Leads, I.e., Metallizations Or Lead Frames On Insulating Substrates, E.g., Chip Carriers (epo) Patents (Class 257/E23.06)

  • Patent number: 11776888
    Abstract: A package comprising a substrate and an integrated device coupled to the substrate. The substrate includes at least one dielectric layer, a plurality of interconnects comprising a plurality of protruding pad interconnects, and a solder resist layer located over the at least one dielectric layer, the solder resist layer comprising a thickness that is greater than a thickness of the plurality of protruding pad interconnects. A protruding pad interconnect may include a first pad portion and a second pad portion.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 3, 2023
    Assignee: QUALCOMM INCORPORATED
    Inventors: Kuiwon Kang, Hong Bok We, Chin-Kwan Kim, Milind Shah
  • Patent number: 11763985
    Abstract: A method of manufacturing a coil component includes arranging a plurality of coil conductors that is a wound body of a conductive wire, and each has opposing first and second surfaces, in a winding axis direction on a surface of an adhesive layer in contact with the first surface, manufacturing a processed body by placing a first magnetic sheet including a first metal magnetic particle and a first resin on a side of the second surface of each of the coil conductors and performing press processing on the first magnetic sheet, manufacturing an aggregate base body by peeling the processed body from the adhesive layer, placing a second magnetic sheet including a second metal magnetic particle and a second resin on a side of the first surface of each coil conductor, and press processing the second magnetic sheet, and manufacturing a body by individualizing the aggregate base body.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: September 19, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Keisuke Takatsu
  • Patent number: 11742310
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate, disposing a plurality of pads on a surface of the substrate, disposing a plurality of conductive bumps on the plurality of pads correspondingly; disposing a solder bracing material surrounding the plurality of conductive bumps and over the surface of the substrate after the disposing of the plurality of conductive bumps, wherein the solder bracing material is in contact with a sidewall of each of the plurality of pads and the plurality of conductive bumps; disposing a release film on the solder bracing material and the plurality of conductive bumps; and removing the release film to form a rough surface of the solder bracing material. The rough surface of the solder bracing material includes a plurality of protruded portions and a plurality of recessed portions.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jing-Cheng Lin, Feng-Cheng Hsu
  • Patent number: 11694951
    Abstract: A device package and a method of forming a device package are described. The device package includes an interposer with interconnects on an interconnect package layer and a conductive layer on the interposer. The device package has dies on the conductive layer, where the package layer includes a zero-misalignment two-via stack (ZM2VS) and a dielectric. The ZM2VS is directly coupled to the interconnect. The ZM2VS may further include the dielectric on a conductive pad, a first via on a first seed, and the first seed on a top surface of the conductive pad, where the first via extends through dielectric. The ZM2VS may also have a conductive trace on dielectric, and a second via on a second seed, the second seed is on the dielectric, where the conductive trace connects to first and second vias, where second via connects to an edge of conductive trace opposite from first via.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Veronica Strong, Aleksandar Aleksov, Brandon Rawlings, Johanna Swan
  • Patent number: 11640952
    Abstract: An electronic component embedded substrate includes a core structure including a first insulating body and core wiring layers and having a cavity and having a stopper layer disposed as a bottom surface; an electronic component disposed in the cavity and attached to the stopper layer; and a build-up structure including a second insulating body covering at least a portion each of the core structure and the electronic component and filling at least a portion of the cavity, and build-up wiring layers wherein the stopper layer has a first region in which a portion of one surface is exposed from the first insulating body and a second region in which the other portion of one surface is covered with the first insulating body, and a surface roughness of one surface of the stopper layer in the first region is greater than that of the stopper layer in the second region.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 2, 2023
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Mi Sun Hwang, Dae Jung Byun, Chang Hwa Park, Sang Ho Jeong, Jun Hyeong Jang, Ki Ho Na, Je Sang Park, Yong Duk Lee, Yoo Rim Cha, Yeo Il Park
  • Patent number: 11621254
    Abstract: A power supply system includes a system board electrically connected to a load; a first package and a second package provided on an upper side of the system board; and a bridge member provided on upper sides of the first package and the second package, comprising a passive element and used for power coupling between the first package and the second package, wherein vertical projections of the first package and the second package on the system board are both overlapped with a vertical projection of the bridge member on the system board, the first package, and the second package are encapsulated with switching devices, terminals on upper surfaces of the first package and the second package are electrically connected to the bridge member, and terminals on lower surfaces thereof are electrically connected to the system board.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: April 4, 2023
