Flexible Insulating Substrates (epo) Patents (Class 257/E23.065)
  • Patent number: 9952279
    Abstract: A three-dimensional integrated circuit testing apparatus comprises a probe card configured to couple a device-under-test of a three-dimensional integrated circuit with an automatic testing equipment board having a plurality of testing modules, wherein the probe card comprises a plurality of known good dies of the three-dimensional integrated circuit, a plurality of interconnects of the three-dimensional integrated circuit and a plurality of probe contacts, wherein the probe contacts are configured to couple the probe card with testing contacts of the device-under-test of the three-dimensional integrated circuit.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mill-Jer Wang, Ching-Nen Peng, Hung-Chih Lin, Hao Chen, Chung-Han Huang, Chung-Sheng Yuan, Ching-Fang Chen, Wen-Wen Hsieh, Meng-Lin Chung
  • Patent number: 9941182
    Abstract: In a substrate, at least one lateral surface between one surface and another surface is a cut surface that is cut together with mold resin. The mold resin, which is cut together with the substrate, is provided with a surface that is flush with the cut surface. A portion of the mold resin constituting the surface flush with the cut surface has a surface that is joined to the surface flush with the cut surface and parallel to the one surface of the substrate; this portion is thinner than a portion that seals electronic parts. Consequently, the mold resin is cut with a dicing blade brought into contact with a surface parallel to the one surface of the substrate.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 10, 2018
    Assignee: DENSO CORPORATION
    Inventors: Norihisa Imaizumi, Yuuki Sanada, Masayuki Takenaka, Shinya Uchibori, Kengo Oka, Tasuke Fukuda, Keitarou Nakama
  • Patent number: 9812060
    Abstract: A display device includes: a display panel including: a display portion for displaying an image; and a first pad coupled with the display portion and for receiving an out signal from the display portion; a driver coupled with the display portion for supplying a driving signal to the display portion; a cover covering the display panel; and a connection unit coupling the first pad and the driver to each other to transmit the out signal to the driver, wherein at least a portion of the connection unit is in the cover.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: November 7, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Bon-Seog Gu, Jin-Wook Yang
  • Patent number: 9600112
    Abstract: A flexible substrate may have one or more bends. A bend in a flexible substrate may be made along a bend axis. Conductive traces in the flexible substrate may have elongated shapes. Each conductive trace may extend along a longitudinal axis that is perpendicular to the bend axis. Metal or other conductive materials may form the conductive traces. The traces may be formed from a chain of linked segments. Each segment may have patterned trace portions that surround one, two, or more than two openings. Traces may also be formed that have multiple layers of metal or other conductive material interconnected using vias. A polymer layer may cover the traces to align a neutral stress plane with the traces and to serve as a moisture barrier layer.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 21, 2017
    Assignee: Apple Inc.
    Inventors: Zhen Zhang, Paul S. Drzaic, Yi Tao
  • Patent number: 9589521
    Abstract: A liquid crystal display apparatus having a wire-on-array structure is disclosed. The liquid crystal display apparatus has a plurality of driving IC units, a plurality of first conductive-wire sets and second conductive-wire sets. The driving IC units are arranged at intervals in a peripheral circuit area around the active area of the liquid crystal display apparatus. The first conductive-wire sets and the second conductive-wire sets are connected alternately between every two of the plurality of driving IC units. Each first conductive-wire set has a conducting structure for connecting to a common electrode. The arrangement of the first conductive-wire sets and the second conductive-wire sets facilitates achievement of thin bezel design.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: March 7, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Shishuai Huang
  • Patent number: 9542881
    Abstract: A display device includes: a display panel including: a display portion for displaying an image; and a first pad coupled with the display portion and for receiving an out signal from the display portion; a driver coupled with the display portion for supplying a driving signal to the display portion; a cover covering the display panel; and a connection unit coupling the first pad and the driver to each other to transmit the out signal to the driver, wherein at least a portion of the connection unit is in the cover.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: January 10, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Bon-Seog Gu, Jin-Wook Yang
  • Patent number: 9426890
    Abstract: Disclosed herein is a display apparatus that reduces a magnitude of a tension applied to a flexible PCB when a display panel is provided with a curved surface, and prevents damage of a driving chip. The display apparatus in accordance with exemplary embodiments includes a display panel configured to display an image, a source printed circuit board configured to control the display panel, and a flexible PCB that connects the display panel and the source printed circuit board. A length of at least one side edge of the flexible PCB is formed longer than a minimum length from the display panel to the source printed circuit board.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 23, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyo Jae Jang, Chan Hong Park, Jeong Ho Bang, Jong Myung Lee, Sun Weon Jeong, Hyeong Sik Choi
  • Patent number: 9326388
    Abstract: A flexible display apparatus including a flexible display panel, at least one flexible circuit board, at least one driving chip, and a sealing layer is provided. The flexible display panel has a display area and a bonding area located outside the display area. The flexible circuit board is disposed in the bonding area of the flexible display panel. The driving chip is disposed on the flexible circuit board. The sealing layer encapsulates a periphery of the flexible display panel and extendedly covers the bonding area and a portion of the flexible circuit board.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: April 26, 2016
    Assignee: E Ink Holdings Inc.
