Capacitor Only (epo) Patents (Class 257/E27.048)
  • Patent number: 11948969
    Abstract: A semiconductor structure includes a substrate, at least one dielectric layer and a capacitor structure. The at least one dielectric layer is disposed over the substrate, and the at least one dielectric layer includes a step edge profile. The capacitor structure is disposed over the substrate. The capacitor structure includes a bottom electrode, a capacitor dielectric layer and a top electrode. The bottom electrode covers the step edge profile of the at least one dielectric layer and has a first step profile substantially conformal to the step edge profile of the at least one dielectric layer. The capacitor dielectric layer covers the bottom electrode and has a second step profile substantially conformal to the first step profile. The top electrode covers the capacitor dielectric layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming Chyi Liu, Chun-Tsung Kuo
  • Patent number: 11877432
    Abstract: A capacitor structure and a method of preparing the same are provided. The method includes the followings. A substrate is provided. A stacked layer is formed on the substrate. A plurality of first via holes penetrating through the stacked layer are formed. The first via hole is filled with a conductive material to form a conductive pillar. A plurality of second via holes penetrating through the stacked layer are formed at a preset radius with the conductive pillar as an axis. The second via hole surrounds the conductive pillar circumferentially. The second via hole is filled with the conductive material to form an annular top electrode with a second gear.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 16, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Jun Xia
  • Patent number: 11769791
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a capacitor structure. The method includes forming a capacitor dielectric layer over a lower electrode layer, and forming an upper electrode layer over the capacitor dielectric layer. The upper electrode layer is etched to define an upper electrode and to expose a part of the capacitor dielectric layer. A spacer structure is formed over horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and also along sidewalls of the upper electrode. The spacer structure is etched to remove the spacer structure from over the horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and to define a spacer. The capacitor dielectric layer and the lower electrode layer are etched according to the spacer to define a capacitor dielectric and a lower electrode.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Sheng Chu, Dun-Nian Yaung, Yu-Cheng Tsai, Meng-Hsien Lin, Ching-Chung Su, Jen-Cheng Liu, Wen-De Wang, Guan-Hua Chen
  • Patent number: 11688777
    Abstract: In an embodiment, a semiconductor device is provided that includes a lateral transistor device having a source, a drain and a gate, and a monolithically integrated capacitor coupled between the gate and the drain.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: June 27, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Eric G. Persson, Reenu Garg
  • Patent number: 11683036
    Abstract: A capacitive logic cell with complementary control, including a variable-capacitance electromechanical device having a fixed part and a mobile part, the electromechanical device comprising first, second, third and fourth electrodes mounted on the fixed part, and a fifth electrode mounted on the mobile part, the first electrode being connected to a terminal for supplying a first input logic signal, the second electrode being connected to a terminal for supplying a second input logic signal, complementary to the first input logic signal, the third electrode being connected to a terminal for supplying a first output logic signal, and the fourth electrode being connected to a terminal for supplying a second output logic signal, complementary to the first output logic signal.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: June 20, 2023
    Assignee: Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Gaël Pillonnet, Hervé Fanet
  • Patent number: 11545304
    Abstract: A plurality of capacitors and a holding body constructed to hold the plurality of capacitors. Each of the plurality of capacitors includes a semiconductor substrate, a first electrode layer, a dielectric layer, a second electrode layer, and an outer electrode. Among a first capacitor and a second capacitor of the plurality of capacitors, the second capacitor has a shape different from a shape of the first capacitor in at least one of the first electrode layer, the second electrode layer, and the outer electrode.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: January 3, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masatomi Harada, Masaki Takeuchi, Takeshi Kagawa, Hiroshi Matsubara
  • Patent number: 11506763
    Abstract: Time-of-flight (TOF) systems and techniques whereby a first exposure obtains pixel measurements for a first subset of pixels of a pixel array, using a first reference signal. For a second exposure, the first subset of the pixels, e.g., every second line of the pixel array, are set to a “hold” state, so that values obtained from the first measurement are maintained. A second exposure using a second reference signal is performed for a second subset of the pixels. The first and second reference signals may have different phase shifts relative to a signal modulating an optical signal being measured. The result is an array of pixels in which the first and second subsets hold results of the first and second exposures, respectively. These pixel values can then be read out all at once, with certain calculations being performed directly as pixel values are read from the pixel array.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Markus Dielacher, Martin Flatscher, Robert Lobnik, Hartwig Unterassinger