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Pengkai Ji, Shouyu Hong, Haoyi Ye, Jianhong Zeng
  • Patent number: 11615914
    Abstract: Magnet wire included extruded insulation formed from a blend of two or more different polymeric materials is described. A magnet wire may include a conductor and insulation formed around the conductor. The insulation may include at least one layer of extruded insulation formed from a blend of a first polymeric material and a second polymeric material different than the first polymeric material. The first polymeric material may include one of polyetheretherketone, polyaryletherketone, polyetherketoneketone, polyphenylsulfone, polyphenylene sulfide, or polybenzimidazole. The second polymeric material may include one of polyphenylsulfone, polyetherimide, polyethersulfone, polyphenylene sulfide, polycarbonate, or polyester.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: March 28, 2023
    Assignee: ESSEX FURUKAWA MAGNET WIRE USA LLC
    Inventors: Mohammad Mazhar Said, Matthew E. Leach
  • Patent number: 11605601
    Abstract: A semiconductor package and a method of forming the same are disclosed. A method of forming a semiconductor package includes the following operations. A polymer layer is formed over a die. A metal feature is formed in the polymer layer. An argon-containing plasma treatment is performed to the polymer layer and the metal feature.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wen Chen, Hung-Jui Kuo, Ming-Che Ho
  • Patent number: 11557525
    Abstract: A cost-effective process and structure is provided for a thermal dissipation element for semiconductor device packages incorporating antennas that can incorporate RF/EMI shielding from the antenna elements. Certain embodiments provide incorporated antenna element structures as part of the same process. These features are provided using a selectively-plated thermal dissipation structure that is formed to provide shielding around semiconductor device dies that are part of the package. In some embodiments, the thermal dissipation structure is molded to the semiconductor device, thereby permitting a thermally efficient close coupling between a device die requiring thermal dissipation and the dissipation structure itself.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Zhiwei Gong, Scott M. Hayes, Michael B. Vincent, Betty Hill-Shan Yeung, Rushik P. Tank, Kabir Mirpuri
  • Patent number: 11532542
    Abstract: A wiring structure and a method for manufacturing the same are provided. The wiring structure includes a conductive structure and a plurality of conductive through vias. The conductive structure includes a dielectric layer, a circuit layer in contact with the dielectric layer, a plurality of dam portions and an outer metal layer. The dam portions extend through the dielectric layer. The dam portion defines a through hole. The outer metal layer is disposed adjacent to a top surface of the dielectric layer and extends into the through hole of the dam portion. The conductive through vias are disposed in the through holes of the dam portions and electrically connecting the circuit layer.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: December 20, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Wen-Long Lu
  • Patent number: 9018776
    Abstract: A hard mask composition includes a solvent and an aromatic ring-containing compound represented by the following Chemical Formula 1:
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 28, 2015
    Assignee: Cheil Industries, Inc.
    Inventors: Jee-Yun Song, Min-Soo Kim, Hwan-Sung Cheon, Seung-Bae Oh, Yoo-Jeong Choi
  • Patent number: 8994154
    Abstract: A semiconductor proximity sensor (100) has a flat leadframe (110) with a first (110a) and a second (110b) surface, the second surface being solderable; the leadframe includes a first (111) and a second (112) pad, a plurality of leads (113, 114), and fingers (115, 118) framing the first pad, the fingers spaced from the first pad by a gap (116) which is filled with a clear molding compound. A light-emitting diode (LED) chip (120) is assembled on the first pad and encapsulated by a first volume (140) of the clear compound, the first volume outlined as a first lens (141). A sensor chip (130) is assembled on the second pad and encapsulated by a second volume (145) of the clear compound, the second volume outlined as a second lens (146). Opaque molding compound (150) fills the space between the first and second volumes of clear compound, forms shutters (151) for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: March 31, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 8994076
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Life Technologies Corporation
    Inventors: Mark Milgrew, James Bustillo, Todd Rearick
  • Patent number: 8987060
    Abstract: A method for making the same is disclosed. First, a first substrate and a second substrate are provided. The first substrate includes a release film attached to a carrier. The second substrate includes a copper film covered with a solder mask. Second, the solder masked is patterned. Next, the release film and the patterned solder mask are pressed together so that the first substrate is attached to the second substrate. Then, the copper film is patterned to form a first pattern and a second pattern. The first pattern is in direct contact with the release film and the second pattern is in direct contact with the patterned solder mask. Later, a passivation is formed to cover the first pattern and the second pattern to form a circuit board structure. Afterwards, a package is formed on the carrier to form a packaging structure.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 24, 2015