    Inventors: Lih-Hsiung Chan, Chu-Kuang Tseng
  • Patent number: 9318350
    Abstract: An embodiment of the invention generally relates to a method of converting a commercial off-the-shelf electrical lead to a rugged off-the-shelf electrical lead by laser machining a portion of the electrical lead. The method includes ablating material from the electrical lead of the commercial off-the-shelf component to reduce the moment of inertia or increase the flexibility of the electrical lead.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: April 19, 2016
    Assignee: General Dynamics Advanced Information Systems, Inc.
    Inventors: Deepak Keshav Pai, Melvin Eric Graf
  • Patent number: 9263426
    Abstract: A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: February 16, 2016
    Assignee: Apple Inc.
    Inventors: Jie-Hua Zhao, Yizhang Yang, Jun Zhai, Chih-Ming Chung
  • Patent number: 9207719
    Abstract: A screen control module of a mobile electronic device has at least one controller formed on a circuit board. The circuit board has multiple solder pads formed on the circuit board and respectively aligning along a first direction and a second direction. A count of the solder pads along the first direction is greater than that along the second direction. The controller is formed by an integrated circuit with a package, and the aspect ratio of the package is not less than 2. The package has multiple electrical contacts respectively aligning along a length direction and a width direction. Each electrical contact aligns with and is electrically connected to a corresponding solder pad. Accordingly, the screen control module mounted within a side frame of a display of the mobile electronic device can increase the aspect ratio to meet the demand for narrowing the side frame of the display.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 8, 2015
    Assignee: ELAN MICROELECTRONICS CORPORATION
    Inventors: Ming-Lung Ho, Chien-Wen Tsai
  • Patent number: 8907376
    Abstract: A stretchable electronic circuit that includes a stretchable base substrate having a plurality of stretchable conductors formed onto a surface thereof, with both the stretchable base substrate and conductors being bendable together about two orthogonal axes. The stretchable circuit also includes a stretchable sensor layer attached to the base substrate with a cavity formed therein which has a contact point exposing one of the plurality of stretchable conductors. The stretchable electronic circuit further includes a surface mount device (SMD) package with a conductor contact protrusion installed into the cavity, and wherein a substantially constant electrical connection is established between the conductor contact protrusion and the stretchable conductor at the contact point by tensile forces interacting between the stretchable base substrate and the stretchable sensor layer.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 9, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Stephen Mascaro, Debra Mascaro, Jumana Abu-Khalaf, Jungwoo Park
  • Patent number: 8884420
    Abstract: A multichip device includes a first semiconductor chip arranged over a first carrier and a second semiconductor chip arranged over a second carrier. The multichip device further includes an electrically conductive element electrically coupling the first semiconductor chip and the second semiconductor chip. The electrically conductive element includes a first exposed contact area.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: November 11, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Khalil Hosseini, Joachim Mahler, Ivan Nikitin
  • Patent number: 8865532
    Abstract: A method for manufacturing an active device array substrate includes providing a flexible substrate having a transistor region and a transparent region; forming a gate electrode on the transistor region; sequentially forming a dielectric layer and a semiconductor layer to cover the gate electrode and the flexible substrate; removing a part of the semiconductor layer to form a channel layer above the gate electrode and removing a thickness of the dielectric layer disposed on the transparent region, such that a portion of the dielectric layer on the gate electrode has a first thickness, and another portion of the dielectric layer on the transparent region has a second thickness less than the first thickness; respectively forming a source electrode and a drain electrode on opposite sides of the channel layer; and forming a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 21, 2014
    Assignee: AU Optronics Corporation
    Inventors: Jia-Hong Ye, Ssu-Hui Lu, Wu-Hsiung Lin, Chao-Chien Chiu, Ming-Hsien Lee, Chia-Tien Peng, Wei-Ming Huang
  • Patent number: 8860203
    Abstract: A stretchable organic light-emitting display device includes a stretchable base plate including a stretchable substrate, first metal electrodes that are separated from each other and located in a plurality of rows on a the stretchable substrate, and first power wirings electrically coupling respective ones of the metal electrodes of each row, a light-emitting layer on the stretchable base plate, second metal electrodes located in a plurality of rows on the light-emitting layer and corresponding to the first metal electrodes, second power wirings for electrically coupling respective ones of the second metal electrodes of each row, and an encapsulation substrate covering the second power wiring.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chang-Hoon Lee, Jong-Ho Hong, Won-Sang Park, Jong-In Baek
  • Patent number: 8853694
