Additional Leads Joined To Metallizations On Insulating Substrate, E.g., Pins, Bumps, Wires, Flat Leads (epo) Patents (Class 257/E23.068)
  • Patent number: 11923256
    Abstract: A cover for an integrated circuit package includes a central plate and a peripheral frame surrounding the central plate. The peripheral frame is vertically spaced from and parallel to the central plate. The peripheral frame includes through openings formed therein. The cover can be used to package a semiconductor chip that is mounted to a substrate.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: March 5, 2024
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Olivier Franiatte, Richard Rembert
  • Patent number: 11889618
    Abstract: A dielectric substrate has a first surface including a first terminal joint and a second terminal joint arranged along a first side surface. A first lead terminal is bonded to the first terminal joint with a bond. A second lead terminal is bonded to the second terminal joint with a bond. The first lead terminal includes a first base bonded to the first terminal joint and a first lead extending from the first base. The second lead terminal includes a second base bonded to the second terminal joint and a second lead extending from the second base. The first lead terminal includes the first base having a larger thickness than the first lead.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: January 30, 2024
    Assignee: KYOCERA Corporation
    Inventor: Toshihiko Kitamura
  • Patent number: 11862589
    Abstract: A semiconductor package includes a semiconductor chip comprising a first surface and a second surface, a redistribution layer on the first surface of the semiconductor chip, an under bump metal (UBM) layer on the redistribution layer, and a solder bump on the UBM layer, and the solder bump covers both outer side surfaces of the UBM layer.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 2, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung Sun Jang, Yeo Hoon Yoon
  • Patent number: 11862588
    Abstract: In an embodiment, a device includes: a passivation layer on a semiconductor substrate; a first redistribution line on and extending along the passivation layer; a second redistribution line on and extending along the passivation layer; a first dielectric layer on the first redistribution line, the second redistribution line, and the passivation layer; and an under bump metallization having a bump portion and a first via portion, the bump portion disposed on and extending along the first dielectric layer, the bump portion overlapping the first redistribution line and the second redistribution line, the first via portion extending through the first dielectric layer to be physically and electrically coupled to the first redistribution line.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Shien Chen, Ting-Li Yang, Po-Hao Tsai, Chien-Chen Li, Ming-Da Cheng
  • Patent number: 11817319
    Abstract: A laminated element manufacturing method includes a first forming step of forming a first modified region along a line to cut by irradiating a semiconductor substrate of a first wafer with a laser light along the line to cut, a first grinding step of grinding the semiconductor substrate of the first wafer, a bonding step of bonding a circuit layer of a second wafer to the semiconductor substrate of the first wafer, a second forming step of forming a second modified region along the line to cut by irradiating a semiconductor substrate of the second wafer with a laser light along the line to cut, and a second grinding step of grinding the semiconductor substrate of the second wafer.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: November 14, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi Sakamoto, Ryuji Sugiura, Yuta Kondoh, Naoki Uchiyama
  • Patent number: 11792941
    Abstract: The present publication discloses a circuit-board structure, including a conductor layer on an insulating material layer, and a conductor pattern on top of the conductor foil. A component is attached to the conductor foil and the conductor pattern, the component embedded at least in part in adhesive which attaches the component to the insulating material layer. A recess is formed in the conductor foil and the insulating material layer, and contact openings are in the insulating material layer at locations of contact areas of the component. Conductor material of the conductor foil is not present outside the conductor pattern, and the conductor foil is located between the conductor pattern and the insulating material layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 17, 2023
    Assignee: IMBERATEK, LLC
    Inventors: Risto Tuominen, Antti Iihola, Petteri Palm
  • Patent number: 11749618
    Abstract: A chip package includes a first substrate, a second substrate, a first conductive layer, and a metal layer. The first substrate has a bottom surface and an inclined sidewall adjoining the bottom surface, and an obtuse angle is between the bottom surface and the inclined sidewall. The second substrate is over the first substrate and has a portion that laterally extends beyond the inclined sidewall of the first substrate. The first conductive layer is between the first substrate and the second substrate. The metal layer is on said portion of the second substrate, on the bottom surface and the inclined sidewall of the first substrate, and electrically connected to an end of the first conductive layer.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: September 5, 2023
    Assignee: XINTEC INC.