  • Patent number: 11469192
    Abstract: A 2nd signal line has impedance lower than impedance of a 1st signal line. A capacitor includes a 1st extension part and a 2nd extension part, a 1st ground part and a 2nd ground part. The 1st extension part and the 2nd extension part are connected to a 2nd signal line and are on an insulation substrate to extend along a longitudinal direction of the 2nd signal line. The 1st ground part and the 2nd ground part are at least a part of a ground pattern, and are between the 1st extension part and the 2nd extension part and the 2nd signal line, and between the 1st extension part and the 2nd extension part and an end part of the insulation substrate, to be electrically coupled with the 1st extension part and the 2nd extension part.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: October 11, 2022
    Assignee: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventor: Masahiro Hirayama
  • Patent number: 11469168
    Abstract: A capacitor includes at least one multi-wing structure; a laminated structure, where the laminated structure clads the at least one multi-wing structure and includes at least one dielectric layer and a plurality of conductive layers, and the at least one dielectric layer and the plurality of conductive layers form a structure that a conductive layer and a dielectric layer are adjacent to each other; at least one first external electrode, where the first external electrode is electrically connected to some conductive layer(s) in the plurality of conductive layers; at least one second external electrode, wherein the second external electrode is electrically connected to the other conductive layer(s) in the plurality of conductive layers, and a conductive layer in the laminated structure adjacent to each conductive layer in the some conductive layer(s) includes at least one conductive layer in the other conductive layer(s).
    Type: Grant
    Filed: September 26, 2020
    Date of Patent: October 11, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Bin Lu, Jian Shen
  • Patent number: 11462609
    Abstract: A capacitor includes: at least one multi-wing structure including N axes and M wings, where the N axes extend along a first direction, and the M wings are a convex structure formed by extending from side walls of the N axes toward a direction perpendicular to the first direction, a first wing of the M wings and the N axes are formed of a first conductive material, and other wings are formed of a second conductive material; a conductive structure cladding the multi-wing structure; a dielectric layer disposed between the multi-wing structure and the conductive structure to isolate the multi-wing structure from the conductive structure; a first external electrode electrically connected to some or all multi-wing structures; and a second external electrode electrically connected to the conductive structure.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 4, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Bin Lu, Jian Shen
  • Patent number: 10681815
    Abstract: The composite chip component includes: plurality of chip elements which are disposed so as to be mutually spaced apart upon a common substrate, and which have mutually different functions; and a pair of electrodes which, in each of the chip elements, are formed on the surface of the substrate. As a result, it is possible to reduce the bond area (footprint) for the mounting substrate, and therefore, it is possible to provide a composite chip component capable of achieving efficiency of mounting operation.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: June 9, 2020
    Assignee: ROHM CO., LTD.
    Inventors: Hiroshi Tamagawa, Koichi Niino, Eiji Nukaga, Keishi Watanabe
  • Patent number: 10453791
    Abstract: Capacitor structures with pitch-matched capacitor unit cells are described. In an embodiment, the capacitor unit cells are formed by interdigitated finger electrodes. The finger electrodes may be pitch-matched in multiple metal layers within a capacitor unit cell, and the finger electrodes may be pitch-matched among an array of capacitor unit cells. Additionally, border unit cells may be pitch-matched with the capacitor unit cells.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: October 22, 2019
    Assignee: Apple Inc.
    Inventors: Yi Chun A. Fu, Mansour Keramat, Vijay Srinivas
  • Patent number: 10321570
    Abstract: The composite chip component includes: plurality of chip elements which are disposed so as to be mutually spaced apart upon a common substrate, and which have mutually different functions; and a pair of electrodes which, in each of the chip elements, are formed on the surface of the substrate. As a result, it is possible to reduce the bond area (footprint) for the mounting substrate, and therefore, it is possible to provide a composite chip component capable of achieving efficiency of mounting operation.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: June 11, 2019
    Assignee: ROHM CO., LTD.