    Abstract: Provided are a chip on film (COF) package and semiconductor having the same. The COF package can include a flexible film having first and second surfaces opposite to and facing each other and including a conductive via penetrating from the first surface to the second surface, first and second conductive patterns respectively is on the first surface and the second surface and electrically connected to each other through the conductive via, an integrated circuit (IC) chip is on the first surface and electrically connected to the first conductive pattern, a test pad overlaps the conductive via and is electrically connected to at least one of the first conductive pattern and the second conductive pattern, and an external connection pattern is on the second surface spaced apart from the conductive via and electrically connected to the second conductive pattern.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Uk Han, Jeong-Kyu Ha, Young-Shin Kwon, Seung-Hwan Kim, Kwan-Jai Lee
  • Patent number: 8829508
    Abstract: A display apparatus including an organic light emitting display including a terminal portion, a battery disposed on a surface of the organic light emitting display, and a flexible printed circuit board (PCB) bent to cover the organic light emitting display and the battery, a side of the flexible PCB being connected to the terminal portion and another side of the flexible PCB extending outside and attached to the battery.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jin-Hee Park
  • Patent number: 8809122
    Abstract: A method of manufacturing a flip chip package includes: providing a board including a conductive pad disposed inside a mounting region of the board on which the electronic device is to be mounted, and a connection pad disposed outside the mounting region; forming a resin layer on the board; forming a trench by removing a part of the resin layer or forming an uneven portion at a portion of a surface of the resin layer; forming, on the trench or uneven portion, a dam member preventing leakage of an underfill between the mounting region and the connection pad; and mounting the electronic device on the mounting region.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 19, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Ey Yong Kim, Young Hwan Shin, Soon Jin Cho, Jong Yong Kim, Jin Seok Lee
  • Patent number: 8686574
    Abstract: A semiconductor device includes a wiring board that has a conductive pattern formed on at least one principal surface, and an IC chip that is mounted on the wiring board. The IC chip includes a plurality of electrodes to make conductor connection with the wiring board. The conductive pattern includes a lead line pattern and a heat dissipation pattern. The lead line pattern is connected with at least one of the plurality of electrodes through a conductor. The heat dissipation pattern is physically spaced from the IC chip and the lead line pattern and has a larger surface area than the lead line pattern. Further, the lead line pattern and the heat dissipation pattern are placed opposite to each other with a gap therebetween, and their opposite parts respectively have interdigitated shapes and are arranged with the respective interdigitated shapes engaging with each other with the gap therebetween.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hidenori Egawa
  • Patent number: 8643155
    Abstract: A chip on film (COF) is disclosed in the present disclosure, which comprises an adhesive base layer, a driving integrated circuit (IC), an adhesive layer and a copper layer. The driving IC is embedded on a surface of the adhesive base layer; the adhesive layer is located under the adhesive base layer; the copper layer is located under the adhesive layer. The adhesive base layer is formed with a heat and pressure spreading structure. A heat and pressure spreading structure is disposed on the adhesive base layer of the COF so that deformation or unevenness of the glass substrate in the bonded area can be avoided when the COF is thermally pressed to the glass substrate of the LCD. These guarantees the consistency between the bonded area and the unbounded area, the bonded area and the unbounded area of the glass substrate will have the same transmissivity and luminance.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 4, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Liang-Chan Liao, Po-Shen Lin, Yu Wu
  • Patent number: 8624390
    Abstract: An electronic device comprises a plurality of integrated circuit dies mounted on different areas of a carrier. The carrier is folded into a plurality of layers, each layer comprising one of the different areas of the carrier and one of the integrated circuit dies, such that the plurality of integrated circuit dies form a stack. Adjacent surfaces of neighboring layers are fixed together, for example by an adhesive layer, and the folded carrier and the integrated circuit dies are embedded in a molded material.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: January 7, 2014
    Assignee: ST-Ericsson SA
    Inventor: Nedialko Slavov
  • Patent number: 8604610
    Abstract: Power module semiconductor packages that contain a flexible circuit board and methods for making such packages are described. The semiconductor package contain a flexible circuit board, a conductive film on a first portion of the upper surface of the flexible circuit board, a land pad on a second portion of the upper surface of the flexible circuit board, a heat sink on a portion of the bottom surface of the flexible circuit board, a passive component, a discrete device, or an IC device connected to a portion of the conductive film, and a lead of a lead frame connected to the land pad. These packages can have a high degree of design flexibility of the layout of the package and simpler routing designs, reducing the time to design the packages and reducing the costs of the packages. Other embodiments are also described.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: December 10, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Duane A. Hughes