    Inventors: Chia-Ming Cheng, Shu-Ming Chang
  • Patent number: 11744014
    Abstract: A flexible printed circuit board (FPCB), which is applied to various electronic display devices, may include a base, a first metal layer and a second metal layer on both surfaces of the base, a first plating layer on the first metal layer, a second plating layer on the second metal layer, and a first insulating pattern and a second insulating pattern respectively disposed on some region of the first plating layer and the second plating layer, wherein the first plating layer and the second plating layer may have different thicknesses.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: August 29, 2023
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jun Young Lim, Woong Sik Kim, Hyung Kyu Yoon
  • Patent number: 11728278
    Abstract: Board substrates, three-dimensional integrated circuit structures and methods of forming the same are disclosed. A board substrate includes a core layer, a first build-up layer, a second build-up layer, a first group of bumps, a second first group of bumps and at least one first underfill blocking wall. The first build-up layer and the second build-up layer are disposed on opposite sides of the core layer. The first group of bumps is disposed over the first build-up layer. The second first group of bumps is disposed over the first build-up layer. The at least one first underfill blocking wall is disposed over the first build-up layer and between the first group of bumps and the second group of bumps.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yu Lu, Ping-Kang Huang, Sao-Ling Chiu
  • Patent number: 11695199
    Abstract: An antenna device includes a first substrate, a second substrate, an antenna layer, and a redistribution layer. The first substrate has a first surface, a second surface opposite to the first surface, and an inclined sidewall adjoining the first and second surfaces. The second substrate is below the first substrate. The first surface of the first substrate faces toward the second substrate. The antenna layer is located on the first surface of the first substrate. The redistribution layer extends from the second surface of the first substrate to the second substrate along the inclined sidewall of the first substrate, and the redistribution layer has a first section in contact with an end of the antenna layer.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: July 4, 2023
    Assignee: XINTEC INC.
    Inventors: Jiun-Yen Lai, Ming-Chung Chung, Wei-Luen Suen
  • Patent number: 11682644
    Abstract: A method for fabricating a semiconductor device with a heterogeneous solder joint includes: providing a semiconductor die; providing a coupled element; and soldering the semiconductor die to the coupled element with a first solder joint. The first solder joint includes: a solder material including a first metal composition; and a coating including a second metal composition, different from the first metal composition, the coating at least partially covering the solder material. The second metal composition has a greater stiffness and/or a higher melting point than the first metal composition.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies AG
    Inventors: Swee Kah Lee, Sook Woon Chan, Fong Mei Lum, Joachim Mahler, Muhammad Muhammat Sanusi
  • Patent number: 11652028
    Abstract: A power semiconductor device includes a die carrier, a power semiconductor chip coupled to the die carrier by a first solder joint, a sleeve for a pin, the sleeve being coupled to the die carrier by a second solder joint, and a sealing mechanically attaching the sleeve to the die carrier, the sealing being arranged at a lower end of the sleeve, wherein the lower end faces the die carrier, and wherein the sealing does not cover the power semiconductor chip.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: May 16, 2023
    Assignee: Infineon Technologies AG
    Inventors: Andre Wedi, Carsten Ehlers, Arthur Unrau
  • Patent number: 11594432
    Abstract: Systems and methods for releasing semiconductor dies during pick and place operations are disclosed. In one embodiment, a system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further incudes a cooling member coupleable to a cold fluid source and configured to direct a cold fluid supplied by the cold fluid source toward the support substrate at the pick station. The cold fluid cools a die attach region of the substrate where the semiconductor die is attached to the substrate to facilitate removal of the semiconductor die.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy E. Minnich, Benjamin L. McClain, Travis M. Jensen
  • Patent number: 11594512
    Abstract: Various aspects of this disclosure provide a method of manufacturing an electronic device and an electronic device manufactured thereby. As a non-limiting example, various aspects of this disclosure provide a method of manufacturing an electronic device, and an electronic device manufactured thereby, that utilizes ink to form an intermetallic bond between respective conductive interconnection structures of a semiconductor die and a substrate.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: February 28, 2023