    Inventors: Hiroshi Tamagawa, Koichi Niino, Eiji Nukaga, Keishi Watanabe
  • Patent number: 10237873
    Abstract: Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems, are disclosed. In one embodiment, a controller unit samples a plurality of serial digital data streams simultaneously. To allow the controller unit to sample the multiple serial digital data streams simultaneously from a plurality of ADCs, the controller unit is configured to provide a plurality of data input ports. Each of the ADCs is coupled to a common chip select port and clock signal port on the controller unit. The controller unit communicates a chip select signal on the chip select port to activate all of the ADCs simultaneously to cause each of the ADCs to provide its respective digital data stream to the respective data input port of the controller unit simultaneously for sampling. As a result, fewer or lower-cost components may be used to sample multiple ADCs.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 19, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Amit Gutman
  • Patent number: 10192801
    Abstract: A semiconductor device is made with a conductive via formed through a top-side of the substrate. The conductive via extends vertically through less than a thickness of the substrate. An integrated passive device (IPD) is formed over the substrate. A plurality of first conductive pillars is formed over the first IPD. A first semiconductor die is mounted over the substrate. An encapsulant is formed around the first conductive pillars and first semiconductor die. A second IPD is formed over the encapsulant. An interconnect structure is formed over the second IPD. The interconnect structure operates as a heat sink. A portion of a back-side of the substrate is removed to expose the first conductive via. A second semiconductor die is mounted to the back-side of the substrate. The second semiconductor die is electrically connected to the first IPD and first semiconductor die through the conductive via.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: January 29, 2019
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Haijing Cao
  • Patent number: 10032854
    Abstract: A semiconductor integrated circuit device may include a cell capacitor connected with any one of a first electrode and a second electrode of an access device. The cell capacitor may include a first cell cap array and a second cell cap array separated from the first cell cap array. A voltage terminal for driving the cell capacitor may be connected to a connection node between the first cell cap array and the second cell cap array.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: July 24, 2018
    Assignee: SK hynix Inc.
    Inventors: Jong Su Kim, Dong Kun Lee
  • Patent number: 9807772
    Abstract: Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems, are disclosed. In one embodiment, a controller unit samples a plurality of serial digital data streams simultaneously. To allow the controller unit to sample the multiple serial digital data streams simultaneously from a plurality of ADCs, the controller unit is configured to provide a plurality of data input ports. Each of the ADCs is coupled to a common chip select port and clock signal port on the controller unit. The controller unit communicates a chip select signal on the chip select port to activate all of the ADCs simultaneously to cause each of the ADCs to provide its respective digital data stream to the respective data input port of the controller unit simultaneously for sampling. As a result, fewer or lower-cost components may be used to sample multiple ADCs.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 31, 2017
    Assignee: Corning Optical Communications Wireless Ltd.
    Inventor: Amit Gutman
  • Patent number: 9793338
    Abstract: A semiconductor device comprising a semiconductor substrate and a composite capacitor structure on the semiconductor substrate, wherein the composite capacitor structure comprises a capacitor stack comprising a lower and an upper capacitor, respectively comprising first and second dielectric materials, wherein the first and second dielectric materials are different materials and/or have different thicknesses from each other. This can minimize the voltage dependence of the capacitance of the composite capacitor structure. It is also possible to provide a composite capacitor structure on the semiconductor substrate, wherein the composite capacitor structure comprises at least a first and a second capacitor stack, each comprising a lower and an upper capacitor. The capacitors can be MIM capacitors.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 17, 2017
    Assignee: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Tsui Ping Chu, Peng Yang, Evie Siaw Hei Kho, Yong Kheng Ang, Swee Hua Tia
  • Patent number: 9418793
    Abstract: A variable capacitance device includes a substrate, a beam portion, lower drive electrodes and upper drive electrodes. The beam portion is made of an insulating material and is connected to the substrate via an anchor portion. In the lower drive electrode and the upper drive electrode, electrostatic attraction generated by the application of a DC voltage continuously changes. In the lower drive electrodes and the upper drive electrode, electrostatic capacitance generated by the application of an RF signal between the electrodes on both sides continuously changes in accordance with the deformation of the beam portion due to the electrostatic attraction. The beam portion includes an inner circumferential portion including the upper drive electrode, an outer circumferential portion including the upper drive electrode, and ladder portions sandwiched by the inner circumferential portion and the outer circumferential portion. The beam portion has a cross-sectional area that is reduced by the ladder portions.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 16, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Keiichi Umeda