  • Patent number: 8597988
    Abstract: System for flash-free overmolding of LED array substrates. In an aspect, a method is provided for molding encapsulations onto an LED array substrate. The method includes attaching a protective tape onto a substrate surface of the substrate so that openings in the protective tape align with LED devices of the substrate and applying molding material onto a molding surface of a molding tool and to portions of the substrate exposed through the openings in the protective tape. The method also includes pressing the molding surface and the substrate surface together at a selected pressure and a selected temperature so that encapsulations are formed on the portions of the substrate exposed through the openings in the protective tape, separating the molding surface from the substrate surface, and removing the protective tape so that molding material flash is removed from the substrate leaving a clean molded substrate.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Bridgelux, Inc.
    Inventors: Alexander Shaikevitch, Vahid Moshtagh
  • Patent number: 8581373
    Abstract: A tape package providing a plurality of input and output portions each having a minimum pitch. The tape package includes a tape wiring substrate including first and second wirings, and a semiconductor chip mounted on the tape wiring substrate, and including a first edge, a first pad disposed adjacent to the first edge, and a second pad disposed to be farther spaced apart from the first edge than the first pad, where the first wiring is connected to a portion of the first pad that is spaced from the first edge by a first distance, and where the second wiring is connected to a portion of the second pad that is spaced from the first edge by a second distance that is greater than the first distance.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: November 12, 2013
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Dong-han Kim, So-young Lim
  • Patent number: 8558360
    Abstract: There is provided a flip chip package including an electronic device, a board including a conductive pad disposed inside a mounting region of the board on which the electronic device is mounted, and a connection pad disposed outside the mounting region, a resin layer formed on the board and including a trench formed by removing a part of the resin layer, and a dam member provided on the trench and preventing the leakage of an underfill between the mounting region and the connection pad. Since the dam member, formed on the processed resin layer, can prevent the leakage of the underfill, a package defect rate can be lowered, and connection reliability can be improved.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Ey Yong Kim, Young Hwan Shin, Soon Jin Cho, Jong Yong Kim, Jin Seok Lee
  • Patent number: 8541809
    Abstract: A light-emitting surface element includes a connection device, a light-generating element having at least two electrical connections electrically conductively connected to assigned connection lines on the connection device, and at least one planar light-guiding element formed by injection-molding in a manner at least partly embedding an arrangement composed of connection device and light-generating element in the planar light-guiding element.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 24, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jorg E. Sorg, Stefan Gruber
  • Patent number: 8525178
    Abstract: A flexible semiconductor device includes an insulating film on which a semiconductor element is formed. The top and bottom surfaces of the insulating film have a top wiring pattern layer and a bottom wiring pattern layer, respectively. The semiconductor element includes a semiconductor layer formed on the top surface of the insulating film, a source electrode and a drain electrode formed on the top surface of the insulating film so as to contact the semiconductor layer, and a gate electrode formed on the bottom surface of the insulating film so as to be opposite the semiconductor layer. A first thickness, which is the thickness of the insulating film facing the source electrode, the drain electrode, the top wiring pattern layer, and the bottom wiring pattern layer, is greater than a second thickness, which is the thickness of the insulating film between the gate electrode and the semiconductor layer.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Takashi Ichiryu, Seiichi Nakatani, Koichi Hirano
  • Patent number: 8502367
    Abstract: An electronic package that includes a composite material base. In one embodiment the electronic package is an expanded wafer-level package. The composite material base is composed of woven strands and polymer material. In one embodiment the composite material base is composed of woven fiberglass strands and an epoxy material. In various embodiments the package includes an electronic circuitry layer on one or another face of the composite material base. In other embodiments conductive vias connect the circuitry layers, including a redistribution layer. In yet another embodiment an electronic package is mounted on the composite material base and electrically couples to the circuit of the expanded wafer-level package. The package having the composite material base is mechanically stronger and can be made thinner than a package that relies on an encapsulant material for structure, and resists cracking.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 6, 2013
    Assignee: STMicroelectronics Pte Ltd.