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Hwan Kyu Kim, Dae Gon Kim, Tae Kyeong Hwang, Ji Young Chung, Kwangmo Chris Lim
  • Patent number: 11567104
    Abstract: A high speed signal transmitting and receiving detection device is provided. The high speed signal transmitting and receiving detection device includes a substrate unit and a plurality of probe units. The plurality of probe units pass through the substrate unit. The substrate unit includes a conducting space, a plurality of fillers and a plurality of barriers. Each of the fillers is arranged in the conducting space and between two of the probe units that are adjacent to each other. Each of the barriers is arranged in the conducting space and between the two of the probe units that are adjacent to each other. A capacitance effect between the two of the probe units that are adjacent to each other is formed through the filler and the barrier that correspond to the two of the probe units that are adjacent to each other.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: January 31, 2023
    Assignee: TECAT TECHNOLOGIES (SUZHOU) LIMITED
    Inventor: Choon Leong Lou
  • Patent number: 11538775
    Abstract: A semiconductor device includes wiring that is formed by a conductive body extending, via an insulating film, on a front surface of a semiconductor substrate, and an insulating layer that covers the front surface of the semiconductor substrate including the wiring. Gaps are provided extending from an upper surface of the wiring to a lower portion of the insulating film.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 27, 2022
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Masanori Shindo
  • Patent number: 11490512
    Abstract: A printed circuit board and an antenna module including the same are provided. The printed circuit board includes a core layer; a first build-up structure disposed on an upper side of the core layer, including first insulating layers and first bonding layers, alternately stacked, and further including first wiring layers disposed on upper surfaces of the first insulating layers, respectively, and embedded in the first bonding layers, respectively; and a second build-up structure disposed on a lower side of the core layer, including second insulating layers and second bonding layers, alternately stacked, and further including second wiring layers disposed on lower surfaces of the second insulating layers, respectively, and embedded in the second bonding layers, respectively. The printed circuit board has a through-portion penetrating through the core layer and the second build-up structure, and has a region in which the through-portion is disposed as a flexible region.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: November 1, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Tae Hong Min, Ju Ho Kim
  • Patent number: 11483023
    Abstract: A radio-frequency module includes a module substrate. The module substrate includes a first principal surface; a second principal surface on a side of the module substrate that is opposite to the first principal surface; a third principal surface that is recessed toward the first principal surface from the second principal surface in a plan view of the second principal surface; a recessed region in which the third principal surface is a bottom surface; and a protruding region located on an outer periphery of the recessed region, in a plan view of the second principal surface, wherein the protruding region has a via conductor disposed therein, the via conductor extending in a direction perpendicular to the second principal surface and having an end exposed on the second principal surface.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: October 25, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hiroyuki Kani
  • Patent number: 11223116
    Abstract: Certain aspects of the present disclosure provide a glass ceramic antenna package having a large bandwidth (e.g., 19 GHz) for millimeter wave (mmWave) applications, for example. The antenna package generally includes an antenna element comprising a first substrate layer and a second substrate layer, wherein the first substrate layer comprises an antenna, wherein the second substrate layer comprises shielding elements and feed lines, and wherein the feed lines are electrically coupled to the antenna. The antenna package also includes a lead frame adjacent to one or more lateral surfaces of the antenna element.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 11, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Jon Lasiter, Seong Heon Jeong, Ravindra Vaman Shenoy, Jeremy Darren Dunworth, Mohammad Ali Tassoudji
  • Patent number: 10978418
    Abstract: A method of forming an electrical contact and a method of forming a chip package are provided. The methods may include arranging a metal contact structure including a non-noble metal and electrically contacting the chip, arranging a packaging material, and a protective layer including or essentially consisting of a portion formed at an interface between a portion of the metal contact structure and the packaging material, wherein the protective layer may include a noble metal, wherein the portion of the protective layer may include a plurality of regions free from the noble metal, and wherein the regions free from the noble metal may provide an interface between the packaging material and the non-noble metal of the metal contact structure.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 13, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Joachim Mahler, Michael Bauer, Jochen Dangelmaier, Reimund Engl, Johann Gatterbauer, Frank Hille, Michael Huettinger, Werner Kanert, Heinrich Koerner, Brigitte Ruehle, Francisco Javier Santos Rodriguez, Antonio Vellei