  • Patent number: 9395213
    Abstract: Provided is a readout integrated circuit including a sensor signal processing unit receiving sensor signals from a plurality of sensors and converting respectively the sensor signals into voltage signals, a signal converting unit respectively converting the voltage signals into digital signals, a digital signal processing unit outputting digital signals processed in response to the voltage signals and a switching control signal, a power supplying unit generating an internal voltage for operating the signal converting unit and the digital signal processing unit, and a reference sensing voltage for operating the sensor signal processing unit, and a switch unit operating in response to the switching control signal, wherein the switch unit includes switches respectively corresponding to the plurality of sensors and a current amount applied to each sensor is adjusted in response to operation times of the switches.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: July 19, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young-deuk Jeon, Min-Hyung Cho, Yi-Gyeong Kim
  • Patent number: 9357551
    Abstract: Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems, are disclosed. In one embodiment, a controller unit samples a plurality of serial digital data streams simultaneously. To allow the controller unit to sample the multiple serial digital data streams simultaneously from a plurality of ADCs, the controller unit is configured to provide a plurality of data input ports. Each of the ADCs is coupled to a common chip select port and clock signal port on the controller unit. The controller unit communicates a chip select signal on the chip select port to activate all of the ADCs simultaneously to cause each of the ADCs to provide its respective digital data stream to the respective data input port of the controller unit simultaneously for sampling. As a result, fewer or lower-cost components may be used to sample multiple ADCs.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: May 31, 2016
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Amit Gutman
  • Patent number: 8993396
    Abstract: A method for fabricating a capacitor includes forming a mold structure over a substrate, wherein the mold structure has a plurality of open parts and has a mold layer stacked with a support layer; forming cylinder type lower electrodes in the open parts; forming a first upper electrode over an entire surface of a structure including the cylinder type lower electrodes to fill the cylinder type lower electrodes; defining a through hole that passes through portions of the first upper electrode and the support layer; removing the mold layer through the through hole and exposing the cylinder type lower electrodes; forming a second upper electrode to fill the through hole and spaces between the cylinder type lower electrodes; and forming a third upper electrode to connect the second upper electrode and the first upper electrode with each other.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: SK Hynix Inc.
    Inventors: Jong-Kook Park, Yong-Tae Cho
  • Patent number: 8994145
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor chip which includes a semiconductor integrated circuit provided in an insulator, a first pad a pad having an upper surface of which is exposed via an opening formed in the insulator, and capacitors provided in a capacitor region of the semiconductor chip under the pad. The capacitors are provided in the capacitor region to satisfy a rule of a coverage. And contacts respectively connected to two electrodes of the capacitors are provided at positions that do not vertically overlap the opening.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: March 31, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Jumpei Sato
  • Patent number: 8987862
    Abstract: A device structure includes an inter-level dielectric, a via, a first conductive trench, and a second conductive trench. The inter-level dielectric has a top surface and a bottom surface. The via extends from the top surface to the bottom surface. The first conductive trench extends from the top surface to a first depth below the top surface. The second conductive trench extends from the top surface to a second depth below the top surface, wherein the second depth is above the bottom surface and below the first depth.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: March 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bernd E. Kastenmeier, Raman E. Evazians
  • Patent number: 8980708
    Abstract: A complementary back end of line (BEOL) capacitor (CBC) structure includes a metal oxide metal (MOM) capacitor structure. The MOM capacitor structure is coupled to a first upper interconnect layer of an interconnect stack of an integrated circuit (IC) device. The MOM capacitor structure includes at least one lower interconnect layer of the interconnect stack. The CBC structure may also include a second upper interconnect layer of the interconnect stack coupled to the MOM capacitor structure. The CBC structure also includes at least one metal insulator metal (MIM) capacitor layer between the first upper interconnect layer and the second upper interconnect layer. In addition, CBC structure may also include a MIM capacitor structure coupled to the MOM capacitor structure. The MIM capacitor structure includes a first capacitor plate having at least a portion of the first upper interconnect layer, and a second capacitor plate having at least a portion of the MIM capacitor layer(s).