    Inventor: Jing-En Luan
  • Patent number: 8502262
    Abstract: A lighting device (1;15) comprising at least one flexible printed circuit board (3) which is populated with at least one semiconductor light source, comprising a potting material overlaid on at least one populated side of the printed circuit board so as to leave at least one emission surface of the semiconductor light source (2) exposed; an adhesive element at least partially covering a top side of the semiconductor light source, wherein the adhesive element (7) protrudes partially from the potting compound (10), is enclosed around its sides by the potting compound (10) in an adhesive manner and has better adhesion to the potting compound (10) than does the semiconductor light source.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: August 6, 2013
    Assignee: OSRAM GmbH
    Inventors: Thomas Preuschl, Steffen Strauss, Florian Zeus
  • Patent number: 8440546
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 14, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 8399301
    Abstract: A structure of an integrated circuit module includes a wiring board, a plurality of integrated circuits and at least one terminating resistance circuit. The wiring board has a mounting region on at least one surface thereof. The plurality of integrated circuits are mounted in the mounting region of the wiring board and spaced from one another in a first direction. The at least one terminating resistance circuit is arranged between at least two adjacent integrated circuits, and coupled to an output of a last of the plurality of integrated circuits.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Joo Park, Ki-Hyun Ko, Young Yun, Soo-Kyung Kim
  • Patent number: 8400774
    Abstract: One embodiment of the present disclosure provides an apparatus comprising a flex circuit substrate having a core, a first solder mask and first traces disposed on the core on a first side of the flex circuit substrate, and a second solder mask and second traces disposed on the core on a second side of the flex circuit substrate. The first side is opposite to the second side. The apparatus further includes vias formed through the core to electrically couple the first traces to the second traces, and a stiffening structure coupled to the first side of the flex circuit substrate to increase structural rigidity of the flex circuit substrate. The stiffening structure provides structural, support to allow attachment of an integrated circuit die to the first side of the flex circuit substrate.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: March 19, 2013
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 8384230
    Abstract: A semiconductor device includes a wiring board that has a conductive pattern formed on at least one principal surface, and an IC chip that is mounted on the wiring board. The IC chip includes a plurality of electrodes to make conductor connection with the wiring board. The conductive pattern includes a lead line pattern and a heat dissipation pattern. The lead line pattern is connected with at least one of the plurality of electrodes through a conductor. The heat dissipation pattern is physically spaced from the IC chip and the lead line pattern and has a larger surface area than the lead line pattern. Further, the lead line pattern and the heat dissipation pattern are placed opposite to each other with a gap therebetween, and their opposite parts respectively have interdigitated shapes and are arranged with the respective interdigitated shapes engaging with each other with the gap therebetween.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hidenori Egawa
  • Patent number: 8324744
    Abstract: A tape carrier package (TCP) includes a film, a plurality of output leads and a plurality of input leads on the film, the plurality of output leads and the plurality of input leads being disposed on different sides, first and second TCP alignment marks arranged on opposing sides of the plurality of output leads, and a third TCP alignment mark at a central portion of the plurality of output leads.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 4, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Min-Hwa Kim, Jin-Cheol Hong
  • Patent number: 8217507