  • Patent number: 10930539
    Abstract: An electrostatic chuck heater is such that a sheet heater formed by embedding a heater wire in a resin sheet is disposed between an electrostatic chuck and a support pedestal. The heater wires are provided one for each of many zones of the resin sheet, and are composed of copper wires routed unicursally from their first ends to their second ends so as to extend throughout the zones.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 23, 2021
    Assignee: NGK Insulators, Ltd.
    Inventors: Rishun Kin, Hiroshi Takebayashi, Natsuki Hirata
  • Patent number: 10622549
    Abstract: Methods and apparatus for a signal isolator having a dielectric interposer supporting first and second die each having a magnetic field sensing element. A first signal path extends from the first die to the second die and a second signal path extends from the second die to the first die. In embodiments, the first signal path is located in the interposer and includes a first coil to generate a magnetic field and the second signal path is located in the interposer and includes a second coil to generate a magnetic filed. The first coil is located in relation to the second magnetic field sensing element of the second die and the second coil is located in relation to the first magnetic field sensing element of the first die.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 14, 2020
    Assignee: Allegro MicroSystems, LLC
    Inventors: Sundar Chetlur, Harianto Wong, Maxim Klebanov, William P. Taylor, Michael C. Doogue
  • Patent number: 9748115
    Abstract: An aspect of the invention is an electronic component including a semiconductor substrate 11 that has an electrode pad 12, a first resin layer 14 and a third resin layer 15 that are located above the semiconductor substrate, a second resin layer 16 that is formed such that at least portions of the second resin layer are located on the first resin layer and the third resin layer, a resin projection 17 that includes the first to third resin layers and is higher than the first resin layer, and a wiring layer 24 that is electrically connected to the electrode pad and lies above the resin projection.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 29, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Terunao Hanaoka
  • Patent number: 9560767
    Abstract: A wiring board includes a metal core including a first surface and a second surface facing each other and a first portion and a second portion disposed on the first and second surfaces, respectively. The first and second portions each include a plurality of insulating layers and a plurality of wiring layers stacked in an alternating manner. At least one capacitor is disposed in at least one interior region. The at least one capacitor includes first and second electrodes. The at least one interior region exposes a portion of the metal core and a portion of at least one of the first and second portions adjacent to the metal core and at least one first via electrically connects one of the wiring layers of the first portion with the first and second electrodes.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: January 31, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yonghoon Kim, Seung Hwan Kim, Heeseok Lee
  • Patent number: 9398691
    Abstract: A printed circuit board includes: a substrate; a land that is disposed on a surface of the substrate, and includes a central portion and a plurality of extended portions, the central portion having the same shape and the same size as a land of a surface mount device, and the extended portions being up-and-down symmetry and right-and-left symmetry with respect to a straight line which passes through the center of the central portion; gaps that are disposed on the surface of the substrate, each of the gaps being disposed on a periphery of the central portion and between the extended portions; and a resist that is disposed on the surface of the substrate, and has an opening portion formed at a position corresponding to the central portion and the gaps.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 19, 2016
    Assignee: FUJITSU COMPONENT LIMITED
    Inventor: Shinya Yamamoto
  • Patent number: 9030021
    Abstract: Provided are a printed circuit board (PCB) having hexagonally aligned bump pads as a substrate of a semiconductor package, and a semiconductor package including the same. The PCB includes: a PCB body; a bottom metal layer at a bottom of the PCB body; and a top metal layer at a top of the PCB body, and the top metal layer includes: vias vertically connected to the PCB body; bump pads hexagonally aligned in a horizontal direction around the vias; and connection patterns connecting the vias to two or more of the bump pads. Accordingly, the number of bump pads in a unit area of the PCB may be increased.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jik-ho Song