    Assignee: Advance Materials Corporation
    Inventor: Lee-Sheng Yen
  • Patent number: 8956918
    Abstract: A method for manufacturing a chip arrangement in accordance with various embodiments may include: placing a chip on a carrier within an opening of a metal structure disposed over the carrier; fixing the chip to the metal structure; removing the carrier to thereby expose at least one contact of the chip; and forming an electrically conductive connection between the at least one contact of the chip and the metal structure.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 17, 2015
    Assignee: Infineon Technologies AG
    Inventor: Petteri Palm
  • Patent number: 8871627
    Abstract: A semiconductor device includes a semiconductor substrate on which a structure portion is provided except a peripheral portion thereof, and has a laminated structure including low dielectric films and wiring lines, the low dielectric films having a relative dielectric constant of 3.0 or lower and a glass transition temperature of 400° C. or higher. An insulating film is formed on the structure portion. A connection pad portion is arranged on the insulating film and connected to an uppermost wiring line of the laminated structure portion. A bump electrode is provided on the connection pad portion. A sealing film made of an organic resin is provided on a part of the insulating film which surrounds the bump electrode. Side surfaces of the laminated structure portion are covered with the insulating film and/or the sealing film.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 28, 2014
    Assignee: Tera Probe, Inc.
    Inventors: Aiko Mizusawa, Osamu Okada, Takeshi Wakabayashi, Ichiro Mihara
  • Patent number: 8846455
    Abstract: A semiconductor device permitting the reduction of cost is disclosed. In a semiconductor package wherein electrode pads of a semiconductor chip and corresponding inner leads are electrically coupled with each other through a plurality of bonding wires, sensing wires (second and fourth bonding wires) are made thinner than other bonding wires (first and third bonding wires) coupled to inner leads same as those with the sensing wires coupled thereto, thereby reducing the cost of gold wires to attain the reduction in cost of the semiconductor package.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuya Fukuhara, Kiyonori Yoshitomi, Takehiko Ikegami, Yujiro Kawasoe
  • Patent number: 8847406
    Abstract: A semiconductor device is provided comprising: a semiconductor element including a plurality of electrodes; first wirings coupled to the electrodes and directed toward a center of the semiconductor element from a portion coupled to the electrodes; second wirings coupled between the first wirings and external terminals, the second wirings being directed to an outer area of the semiconductor element relative to the center; and at least one resin layer formed between the first wirings and the second wirings.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: September 30, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Haruki Ito
  • Patent number: 8836108
    Abstract: A circuit board structure, a packaging structure and a method for making the same are disclosed. First, a first substrate and a second substrate are provided. The first substrate includes a release film attached to a carrier. The second substrate includes a copper film covered with a solder mask. Second, the solder masked is patterned. Next, the release film and the patterned solder mask are pressed together so that the first substrate is attached to the second substrate. Then, the copper film is patterned to form a first pattern and a second pattern. The first pattern is in direct contact with the release film and the second pattern is in direct contact with the patterned solder mask. Later, a passivation is formed to cover the first pattern and the second pattern to form a circuit board structure. Afterwards, a package is formed on the carrier to form a packaging structure.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: September 16, 2014
    Assignee: Advance Materials Corporation
    Inventor: Lee-Sheng Yen
  • Patent number: 8829685
    Abstract: Provided are: a circuit device demonstrating an improved connection reliability while being mounted; and a method for manufacturing the same. The circuit device of the present invention includes: an island; leads arranged around the island, each lead having a lower surface and a side surface exposed to the outside; and a semiconductor element mounted on the island and electrically connected to the leads through thin metal wires. Furthermore, the exposed end portion of the lead is formed to spread toward the outside. By forming the lead in this manner, the area where the lead comes into contact with a brazing filler material is increased, thus improving the connection strength therebetween.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 9, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Tetsuya Fukushima, Takashi Kitazawa
  • Patent number: 8816503
    Abstract: A semiconductor device with a buried electrode is manufactured by forming a cavity within a semiconductor substrate, forming an active device region in an epitaxial layer disposed on the semiconductor substrate and forming the buried electrode below the active device region in the cavity. The buried electrode is formed from an electrically conductive material different than the material of the semiconductor substrate.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: August 26, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Carsten Ahrens, Johannes Baumgartl, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 8816342
