coupled between the second terminals and the first terminals or electrically conductive elements at the first surface. The spacer element may at least partially define a second portion of the first surface, which is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some of the conductive elements are at the second portion and may permit connection with such microelectronic element.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: March 10, 2015
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 8785299
    Abstract: An embodiment is a device comprising a semiconductor die, an adhesive layer on a first side of the semiconductor die, and a molding compound surrounding the semiconductor die and the adhesive layer, wherein the molding compound is at a same level as the adhesive layer. The device further comprises a first post-passivation interconnect (PPI) electrically coupled to a second side of the semiconductor die, and a first connector electrically coupled to the first PPI, wherein the first connector is over and aligned to the molding compound.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chao Mao, Chin-Chuan Chang, Jui-Pin Hung, Jing-Cheng Lin
  • Patent number: 8736034
    Abstract: A lead-frame circuit package comprises a die and a substrate located thereon to route radio frequency signals to/from the die. The package preferably comprises an exposed pad on the die to receive a power amplifier device wherein the substrate is used to provide high-Q elements such as RF chokes on signal paths to/from the power amplifier device. In this manner, the design benefits from the power capabilities and improved grounding of a lead-frame conductor, whilst also achieving the routeing capabilities and small scale advantages provided by a multi-layer printed circuit substrate.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gilles Montoriol, Jr., Thierry Delaunay, Frederic Tilhac
  • Patent number: 8531030
    Abstract: An integrated circuit (IC) device includes an electromigration resistant feed line. The IC device includes a substrate including active circuitry. A back end of the line (BEOL) metallization stack includes an interconnect metal layer that is coupled to a bond pad by the EM resistant feed line. A bonding feature is on the bond pad. The feed line includes a uniform portion and patterned trace portion that extends to the bond pad which includes at least three sub-traces that are electrically in parallel. The sub-traces are sized so that a number of squares associated with each of the sub-traces are within a range of a mean number of squares for the sub-traces plus or minus twenty percent or a current density provided to the bonding feature through each sub-trace is within a range of a mean current density provided to the bonding feature plus or minus twenty percent.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: September 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory Eric Howard, Patrick Thompson
  • Patent number: 8525313
    Abstract: A chip assembly includes a chip, a paddle, an interface layer, a frequency extending device, and lands. The chip has contacts. The interface layer is disposed between the chip and the paddle. The frequency extending device has at least a conductive layer and a dielectric layer. The conductive layer has conductive traces. The frequency extending device is disposed adjacent to the side of the chip and overlying the paddle. The lands are disposed adjacent to the side of the paddle. The contacts are connected to the conductive traces. The conductive traces are connected to the lands. The frequency extending device is configured to reduce impedance discontinuity such that the impedance discontinuity produced by the frequency extending device is less than an impedance discontinuity that would be produced by bond wires each having a length greater than or substantially equal to the distance between the contacts and the lands.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: September 3, 2013
    Assignee: Semtech Corporation
    Inventors: Binneg Y. Lao, William W. Chen
  • Patent number: 8039317
    Abstract: A post-mold plated semiconductor device has an aluminum leadframe (105) with a structure including a chip mount pad and a plurality of lead segments without cantilevered lead portions. A semiconductor chip (210) is attached to the chip mount pad, and conductive connections (212) span from the chip to the aluminum of the lead segments. Polymeric encapsulation material (220), such as a molding compound, covers the chip, the connections, and portions of the aluminum lead segments without leaving cantilevered segment portions. Preferably by electroless plating, a zinc layer (301) and a nickel layer (302) are on those portions of the lead segments, which are not covered by the encapsulation material including the aluminum segment surfaces (at 203b) formed by the device singulation step, and a layer (303) of noble metal, preferably palladium, is on the nickel layer.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: October 18, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C Abbott
  • Patent number: 7952175
    Abstract: Provided are a lead frame and a semiconductor package including the same. The lead frame includes a first lead frame portion including a plurality of first leads; an adhesive member disposed such that the first leads are adhered to one surface of the adhesive member; and a second lead frame portion including a plurality of second leads disposed such that the second leads are adhered to the other surface of the adhesive member, wherein the second leads are arranged so as not to overlap with the first leads. The lead frame may optionally include a die pad on which a semiconductor chip is installed.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 31, 2011
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Se-hoon Cho, Jeung-il Kim, Sang-moo Lee
  • Patent number: 7709937
    Abstract: A semiconductor device which includes: a semiconductor chip with plural pads; a tab connected with the semiconductor chip; bus bars which are located outside of the semiconductor chip and connected with the tab; a sealing body which resin-seals the semiconductor chip; plural leads arranged in a line around the semiconductor chip; plural first wires which connect pads of the semiconductor chip and the leads; and plural second wires which connect specific pads of the semiconductor chip and the bus bars. Since the sealing body has a continuous portion which continues from a side surface of the semiconductor chip to its back surface to a side surface of the tab, the degree of adhesion among the semiconductor chip, the tab and the sealing body is increased. This prevents peeling between the tab and the sealing body during a high-temperature process and thus improves the quality of the semiconductor device (QFN).