  • Patent number: 9018769
    Abstract: A method of forming a conductive element on a substrate and the resulting assembly are provided. The method includes forming a groove in a sacrificial layer overlying a dielectric region disposed on a substrate. The groove preferably extends along a sloped surface of the substrate. The sacrificial layer is preferably removed by a non-photolithographic method, such as ablating with a laser, mechanical milling, or sandblasting. A conductive element is formed in the groove. The grooves may be formed. The grooves and conductive elements may be formed along any surface of the substrate, including within trenches and vias formed therein, and may connect to conductive pads on the front and/or rear surface of the substrate. The conductive elements are preferably formed by plating and may or may not conform to the surface of the substrate.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: April 28, 2015
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 9006887
    Abstract: Methods of forming a microelectronic packaging structure are described. Those methods may include forming a solder paste comprising a sacrificial polymer on a substrate, curing the solder paste below a reflow temperature of the solder to form a solid composite hybrid bump on the conductive pads, forming a molding compound around the solid composite hybrid bump, and reflowing the hybrid bump, wherein the sacrificial polymer is substantially decomposed.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 14, 2015
    Assignee: Intel Corporation
    Inventors: Rajasekaran Swaminathan, Leonel Arana, Yoshihiro Tomita, Yosuke Kanaoka
  • Patent number: 9006892
    Abstract: A method and system of stacking and aligning a plurality of integrated circuits. The method includes the steps of providing a first integrated circuit having at least one funnel-shaped socket, providing a second integrated circuit, aligning at least one protrusion on the second integrated circuit with the at least one funnel-shaped socket, and bonding the first integrated circuit to the second integrated circuit. The system includes a first integrated circuit having at least one funnel-shaped socket, a metallization-diffusion barrier disposed on the interior of the funnel-shaped socket, and a second integrated circuit. The at least one funnel-shaped socket is adapted to receive a portion of the second integrated circuit.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Kai-Ming Ching
  • Patent number: 9000584
    Abstract: The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung, Nai-Wei Liu, Yi-Chao Mao, Wan-Ting Shih, Tsan-Hua Tung
  • Patent number: 9000579
    Abstract: An integrated circuit package system includes a substrate having an opening provided therein, forming a conductor in the opening having a closed end at the bottom, attaching an integrated circuit die over the substrate, and connecting a die interconnect to the integrated circuit die and the closed end of the conductor.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 7, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Dario S. Filoteo, Jr., Emmanuel Espiritu, Rachel Layda Abinan
  • Patent number: 8981575
    Abstract: A semiconductor package structure includes: a dielectric layer; a metal layer disposed on the dielectric layer and having a die pad and traces, the traces each including a trace body, a bond pad extending to the periphery of the die pad, and an opposite trace end; metal pillars penetrating the dielectric layer with one ends thereof connecting to the die pad and the trace ends while the other ends thereof protruding from the dielectric layer; a semiconductor chip mounted on the die pad and electrically connected to the bond pads through bonding wires; and an encapsulant covering the semiconductor chip, the bonding wires, the metal layer, and the dielectric layer. The invention is characterized by disposing traces with bond pads close to the die pad to shorten bonding wires and forming metal pillars protruding from the dielectric layer to avoid solder bridging encountered in prior techniques.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Pang-Chun Lin, Chun-Yuan Li, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8975758
    Abstract: A semiconductor package includes a first structural body having a first surface and a second surface which faces away from the first surface, and formed with first connection members on the first surface; a second structural body placed over the first structural body, and formed with second connection members on a surface thereof which faces the first surface of the first structural body; and an interposer interposed between the first structural body and the second structural body, and having a body which is formed with openings into which the first connection members and the second connection members are inserted and a conductive layer which is formed to fill the openings.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: March 10, 2015
    Assignee: SK Hynix Inc.