    Abstract: A device comprises a semiconductor chip including an edge elongated in a first direction. A plurality of first pads is formed on the semiconductor chip. The first pads are substantially equal in length in the first direction to each other. A second pad is formed on the semiconductor chip. The second pad is greater in length in the first direction than the first pads. The first pads and the second pad are arranged in a line elongated in the second direction, that is substantially perpendicular to the first direction, without an intervention of any one of the first pads between the second pad and the edge.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: August 26, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Tetsuji Takahashi
  • Patent number: 8796832
    Abstract: A wiring device for a semiconductor device, a composite wiring device for a semiconductor device and a resin-sealed semiconductor device are provided, each of which is capable of mounting thereon a semiconductor chip smaller than conventional chips and being manufactured at lower cost. The wiring device connects an electrode on a semiconductor chip with an external wiring device, and has an insulating layer, a metal substrate and a copper wiring layer. The wiring device has a semiconductor chip support portion provided on the side of the copper wiring layer with respect to the insulating layer. The copper wiring layer includes a first terminal, a second terminal and a wiring portion. The first terminal is connected with the electrode. The second terminal is connected with the external wiring device. The wiring portion connects the first terminal with the second terminal.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 5, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Susumu Baba, Masachika Masuda, Hiromichi Suzuki
  • Patent number: 8791556
    Abstract: An integrated circuit packaging system, and a method of manufacture therefor, including: electrical terminals; circuitry protective material around the electrical terminals and formed to have recessed pad volumes; routable circuitry on the top surface of the circuitry protective material; and an integrated circuit die electrically connected to the electrical terminals.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 29, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8748234
    Abstract: A method for making the same is disclosed. First, a first substrate and a second substrate are provided. The first substrate includes a release film attached to a carrier. The second substrate includes a copper film covered with a solder mask. Second, the solder masked is patterned. Next, the release film and the patterned solder mask are pressed together so that the first substrate is attached to the second substrate. Then, the copper film is patterned to form a first pattern and a second pattern. The first pattern is in direct contact with the release film and the second pattern is in direct contact with the patterned solder mask. Later, a passivation is formed to cover the first pattern and the second pattern to form a circuit board structure. Afterwards, a package is formed on the carrier to form a packaging structure.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 10, 2014
    Assignee: Advance Materials Corporation
    Inventor: Lee-Sheng Yen
  • Patent number: 8742577
    Abstract: A semiconductor package includes a first semiconductor chip, a second semiconductor chip disposed on the first semiconductor chip, and a connection member to electrically connect the first semiconductor chip and the second semiconductor chip. The connection member may include a connection pad disposed on the first semiconductor chip, a connection pillar disposed on the second semiconductor chip, and a bonding member to connect the connection pad and the connection pillar. An anti-contact layer may be formed on at least one surface of the connection pad.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 3, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young-kun Jee, Sun-kyoung Seo, Sang-wook Park, Ji-hwan Hwang
  • Patent number: 8742567
    Abstract: A circuit board structure at least includes a patterned solder mask, a first conductive pattern, a second conductive pattern adjacent to the first conductive pattern and in direct contact with the patterned solder mask and a passivation respectively covering the first conductive pattern and the second conductive pattern.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: June 3, 2014
    Assignee: Advance Materials Corporation
    Inventor: Lee-Sheng Yen
  • Patent number: 8735223
    Abstract: A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wei Gao, Zhiwei Gong, Dehong Ye, Huchang Zhang
  • Patent number: 8729698
    Abstract: Grooves are formed on the front surfaces of first and second semiconductor wafers each including an aggregate of a plurality of semiconductor chips. The grooves each extend on a dicing line set between the semiconductor chips and to have a larger width than the dicing line. Thereafter the first and second semiconductor wafers are arranged so that the front surfaces thereof are opposed to each other, and the space between the first semiconductor wafer and the second semiconductor wafer is sealed with underfill. Thereafter the rear surfaces of the first and second semiconductor wafers are polished until at least the grooves are exposed, and a structure including the first and second semiconductor wafers and the underfill is cut on the dicing line.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 20, 2014