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: May 4, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Tadatoshi Danno
  • Patent number: 7656033
    Abstract: A semiconductor device using lead technology includes a semiconductor chip with external side electrodes of semiconductor components disposed on its top side. On its rear side, the semiconductor chip is connected to a rear side internal lead adapted to the rear side of semiconductor chip. On its top side, the semiconductor chip is connected a plurality of top side internal leads. The top side internal leads are electrically connected to external leads of the semiconductor device.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: February 2, 2010
    Assignee: Infineon Technologies AG
    Inventors: Alexander Koenigsberger, Klaus Schiess
  • Patent number: 7608916
    Abstract: A post-mold plated semiconductor device has an aluminum leadframe (105) with a structure including a chip mount pad and a plurality of lead segments without cantilevered lead portions. A semiconductor chip (210) is attached to the chip mount pad, and conductive connections (212) span from the chip to the aluminum of the lead segments. Polymeric encapsulation material (220), such as a molding compound, covers the chip, the connections, and portions of the aluminum lead segments without leaving cantilevered segment portions. Preferably by electroless plating, a zinc layer (301) and a nickel layer (302) are on those portions of the lead segments, which are not covered by the encapsulation material including the aluminum segment surfaces (at 203b) formed by the device singulation step, and a layer (303) of noble metal, preferably palladium, is on the nickel layer.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: October 27, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C. Abbott
  • Publication number: 20080142935
    Abstract: A lead-frame circuit package comprises a die and a substrate located thereon to route radio frequency signals to/from the die. The package preferably comprises an exposed pad on the die to receive a power amplifier device wherein the substrate is used to provide high-Q elements such as RF chokes on signal paths to/from the power amplifier device. In this manner, the design benefits from the power capabilities and improved grounding of a lead-frame conductor, whilst also achieving the routeing capabilities and small scale advantages provided by a multi-layer printed circuit substrate.
    Type: Application
    Filed: February 24, 2005
    Publication date: June 19, 2008
    Applicant: Freescale Semicondutor, Inc.
    Inventors: Gilles Montoriol, Thierry Delaunay, Frederic Tilhac
  • Patent number: 7368326
    Abstract: A process includes annealing one or more plated conductive leads at a predetermined temperature. The one or more plated conductive leads are plated with one or more layers, where each layer comprises a material. The predetermined temperature is greater than or equal to approximately a melting point of one of the materials. The annealing can reduce growth formations, such as whiskers, on the one or more conductive leads. Lead frames and other devices having plated conductive leads may be subjected to the process, and the resultant plated conductive leads will have fewer growth formations than plated conductive leads not subjected to the process. The plated conductive leads may be trimmed and formed prior to or after the anneal.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 6, 2008
    Assignee: Agere Systems Inc.
    Inventors: John William Osenbach, Brian Dale Potteiger, Richard Lawrence Shook, Brian Thomas Vaccaro
  • Patent number: 7361976
    Abstract: In a lead-frame configuration (60), a module (70) and a data carrier (72), two connecting plates (12, 13) of the module (70), which are each intended for connection to a connecting contact or bump (47, 48) of a chip (41), are connected to a reinforcement film (66, 71) formed from a fiber-reinforced film of plastics material by means of a layer (73) of an adhesive that is particularly well suited to transmitting shear forces, in which case there is additionally provided in an advantageous further embodiment, on the reinforcement film (66, 71), at least one further layer (74, 75, 76) that is able to serve for protecting, damping or fastening purposes.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: April 22, 2008
    Assignee: NXP B.V.
    Inventors: Reinhard Fritz, Peter Schmallegger, Somnuk Akkahadsi
  • Patent number: 7227240
    Abstract: A semiconductor device (10) includes a semiconductor die (20) and an inductor (30, 50) formed with a bonding wire (80) attached to a top surface (21) of the semiconductor die. The bonding wire is extended laterally a distance (L30, L150) greater than its height (H30, H50) to define an insulating core (31, 57). In one embodiment, the inductor is extended beyond an edge (35, 39) of the semiconductor die to reduce loading.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: June 5, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: James Knapp, Francis Carney, Harold Anderson, Yenting Wen, Cang Ngo