    Abstract: A semiconductor package which is structured to allow for the edge mounting thereof in a vertical mount orientation. The semiconductor package comprises a flexible substrate or “flex circuit.” The flexible substrate includes a conductive pattern disposed on a first surface thereof, and a plurality of conductive pads or terminals disposed on a second surface thereof which is disposed in opposed relation to the first surface. Mounted to the first surface of the flexible substrate are one or more electronic components such as semiconductor dies. The semiconductor die(s) is/are electrically connected to the conductive pattern, and thereafter covered or encapsulated by a package body applied to a portion of the first surface of the flexible substrate. That portion of the flexible substrate including the conductive pads or terminals formed on the second surface thereof is thereafter folded and adhered to a portion of the package body through the use of a suitable adhesive.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 10, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Jesse E. Galloway, Bob-Shih Wei Kuo, Ahmer Syed
  • Patent number: 8217505
    Abstract: A device is disclosed which includes a flexible material including at least one conductive wiring trace, a first die including at least an integrated circuit, the first die being positioned above a portion of the flexible material, and an encapsulant material that covers the first die and at least a portion of the flexible material. A method is disclosed which includes positioning a first die above a portion of a flexible material, the first die including an integrated circuit and the flexible material including at least one conductive wiring trace, and forming an encapsulant material that covers the first die and at least a portion of the flexible material, wherein at least a portion of the flexible material extends beyond the encapsulant material.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Choo Kuan Lee, Chin Hui Chong, David J. Corisis
  • Patent number: 8188474
    Abstract: It is an object to provide a flexible light-emitting device with long lifetime in a simple way and to provide an inexpensive electronic device with long lifetime using the flexible light-emitting device. A flexible light-emitting device is provided, which includes a substrate having flexibility and a light-transmitting property with respect to visible light; a first adhesive layer over the substrate; an insulating film containing nitrogen and silicon over the first adhesive layer; a light-emitting element including a first electrode, a second electrode facing the first electrode, and an EL layer between the first electrode and the second electrode; a second adhesive layer over the second electrode; and a metal substrate over the second adhesive layer, wherein the thickness of the metal substrate is 10 ?m to 200 ?m inclusive. Further, an electronic device using the flexible light-emitting device is provided.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: May 29, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kaoru Hatano, Satoshi Seo, Takaaki Nagata, Tatsuya Okano
  • Patent number: 8106425
    Abstract: Example embodiments relate to an interconnection substrate and a semiconductor chip package and a display system including the same. The interconnection substrate may include a base film, a signal line provided on the base film, a power line provided on the base film as a line pattern including a plurality of bent portions, and a ground line provided on the base film in parallel with the power line. The interconnection substrate may further include a semiconductor chip provided on the base film, wherein the power, ground, and/or signal lines are electrically connected to the semiconductor chip to form a semiconductor chip package. A display system may include the above semiconductor chip package, a screen displaying an image, and a PCB generating a signal. The semiconductor chip may be connected between the PCB and the screen and relay the generated signal from the PCB to the screen.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 31, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-seok Choi, Na-rae Shin, Hee-seok Lee
  • Publication number: 20110309491
    Abstract: A flexible semiconductor package is formed by interposing a flexible substrate between a tungsten stiffener and a die. A tungsten stiffener is bonded to a first surface of the flexible substrate prior to flip chip bonding or die attach of a die to a second surface of the flexible substrate. The tungsten stiffener is dimensioned so as to substantially overlap the die and provide a rigid and flat surface on which the die/flexible substrate bonding occurs. The flat and rigid characteristic of a tungsten stiffener optimizes the electrical and mechanical bond between the die and the flexible substrate as well as minimizing CTE mismatch.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: Aeroflex Colorado Springs Inc.