    Assignees: Rohm Co., Ltd., Renesas Electronics Corporation
    Inventors: Tadahiro Morifuji, Haruo Shimamoto, Chuichi Miyazaki, Toshihide Uematsu, Yoshiyuki Abe
  • Publication number: 20140124917
    Abstract: A method for alignment of a first substrate coupled to a second substrate includes determining an inclination angle for the first substrate or the second substrate due to warpage. The method includes determining a joint height difference based on the inclination angle and configuring a size for one or more bond pads based on the joint height difference.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Michael G. Lee, Chihiro Uchibori
  • Patent number: 8692367
    Abstract: A wafer-level packaged semiconductor device is described. In an implementation, the device includes one or more self-assembled resilient leads disposed on an integrated circuit chip. Each of the resilient leads are configured to move from a first position wherein the resilient lead is held adjacent to the chip and a second position wherein the resilient lead is extended away from the chip to interconnect the chip to a printed circuit board. A guard is provided to protect the resilient leads when the resilient leads are in the first position. One or more attachment bumps may also be furnished to facilitate attachment of the device to the printed circuit board.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 8, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Chiung C. Lo, Arkadii V. Samoilov, Reynante T. Alvarado
  • Patent number: 8692377
    Abstract: An integrated circuit packaging system and method of manufacture thereof includes: an L-plated lead; a die conductively connected to the L-plated lead; and an encapsulant encapsulating the L-plated lead and the die.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: April 8, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Lionel Chien Hui Tay
  • Patent number: 8674488
    Abstract: A method of manufacturing an LED package includes mounting a large panel frame/substrate (LPF/S) having a substantially square shape to a ring. The LPF/S includes a plurality of die pads and a corresponding plurality of leads arranged in a matrix pattern. Each of the die pads includes a planar chip attach surface. An LED chip is attached to the planar chip attach surface of each of the die pads. An encapsulant material is applied overlaying the LED chips and at least a part of the LPF/S. Each die pad and corresponding leads are separated from the LPF/S to form individual LED packages. The steps of attaching the LED chips and applying the encapsulant material are performed while the LPF/S is mounted to the ring.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: March 18, 2014
    Assignee: Carsem (M) SDN. BHD.
    Inventors: Yong Lam Wai, Chan Boon Meng, Phang Hon Keat
  • Publication number: 20140042614
    Abstract: An integrated circuit includes a substrate and at least one chip. Each chip is disposed over the substrate or the other chip. Solder bumps are disposed between the substrate and the at least one chip. An insulating film is disposed around the solder bumps and provides electrical insulation for the solder bumps except areas for interconnections. A thermally conductive underfill is disposed between the substrate, the at least one chip, and the solder bumps.
    Type: Application
    Filed: September 27, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8633581
    Abstract: A semiconductor device includes a carrier, a chip attached to the carrier, and an encapsulation body disposed over the chip and the carrier. An exterior surface of the semiconductor device includes an exposed peripheral edge of at least two of the carrier, the chip, and the encapsulation body.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: January 21, 2014
    Assignee: Infineon Technologies AG
    Inventors: See Beng Keh, Paulus Stefan, Auburger Albert, Wietschorke Helmut
  • Patent number: 8629053
    Abstract: A semiconductor device having a polymer layer and a method of fabricating the same is provided. A two-step plasma treatment for a surface of the polymer layer includes a first plasma process to roughen the surface of the polymer layer and loosen contaminants, and a second plasma process to make the polymer layer smoother or make the polymer layer less rough. An etch process may be used between the first plasma process and the second plasma process to remove the contaminants loosened by the first plasma process. In an embodiment, the polymer layer exhibits a surface roughness between about 1% and about 8% as measured by Atomic Force Microscopy (AFM) with the index of surface area difference percentage (SADP) and/or has surface contaminants of less than about 1% of Ti, less than about 1% of F, less than about 1.5% Sn, and less than about 0.4% of Pb.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Chung-Shi Liu, Chen-Hua Yu, Wei-Yu Chen, Cheng-Ting Chen
  • Patent number: 8624365
    Abstract: Some of the embodiments of the present disclosure provide a semiconductor package structure comprising a leadframe; an interposer disposed on the leadframe, the interposer comprising a plurality of dielectric layers including at least (i) a first dielectric layer and (ii) a second dielectric layer; a semiconductor device disposed on the interposer; and a capacitor that is embedded within the interposer, wherein the capacitor is formed using at least (i) a first conductive area disposed on the first dielectric layer and (ii) a second conductive area disposed on the second dielectric layer. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Marvell International Ltd.