    Inventor: Seung Hyun Lee
  • Patent number: 8975760
    Abstract: A semiconductor device includes a wiring substrate having first and second connection pads on a main surface thereof, a first semiconductor chip having first electrode pads, a second semiconductor chip having second electrode pads each of which has a size smaller than that of each of the first electrode pads, first wires connecting the first electrode pads with the first connection pads, and second wires connecting the second electrode pads with the second connection pads. The second wires have wide width parts at first ends. The first electrode pads are larger than the wide width parts while the second electrode pads are smaller than the wide width parts. The wide width parts are connected the second connection pads and the second wires have second ends connected to the second electrode pads via bump electrodes which are smaller than the second electrode pads.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 10, 2015
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Shori Fujiwara
  • Patent number: 8970033
    Abstract: A device includes a work piece, and a metal trace on a surface of the work piece. A Bump-on-Trace (BOT) is formed at the surface of the work piece. The BOT structure includes a metal bump, and a solder bump bonding the metal bump to a portion of the metal trace. The metal trace includes a metal trace extension not covered by the solder bump.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Chen, Yuh Chern Shieh, Tsung-Shu Lin, Han-Ping Pu, Jiun Yi Wu, Tin-Hao Kuo
  • Patent number: 8963326
    Abstract: A semiconductor device has a semiconductor wafer with a first conductive layer formed over a surface of the semiconductor wafer. A first insulating layer is formed over the surface of the semiconductor wafer and first conductive layer. A second conductive layer is formed over the first insulating layer and first conductive layer. A second insulating layer is formed over the first insulating layer and second conductive layer. A plurality of openings is formed in the second insulating layer in a bump formation area of the semiconductor wafer to expose the second conductive layer and reduce adverse effects of electro-migration. The openings are separated by portions of the second insulating layer. A UBM layer is formed over the openings in the second insulating layer in the bump formation area electrically connected to the second conductive layer. A bump is formed over the UBM layer.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 24, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Xusheng Bao, Ma Phoo Pwint Hlaing, Jian Zuo
  • Patent number: 8963313
    Abstract: Integrating a semiconductor component with a substrate through a low loss interconnection formed through adaptive patterning includes forming a cavity in the substrate, placing the semiconductor component therein, filling a gap between the semiconductor component and substrate with a fill of same or similar dielectric constant as that of the substrate and adaptively patterning a low loss interconnection on the fill and extending between the contacts of the semiconductor component and the electrical traces on the substrate. The contacts and leads are located and adjoined using an adaptive patterning technique that places and forms a low loss radio frequency transmission line that compensates for any misalignment between the semiconductor component contacts and the substrate leads.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Raytheon Company
    Inventors: Sankerlingam Rajendran, Monte R. Sanchez, Susan M. Eshelman, Douglas R. Gentry, Thomas A. Hanft
  • Patent number: 8952529
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the semiconductor die. A first conductive layer having first and second segments is formed over a surface of the substrate with a first vent separating an end of the first segment and the second segment and a second vent separating an end of the second segment and the first segment. A second conductive layer is formed over the surface of the substrate to electrically connect the first segment and second segment. The thickness of the second conductive layer can be less than a thickness of the first conductive layer to form the first vent and second vent. The semiconductor die is mounted to the substrate with the bumps aligned to the first segment and second segment. Bump material from reflow of the bumps is channeled into the first vent and second vent.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JaeHyun Lee, SunJae Kim, JoongGi Kim
  • Patent number: 8952533