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: John J. Zhu, Bin Yang, P R Chidambaram, Lixin Ge, Jihong Choi
  • Patent number: 8921911
    Abstract: A vertical semiconductor charge storage structure includes a substrate, at least one lower electrode, a dielectric layer and an upper electrode. The lower electrode includes a lower conductor, and a first side conductor and a second side conductor connected to the lower conductor. The first side conductor and the second side conductor are parallel to each other and form an included angle with the lower conductor. A height of the first side conductor from the substrate is greater than a height of the second side conductor from the substrate. The dielectric layer and the upper electrode are sequentially formed on surfaces of the substrate and the lower electrode. Accordingly, by forming the first side conductor and the second side conductor at different heights, an aperture ratio is increased to reduce difficulty in filling or deposition in subsequent processes to further enhance an overall yield rate.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Rexchip Electronics Corporation
    Inventors: Pin-Yuan Yu, Yi-Chun Shao, Chien-Hua Chu
  • Patent number: 8912629
    Abstract: A semiconductor device includes a substrate and a plurality of storage nodes on the substrate and extending in a vertical direction relative to the substrate. A lower support pattern is in contact with the storage nodes between a bottom and a top of the storage nodes, the lower support pattern spaced apart from the substrate in the vertical direction, and the lower support pattern having a first maximum thickness in the vertical direction. An upper support pattern is in contact with the storage nodes above the lower support pattern relative to the substrate, the upper support pattern spaced apart from the lower support pattern in the vertical direction, and the lower support pattern having a second maximum thickness in the vertical direction that is greater than the first maximum thickness of the lower support pattern.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: JungWoo Seo
  • Patent number: 8896097
    Abstract: Provided are a method of manufacturing a capacitor capable of achieving a high dielectric constant property and a low leakage current, a capacitor, and a method of forming a dielectric film used in the capacitor. The capacitor is fabricated by forming a lower electrode layer on a substrate; forming a first TiO2 film having an interface control function on the lower electrode layer; forming a ZrO2-based film on the first TiO2 film; performing an annealing process for crystallizing ZrO2 in the ZrO2-based film, after forming the ZrO2-based film; forming a second TiO2 film which serves as a capacity film on the ZrO2-based film; and forming an upper electrode layer on the second TiO2 film.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 25, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yu Wamura, Koji Akiyama, Shingo Hishiya, Katsushige Harada
  • Patent number: 8884350
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 11, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Toshiyuki Hirota
  • Patent number: 8878340
    Abstract: Devices or systems that include a composite thermal capacitor disposed in thermal communication with a hot spot of the device, methods of dissipating thermal energy in a device or system, and the like, are provided herein. In particular, the device includes a composite thermal capacitor including a phase change material and a high thermal conductivity material in thermal communication with the phase change material. The high thermal conductivity material is also in thermal communication with an active regeneration cooling device. The heat from the composite thermal capacitor is dissipated by the active regeneration cooling device.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: November 4, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Craig Green, Yogendra Joshi
  • Patent number: 8872299
    Abstract: A semiconductor device capable of high-speed operation. The semiconductor device includes a first transistor, a second transistor, and a capacitor. One of a source and a drain of the first transistor is supplied with a first signal. One of a source and a drain of the second transistor is supplied with a first potential. A gate of the second transistor is supplied with a second signal. A first electrode of the capacitor is electrically connected to the other of the source and the drain of the first transistor. A second electrode of the capacitor is electrically connected to the other of the source and the drain of the second transistor. In a first period, the first signal is low and the second signal is high. In a second period, the first signal is high and the second signal is either low or high.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsushi Umezaki
  • Patent number: 8802532
    Abstract: Disclosed are example bipolar transistors capable of reducing the area of a collector, reducing the distance between a base and a collector, and/or reducing the number of ion implantation processes. A bipolar transistor may includes a trench formed by etching a portion of a semiconductor substrate. A first collector may be formed on the inner wall of the trench. A second collector may be formed inside the semiconductor substrate in the inner wall of the trench. A first isolation film may be formed on the sidewall of the first collector. An intrinsic base may be connected to the third collector. An extrinsic base may be formed on the intrinsic base and inside the first isolation film. A second isolation film may be formed on the inner wall of the extrinsic base. An emitter may be formed by burying a conductive material inside the second isolation film.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam Joo Kim
  • Patent number: 8749022
    Abstract: A capacitor device includes a substrate including a first well having a first conductivity type and a first voltage applied thereto and a second well having a second conductivity type and a second voltage applied thereto; and a gate electrode disposed on an upper portion of the first well or an upper portion of the second well in such a way that the gate electrode is insulated from the first well or the second well, wherein capacitances of the capacitor device include a first capacitance between the first well and the second well and a second capacitance between the first well or the second well and the gate electrode.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Ryul Chang, Hwa-Sook Shin
  • Patent number: 8736000
    Abstract: A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 27, 2014
    Assignee: Sandia Corporation
    Inventors: Ronald P. Manginell, Matthew W. Moorman, David R. Wheeler
  • Patent number: 8737124