    Inventor: William B. Weiser
  • Publication number: 20140001643
    Abstract: “Hybrid” transmission line circuits employing multiple interconnect levels for the propagation, or return, of a single signal line across a package length are described. In package transmission line circuit embodiments, a signal line employs co-located traces in two different interconnect levels that are electrically coupled together. In further embodiments, a reference plane is provided above, below or co-planar with at least one of the co-locate traces. In embodiments, a balanced signal line pair includes first and second co-located traces in two adjacent interconnect levels as a propagation signal line and third and fourth co-located traces in the two adjacent interconnect levels as a return signal line with a ground plane co-planar with, and/or above and/or below the two adjacent interconnect levels.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Chung Peng (Jackson) KONG, Chang-Tsung FU, Telesphor KAMGAING, Chan Kim LEE, Ping Ping OOI
  • Publication number: 20130341797
    Abstract: A semiconductor device includes a substrate including a memory cell region and a contact region, a string structure including conductive layers and first interlayer insulating layers alternately stacked over the substrate and protruded toward a lower layer from the memory cell region toward the contact region, barrier rib patterns spaced apart from one another over the conductive layers in the contact region and configured to open the layers of the conductive layers in the contact region through the spaced spaces, and first contact plugs filled into the space between barrier rib patterns adjacent to each other and coupled to the conductive layers in the contact region.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 26, 2013
    Inventor: Yong Hyun LIM
  • Publication number: 20130341776
    Abstract: An electronic apparatus includes a base substrate, the base substrate including an interconnect. The electronic apparatus further includes a first die including a first semiconductor device, the first semiconductor device being coupled to the interconnect, and further includes a second die including a second semiconductor device, the second semiconductor device being coupled to the interconnect. The first and second die are attached to the base substrate in opposite orientations.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: Freescale Semiconductor. Inc.
    Inventor: Josef C. Drobnik
  • Publication number: 20130334711
    Abstract: An approach is provided in which a laminate substrate includes top layers, bottom layers, and a core layer. The top layers are positioned between the core layer and a top surface metallurgy (TSM) layer and include at least one top conductive layer. The bottom layers are positioned between the core layer and a bottom surface metallurgy (BSM) layer and include at least one bottom conductive layer includes a material void pattern that is based upon the top conductive layer and reduces warpage of the laminate substrate.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: International Business Machines Corporation
    Inventors: Edmund Blackshear, Anson Jay Call, Vijayeshwar Das Khanna, Douglas Oliver Powell, David John Russell
  • Patent number: 8598691
    Abstract: Semiconductor devices and methods of manufacturing and packaging thereof are disclosed. In one embodiment, a semiconductor device includes an integrated circuit and a plurality of copper pillars coupled to a surface of the integrated circuit. The plurality of copper pillars has an elongated shape. At least 50% of the plurality of copper pillars is arranged in a substantially centripetal orientation.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Yu Wu, Tin-Hao Kuo, Chen-Shien Chen, Ming-Da Cheng
  • Publication number: 20130313726
    Abstract: A mechanism for electrically coupling a semiconductor device die to a semiconductor device package substrate that avoids introduction of excessive temperature induced stresses to the semiconductor device die interconnect is provided. In one embodiment, the semiconductor device die is mechanically attached to the package substrate (or another semiconductor device die) at room temperature through the use of a plug-in socket or wedge connection having corresponding mating features formed on the die and substrate. The mechanical interconnect features can be formed on the die and substrate interconnects using an electroplating process. The surfaces of the semiconductor device die and package substrate can then be coupled using an underfill material. A low-temperature solid state bonding process can then be used to diffuse the materials forming the plug and socket features in order to form the electrical connection.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Inventor: Trent S. Uehling
  • Patent number: 8592912
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes: a plurality of conductive patterns stacked on a substrate and spaced apart from each other and a pad pattern including a flat portion extending in a first direction parallel to the substrate from one end of any one of the plurality of conductive patterns, and a landing sidewall portion extending upward from a top surface of the flat portion, wherein a width of a portion of the landing sidewall portion in a second direction parallel to the substrate and perpendicular to the first direction is less than a width of the flat portion.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Hwang, Hansoo Kim, Wonseok Cho, Jaehoon Jang, Jae-Joo Shim