    Abstract: Polyimide-based redistribution layers (RDLs) can be employed to reduce thermo-mechanical stress that is exerted on conductive interconnections bonded to interposers in 2.5 D semiconductor packaging configurations. The polyimide-based RDL is located on an upper or lower face of an interposer. Additionally, height differentials between laterally adjacent semiconductor dies in 2.5 D semiconductor packages can be reduced or eliminated by using different diameter micro-bumps, different height copper pillars, or a multi-tiered interposer to lower taller semiconductor dies in relation to shorter semiconductor dies.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: February 10, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Anwar A. Mohammed, Weifeng Liu, Rui Niu
  • Patent number: 8941237
    Abstract: A device includes a substrate, a semiconductor chip, first and second pads, and a first wiring layer. The substrate includes first and second surfaces. The semiconductor chip includes third and fourth surfaces. The third surface faces toward the first surface. The first and second pads are provided on the third surface. The first and second pads are connected to each other. The first wiring layer is provided on the second surface of the substrate. The first wiring layer is connected to the first pad.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: January 27, 2015
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Yu Hasegawa, Mitsuaki Katagiri
  • Patent number: 8937386
    Abstract: The formation of the conductive wire of a chip package consists of a plurality of steps. Coat a first dielectric layer on the pad-mounting surface and a slot is formed on each bonding pad correspondingly. Then coat a second dielectric layer and produce a wiring slot corresponding to each bonding pad and the slot thereof. Next each wiring slot is filled with electrically conductive metal so as to form a conductive wire. Later Coat a third dielectric layer and a corresponding slot is formed on one end of each conductive wire while this slot is filled with electrically conductive metal to form a solder point. The above steps can further be repeated so as to form an upper-layer and a lower-layer conductive wire. Thereby precision of the chip package, use efficiency of the wafer and yield rate of manufacturing processes are all improved.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 20, 2015
    Assignee: Aflash Technology Co., Ltd.
    Inventors: Tse-Ming Chu, Sung-Chuan Ma
  • Patent number: 8907481
    Abstract: A stack of a first and second semiconductor structures is formed. Each semiconductor structure includes: a semiconductor bulk, an overlying insulating layer with metal interconnection levels, and a first surface including a conductive area. The first surfaces of semiconductor structures face each other. A first interconnection pillar extends from the first surface of the first semiconductor structure. A housing opens into the first surface of the second semiconductor structure. The housing is configured to receive the first interconnection pillar. A second interconnection pillar protrudes from a second surface of the second semiconductor structure which is opposite the first surface. The second interconnection pillar is in electric contact with the first interconnection pillar.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Laurent-Luc Chapelon
  • Patent number: 8907469
    Abstract: An integrated circuit package assembly includes a first integrated circuit package and a second integrated circuit package disposed under the first integrated circuit package. Solder bumps are disposed between the first integrated circuit package and the second integrated circuit package providing electrical signal connections between the first integrated circuit package and the second integrated circuit package. At least one support structure is disposed between the first integrated circuit package and the second integrated circuit package to facilitate thermal conduction between the first integrated circuit package and the second integrated circuit package without providing electrical signal connections.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 8884445
    Abstract: A semiconductor chip includes a substrate having one surface and an other surface which substantially faces away from the one surface; at least two alignment bumps formed on the one surface of the substrate and having different diameters; and at least two alignment grooves defined on the other surface of the substrate and having different diameters.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 11, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jin Hui Lee
  • Patent number: 8866294