    Abstract: There is provided a semiconductor device including a word line, a bit line, a power supply node, a memory element, and a capacitor. The memory element includes at least first and second regions that form a PN junction between the bit line and the power supply node, and a third region that forms a PN junction with the second region. The capacitor includes a first electrode provided independently from the second region of the memory element and electrically connected to the second region of the memory element, and a second electrode connected to the word line.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: May 27, 2014
    Inventors: Shuichi Tsukada, Yasuhiro Uchiyama
  • Patent number: 8722505
    Abstract: A semiconductor capacitor with large area plates and a small footprint is formed on a semiconductor wafer by forming an opening in the wafer, depositing a first metal atoms through a first shadow mask that lies spaced apart from the wafer to form a first metal layer in the opening, a dielectric layer on the first metal layer, and a second metal atoms through a second shadow mask that lies spaced apart from the wafer to form a second metal layer on the dielectric layer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: May 13, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, William French
  • Publication number: 20140117497
    Abstract: On-chip decoupling capacitors and methods for placing the same are disclosed in which designated spaces are created between the active circuits to insert designated capacitor cells. The designated capacitor cells may be placed in designated areas of the integrated circuit that are not simply spaces left empty by cell placement or frontier areas in or around the route, and the dimensions (e.g., height) of the designated capacitor cells may be selected to optimize (increase) capacitance efficiency. The capacitor cells may also be placed to target and reduce the interference between a digital core (aggressor) circuit and a victim analog circuit.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: SILICON LABORATORIES INC.
    Inventors: Vitor M. Pereira, Trent O. Dudley, Jessica P. Davis
  • Patent number: 8710625
    Abstract: Embodiments of the present disclosure include devices or systems that include a composite thermal capacitor disposed in thermal communication with a hot spot of the device, methods of dissipating thermal energy in a device or system, and the like.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 29, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Craig Green, Yogendra Joshi
  • Patent number: 8709907
    Abstract: A method for manufacturing a TiN/Ta2O5/TiN capacitor, including the steps of forming a Ta2O5 layer on a TiN support by a plasma-enhanced atomic layer deposition method, or PEALD; and submitting the obtained structure to an N2O plasma for a duration sufficient to oxidize the Ta2O5 layer without oxidizing the TiN support.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: April 29, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Mickael Gros-Jean
  • Patent number: 8698278
    Abstract: An objective is to provide a component-incorporated wiring substrate capable of solving a problem caused by an increase in length of wiring lines that connect a component and a capacitor. A component-incorporated wiring substrate 10 includes a core substrate 11, a first capacitor 301, a wiring laminate portion 31, and a second capacitor 101. An accommodation hole portion 90 of the core substrate 11 accommodates the first capacitor 101 therein, and a component-mounting region 20 is set on a surface 39 of the wiring laminate portion 31. The second capacitor 101 has electrode layers 102, 103 and a dielectric layer 104. The second capacitor 101 is embedded in the wiring laminate portion 31 in such a state that first main surfaces 105, 107 and second main surfaces 106, 108 are in parallel with the surface 39 of the wiring laminate portion 31, and is disposed between the first capacitor 301 and the component-mounting region 20.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 15, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Masaki Muramatsu
  • Patent number: 8659063
    Abstract: A pin capacitor of a semiconductor device includes a first isolation layer formed in a substrate and defining a dummy active area, a plurality of gates formed over the first isolation layer, a spacer formed at both sidewalls of each of the gates, and a plug formed over the dummy active area and in contact with the spacer. The substrate and the plug are coupled to a ground unit, and the gate is coupled to a pad unit. That is, the pin capacitor includes a first capacitor including the gate, the isolation layer, and the substrate and a second capacitor including the gate, the spacer, and the plug, which are coupled in parallel to each other.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: February 25, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jeong-Soo Kim
  • Patent number: 8643075
    Abstract: A plurality of metal patterns are disposed on a substrate. A support structure is provided between the plurality of metal patterns. The support structure has a supporter and a glue layer. Each of the plurality of metal patterns has a greater vertical length than a horizontal length on the substrate when viewed from a cross-sectional view. The supporter has a band gap energy of at least 4.5 eV. The glue layer is in contact with the plurality of metal patterns. The supporter and the glue layer are formed of different materials.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wan-Don Kim, Beom-Seok Kim, Yong-Suk Tak, Kyu-Ho Cho, Seung-Hwan Lee, Oh-Seong Kwon, Geun-Kyu Choi
  • Patent number: 8643141
    Abstract: Some embodiments relate a capacitor array arranged on a semiconductor substrate. The capacitor array includes an array of unit capacitors arranged in a series of rows and columns. An interconnect structure couples unit capacitors of the array to establish a plurality of capacitor elements. The respective capacitor elements have different numbers of unit capacitors and different corresponding capacitances. In establishing the plurality of capacitor elements, the interconnect structure couples unit capacitors of the array in substantially identical sub-arrays tiled over the semiconductor substrate. Other methods and devices are also disclosed.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting Lu, Chih-Chiang Chang
  • Publication number: 20140015098
    Abstract: A method for fabricating an electronic device package having a column grid array is disclosed. A column grid array package includes a substrate, an integrated circuit located on a first side of the substrate, and a set of solder columns located on a second side of the substrate. The column grid array package also includes multiple two-tab electronic devices located on the second side of the substrate. The heights of the two-tab electronic devices are substantially identical to the heights of the solder columns.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC.