    Inventors: Sean Thorne, Scott Popelar
  • Patent number: 8039974
    Abstract: An electronic component assembly that has a supporting structure, an integrated circuit die with a plurality of contacts pads, a printed circuit board with a plurality of conductors, the integrated circuit die and the PCB being mounted to the supporting structure by a die attach film such that they are adjacent and spaced from each other and, wire bonds electrically connecting the contact pads to the conductors. An intermediate portion of each of the wire bonds is adhered to the die attach film to lower the profile of the wire bond arcs.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 18, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Laval Chung-Long-Shan, Kiangkai Tankongchumruskul
  • Patent number: 8035238
    Abstract: A tape carrier package (TCP) includes a film, a plurality of output leads and a plurality of input leads on the film, the plurality of output leads and the plurality of input leads being disposed on different sides, first and second TCP alignment marks arranged on opposing sides of the plurality of output leads, and a third TCP alignment mark at a central portion of the plurality of output leads.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 11, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Min-Hwa Kim, Jin-Cheol Hong
  • Patent number: 8026583
    Abstract: The invention relates to a flip-chip module with a semiconductor chip with contact posts, wherein the contact posts are connected electrically and mechanically to a substrate. Provided between the substrate and the semiconductor chip is a spacer, which is coupled mechanically to the substrate and/or the semiconductor chip. By this means, thermal stresses in the flip-chip module are absorbed by the spacer and kept away from the semiconductor chip. The invention also relates to a method for the production of a flip-chip module, in which firstly a spacer is located between the semiconductor chip and the substrate, after which the contact posts are soldered to the contact points of the substrate. Through the provision of the spacer the distance between the semiconductor chip and the substrate is set precisely, thereby improving the quality of the soldering points.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: September 27, 2011
    Assignee: HTC Beteiligungs GmbH
    Inventors: Ernst-A. Weissbach, Juergen Ertl
  • Patent number: 8017440
    Abstract: The reliability of a semiconductor device is enhanced. A first lead frame, a first semiconductor chip, a second lead frame, and a second semiconductor chip are stacked over an assembly jig in this order with solder in between and solder reflow processing is carried out to fabricate their assembly. Thereafter, this assembly is sandwiched between first and second molding dies to form an encapsulation resin portion. The upper surface of the second die is provided with steps. At a molding step, the second lead frame is clamped between the first and second dies at a position higher than the first lead frame; and a third lead frame is clamped between the first and second dies at a higher position. The assembly jig is provided with steps at the same positions as those of the steps in the upper surface of the second die in positions corresponding to those of the same.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: September 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Machida
  • Patent number: 7999341
    Abstract: A rectangular display driver integrated circuit device adapted for use with a flat panel display (FPD) device is disclosed and comprises, a plurality of input pads arranged in a central portion of the display driver integrated circuit device, and a plurality of output pads arranged along edges of all four sides of the display driver integrated circuit device. An associated film, film package, and flat panel display (FPD) module adapted to receive the display driver integrated circuit device are also disclosed.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ye-chung Chung, Sa-yoon Kang
  • Patent number: 7982296
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 19, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20110140264
    Abstract: There is provided a low-cost semiconductor device that commercial and quality-assured (inspected) chip size packages can be stacked and has a small co-planarity value and a high mounting reliability. A semiconductor device in which a flexible circuit substrate is adhered to at least a part of a lateral side of a semiconductor package, and the flexible circuit substrate, which is on a side facing solder balls of the semiconductor package, is folded at a region inside of an edge of the semiconductor package (FIG. 1).
    Type: Application
    Filed: February 10, 2011
    Publication date: June 16, 2011
    Inventor: TAKAO YAMAZAKI
  • Patent number: 7943491
    Abstract: The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of ‘soft adhesion’ to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 17, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 7939934
    Abstract: An assembly for testing microelectronic devices includes a microelectronic element having faces and contacts, a flexible substrate spaced from and overlying a first face of the microelectronic element, and a plurality of conductive posts extending from the flexible substrate and projecting away from the first face of the microelectronic element, at least some of the conductive posts being electrically interconnected with the microelectronic element. The assembly also includes a plurality of support elements disposed between the microelectronic element and the substrate for supporting the flexible substrate over the microelectronic element. At least some of the conductive posts are offset from the support elements.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 10, 2011
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, David Gibson
  • Patent number: 7898074
    Abstract: A packaged electronic device includes a die, a flexible circuit structure, and a barrier film disposed on the die. The die includes die circuitry and electrical contacts. The flexible circuit structure is bonded directly to the die, and includes electrical conductors encapsulated by structural layers. Each electrical conductor contacts a respective electrical contact. The electronic device is encapsulated by the barrier film and one or more of the structural layers.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 1, 2011
    Inventors: Helmut Eckhardt, Stefan Ufer
  • Patent number: 7875969
    Abstract: A rigid-flex PCB includes at least one rigid PCB (RPCB) and at least one flexible PCB (FPCB). Each RPCB has a connection section; first and second sections separately extended from two lateral edges of the connection section and having at least one FPCB bonding side each; and a weakening structure formed along each joint of the connection section and the first and second sections. Each FPCB has a bending section corresponding to the connection section on the RPCB; first and second sections separately extended from two lateral edges of the bending section and having at least one RPCB bonding side each corresponding to the FPCB bonding sides of the first and second sections of the RPCB. When a proper pressure is applied against the weakening structures, the RPCB may be easily bent broken at the weakening structures to remove the connection section therefrom.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 25, 2011
    Assignee: Advanced Flexible Circuits Co., Ltd.
    Inventors: Kuo-Fu Su, Chih-Heng Chuo, Gwun-Jin Lin