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over a surface of the first semiconductor die. A penetrable adhesive layer is formed over a temporary carrier. The adhesive layer can include a plurality of slots. The semiconductor die is mounted to the carrier by embedding the bumps into the penetrable adhesive layer. The semiconductor die and interconnect structure can be separated by a gap. An encapsulant is deposited over the first semiconductor die. The bumps embedded into the penetrable adhesive layer reduce shifting of the first semiconductor die while depositing the encapsulant. The carrier is removed. An interconnect structure is formed over the semiconductor die. The interconnect structure is electrically connected to the bumps. A thermally conductive bump is formed over the semiconductor die, and a heat sink is mounted to the interconnect structure and thermally connected to the thermally conductive bump.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 21, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 8860218
    Abstract: A semiconductor die includes a first contact stack including a first die pad having a first pad perimeter, a first via through a dielectric layer to the first die pad having a first via perimeter, and a first UBM pad contacting the first die pad through the first via having a first UBM pad perimeter. A second contact stack includes a second die pad having a second pad perimeter shorter than the first pad perimeter, a second via through the dielectric layer to the second die pad having a second via perimeter shorter than the first via perimeter, and a second UBM pad contacting the second die pad through the second via having a second UBM pad perimeter that is shorter than the first UBM pad perimeter.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Ramlah Binte Abdul Razak
  • Patent number: 8853853
    Abstract: The embodiments of bump and bump-on-trace (BOT) structures provide bumps with recess regions for reflowed solder to fill. The recess regions are placed in areas of the bumps where reflow solder is most likely to protrude. The recess regions reduce the risk of bump to trace shorting. As a result, yield can be improved.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Horng Chang, Tin-Hao Kuo, Chen-Shien Chen, Yen-Liang Lin
  • Patent number: 8836116
    Abstract: The embodiments of methods and structures for forming through silicon vias a CMOS substrate bonded to a MEMS substrate and a capping substrate provide mechanisms for integrating CMOS and MEMS devices that use less real-estate and are more reliable. The through silicon vias electrically connect to metal-1 level of the CMOS devices. Copper metal may be plated on a barrier/Cu-seed layer to partially fill the through silicon vias, which saves time and cost. The formation method may involve using dual dielectric layers on the substrate surface as etching mask to eliminate a photolithographical process during the removal of oxide layer at the bottoms of through silicon vias. In some embodiments, the through silicon vias land on polysilicon gate structures to prevent notch formation during etching of the vias.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsueh-An Yang
  • Patent number: 8836115
    Abstract: A stacked inverted flip chip package includes a substrate having a secondary electronic component opening and first traces. Primary flip chip bumps electrically and physically couple a primary electronic component structure to the substrate. Secondary flip chip bumps electrically and physically couple an inverted secondary electronic component to the primary electronic component structure between the primary electronic component structure and the substrate and within the secondary electronic component opening. By placing the secondary electronic component between the primary electronic component structure and the substrate, the height of the stacked inverted flip chip package is minimized.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 16, 2014
    Inventors: Roger D. St. Amand, August Joseph Miller, Jr., Alexander William Copia, KwangSeok Oh
  • Patent number: 8835301
    Abstract: A semiconductor wafer has a plurality of semiconductor die with contact pads for electrical interconnect. An insulating layer is formed over the semiconductor wafer. A bump structure is formed over the contact pads. The bump structure has a buffer layer formed over the insulating layer and contact pad. A portion of the buffer layer is removed to expose the contact pad and an outer portion of the insulating layer. A UBM layer is formed over the buffer layer and contact pad. The UBM layer follows a contour of the buffer layer and contact pad. A ring-shaped conductive pillar is formed over the UBM layer using a patterned photoresist layer filled with electrically conductive material. A conductive barrier layer is formed over the ring-shaped conductive pillar. A bump is formed over the conductive barrier layer. The buffer layer reduces thermal and mechanical stress on the bump and contact pad.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 16, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JoonYoung Choi, YoungJoon Kim, SungWon Cho