    Inventors: THOMAS J. McINTYRE, KEITH K. STURCKEN, CHRISTY A. HAGERTY
  • Patent number: 8618634
    Abstract: A semiconductor device manufacturing method includes forming a first capacitance film formed on the lower electrode; forming an intermediate electrode in a first region on the first capacitance film, wherein the first capacitance is interposed between the intermediate electrode and the lower electrode; forming a second capacitance film on the intermediate electrode to be interposed between the first capacitance film and the second capacitance film; and forming an upper electrode, wherein at least a portion of the second capacitance film is interposed between the upper electrode and the intermediate electrode; the upper electrode extending to a second region outside the first region, and having at least the first capacitance film interposed between the upper electrode and the lower electrode in the second region.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: December 31, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Publication number: 20130270671
    Abstract: Some embodiments relate a capacitor array arranged on a semiconductor substrate. The capacitor array includes an array of unit capacitors arranged in a series of rows and columns. An interconnect structure couples unit capacitors of the array to establish a plurality of capacitor elements. The respective capacitor elements have different numbers of unit capacitors and different corresponding capacitances. In establishing the plurality of capacitor elements, the interconnect structure couples unit capacitors of the array in substantially identical sub-arrays tiled over the semiconductor substrate. Other methods and devices are also disclosed.
    Type: Application
    Filed: September 4, 2012
    Publication date: October 17, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Ting Lu, Chih-Chiang Chang
  • Patent number: 8551856
    Abstract: Methods are provided for forming a capacitor. In one embodiment, a method comprises providing an insulator material layer over a substrate, etching at least one via in the insulator material layer and depositing a contact material fill in the at least one via to form a first set of contacts. The method further comprises etching the insulator material layer adjacent at least one contact of the first set of contacts to form at least one void, depositing a dielectric material layer over the at least one void and over the first set of contacts and depositing a contact material fill in the at least void to form a second set of contacts.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 8, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Michael Rennie, Thomas J. Knight
  • Publication number: 20130256836
    Abstract: A package for a use in a package-on-package (PoP) device. The package includes a substrate, a polymer layer formed on the substrate, a first via formed in the polymer layer, and a material disposed in the first via to form a first passive device. The material may be a high dielectric constant dielectric material in order to form a capacitor or a resistive material to form a resistor.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Wen Hsiao, Chen-Shien Chen
  • Patent number: 8546913
    Abstract: A capacitance cell includes a substrate structure layer having pair diffusion regions, and an interconnect layer having pair of power supply lines. The capacitance cell also includes a capacitance composed of a first electrode, a dielectric member and a second electrode stacked together, and is formed in a frame shape and disposed in a space between the substrate structure layer and the interconnect layer so as to extend along an outer rim of the frame shape of a standard cell region in which a standard cell is arranged. The capacitance cell also includes a first substrate contact that electrically connects one of the pair of power supply lines to one of the diffusion regions externally of the standard cell region. The capacitance cell also includes a second substrate contact that electrically connects the other power supply line to the other diffusion region, externally of the standard cell region.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masatake Wada, Naoki Imakita
  • Patent number: 8536677
    Abstract: One or more embodiments relate to a capacitor structure comprising a first and second capacitor electrode. The first electrode may include a conductive strip having at least one wider portion and at least one narrower portion. The second electrode may include a conductive strip having at least one wider portion and at least one narrower portion.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: September 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Peter Baumgartner, Philipp Riess