  • Patent number: 8591756
    Abstract: A method of manufacturing a metallized ceramic substrate includes forming a metal layer on a ceramic substrate, and forming on the metal layer a resist having a first patterned resist opening and a second patterned resist opening for the metal layer to be exposed therefrom. A first width of the first patterned resist opening is greater than the thickness of the metal layer, and a second width of the second patterned resist opening is less than the thickness of the metal layer. A wet-etching process is conducted, to form in the first patterned resist opening a patterned metal layer opening and form in the second patterned resist opening a patterned metal layer dent. Therefore, an internal stress between the metal layer and the ceramic substrate is reduced, and the yield rate and reliability of the metallized ceramic substrate is increased.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 26, 2013
    Assignee: Viking Tech Corporation
    Inventors: Shih-Long Wei, Shen-Li Hsiao, Chien-Hung Ho
  • Patent number: 8587124
    Abstract: A semiconductor device includes a semiconductor substrate on which a structure portion is provided except a peripheral portion thereof, and has a laminated structure including low dielectric films and wiring lines, the low dielectric films having a relative dielectric constant of 3.0 or lower and a glass transition temperature of 400° C. or higher. An insulating film is formed on the structure portion. A connection pad portion is arranged on the insulating film and connected to an uppermost wiring line of the laminated structure portion. A bump electrode is provided on the connection pad portion. A sealing film made of an organic resin is provided on a part of the insulating film which surrounds the pump electrode. Side surfaces of the laminated structure portion are covered with the insulating film and/or the sealing film.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: November 19, 2013
    Assignee: Teramikros, Inc.
    Inventors: Aiko Mizusawa, Osamu Okada, Takeshi Wakabayashi, Ichiro Mihara
  • Patent number: 8581402
    Abstract: Apparatus and methods for providing a molded chip interposer structure and assembly. A molded chip structure having at least two integrated circuit dies disposed within a mold compound is provided having the die bond pads on the bottom surface; and solder bumps are formed in the openings of a dielectric layer on the bottom surface, the solder bumps forming connections to the bond pads. An interposer having a die side surface and a board side surface is provided having bump lands receiving the solder bumps of the molded chip structure on the die side of the interposer. An underfill layer is formed between the die side of the interposer and the bottom surface of the molded chip structure surrounding the solder bumps. Methods for forming the molded chip interposer structure are disclosed.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chun Hui Yu, Jing-Cheng Lin
  • Patent number: 8575756
    Abstract: Disclosed herein are a power package module and a method for fabricating the same, including: a base substrate; a plurality of high power chips and a plurality of low power chips electrically connected to the base substrate; and a plurality of metal lead plates electrically connecting the plurality of high power chips and the plurality of low power chips to the base substrate.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd
    Inventor: Bum Sik Jang
  • Publication number: 20130285263
    Abstract: A sensor array package can include a sensor disposed on a first side of a substrate. Signal trenches can be formed along the edges of the substrate and a conductive layer can be deposited in the signal trench and can couple to sensor signal pads. Bond wires can be attached to the conductive layers and can be arranged to be below a surface plane of the sensor. The sensor array package can be embedded in a printed circuit board enabling the bond wires to terminate at other conductors within the printed circuit board.
    Type: Application
    Filed: September 30, 2012
    Publication date: October 31, 2013
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Terry L. GILTON, Matthew LAST
  • Patent number: 8552540
    Abstract: Wafer level packaging (WLP) packages semiconductor dies onto a wafer structure. After the wafer level package is complete, individual packages are obtained by singulating the wafer level package. The resulting package has a small form factor suitable for miniaturization. Unfortunately conventional WLP have poor heat dissipation. An interposer with a thermal pad can be attached to the semiconductor die to facilitate improved heat dissipation. In one embodiment, the interposer can also provide a wafer substrate for the wafer level package. Furthermore, the interposer can be constructed using well established and inexpensive processes. The thermal pad attached to the interposer can be coupled to the ground plane of a system where heat drawn from the semiconductor die can be dissipated.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 8, 2013
    Assignee: Conexant Systems, Inc.
    Inventors: Robert W. Warren, Nic Rossi