Including Only Semiconductor Components Of A Single Kind, E.g., All Bipolar Transistors, All Diodes, Or All Cmos (epo) Patents (Class 257/E27.046)

  • Patent number: 11971736
    Abstract: A circuit is provided that includes a first transistor having a first terminal, a second terminal and a third terminal, and a second transistor comprising a first terminal, a second terminal and a third terminal. The first terminal of the first transistor comprises an input terminal of the circuit, the second terminal of the first transistor is coupled to a power supply bus, and the first transistor conducts a first current. The first terminal of the first transistor comprises an output terminal of the circuit, the second terminal of the second transistor is coupled to the power supply bus, and the third terminal of the second transistor is coupled to the third terminal of the first transistor. The second transistor conducts a second current proportional to the first current substantially independent of distance between the first transistor and the second transistor.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: April 30, 2024
    Assignee: SanDisk Technologies LLC
    Inventors: James O'Toole, Ward Parkinson, Thomas Trent
  • Patent number: 11117217
    Abstract: A metal film for use by an additive manufacturing apparatus is described herein. The metal film has a support structure and metal voxels removably attached to the support structure by respective junctions. When a metal voxel in the metal film is impacted by an energy pulse from an energy source of the additive manufacturing apparatus, one or more junctions that attach the metal voxel to the support structure are broken, resulting in the metal voxel detaching from the metal film (at a desired location in a two-dimensional plane).
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 14, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventor: David Robinson
  • Patent number: 10923417
    Abstract: Among other things, a method of fabricating an integrated electronic device package is described. First trace portions of an electrically conductive trace are formed on an electrically insulating layer of a package structure, and vias of the conductive trace are formed in a sacrificial layer disposed on the electrically insulating layer. The sacrificial layer is removed, and a die is placed above the electrically insulating layer. Molding material is formed around exposed surfaces of the die and exposed surfaces of the vias, and a magnetic structure is formed within the layer of molding material. Second trace portions of the electrically conductive trace are formed above the molding material and the magnetic structure. The electrically conductive trace and the magnetic structure form an inductor. The electrically conductive trace may have a coil shape surrounding the magnetic structure. The die may be positioned between portions of the inductor.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: February 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wen-Shiang Liao, Chih-Hang Tung, Chen-Hua Yu, Chewn-Pu Jou, Feng Wei Kuo
  • Patent number: 10855299
    Abstract: Described herein are DACs with low distortion for high dynamic range (HDR), extremely high dynamic range (EHDR), and other suitable applications. Some embodiments relate to a device including a DAC configured for coupling to an amplifier via a force path and a sense path. For example, the DAC may provide output current to the amplifier via the force path, and the DAC may sense the input voltage of the amplifier via the sense path. Accordingly, distortion such as harmonic distortion and/or gain offset from parasitic impedances in the force and/or sense paths may be reduced or eliminated. Some embodiments relate to a DAC including a voltage reference generator configured to compensate for variations in impedances of the DAC, such as due to semiconductor process variation. Accordingly, distortion in the DAC output due to variations in the DAC impedances may be reduced or eliminated.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 1, 2020
    Assignee: MEDIATEK Singapore Pte. Ltd.
    Inventors: Ayman Shabra, Michael A Ashburn, Jr., Patrick Cooney, Adalberto Cantoni, Joshua M. Bamford
  • Patent number: 10784042
    Abstract: A coil module for an induction type power supply system includes a supporting frame, an upper lid and a first wire. The upper lid, disposed on the supporting frame, includes a spiral slot. The first wire is used for being inserted in the spiral slot to form a coil.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 22, 2020
    Assignee: Fu Da Tong Technology Co., Ltd.
    Inventors: Ming-Chiu Tsai, Chi-Che Chan
  • Patent number: 10720895
    Abstract: A programmable a fully-differential programmable gain amplifier for reducing distortion, switching transients and interference, and improving bandwidth. In one embodiment, the amplifier includes a programmable gain module, an amplifier coupled to the current mode outputs and a data latch circuit of the programmable gain module, the amplifier configured to apply common mode voltage to the data latch circuit, and a current-to-voltage converter. In one embodiment, the fully-differential programmable gain amplifier controls distortion and switching interference during amplification by sensing common mode signals to produce an error signal, and applying the resulting error signal to the programmable gain module for multiplying digital to analog conversion.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 21, 2020
    Assignee: HARMAN INTERNATIONAL INDUSTRIES, INCORPORTED
    Inventors: Dimitri Danyuk, Todd A. Eichenbaum
  • Patent number: 10359725
    Abstract: A power source device includes a control substrate and a power source substrate. The control substrate has a modulation signal generating integrated circuit that outputs a modulation signal modulated to generate an AC voltage. The power source substrate generates a high AC voltage by demodulating the modulation signal which is output from the modulation signal generating integrated circuit of the control substrate.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 23, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventor: Daisuke Ota
  • Patent number: 10361154
    Abstract: A variable inductor which comprises a primary conductor, first and second secondary conductors and one or more switch. The primary conductor has a first node and a second node, wherein the first node is used to connect a first external component and the second node is used to connect a second external component. The first and second secondary conductors magnetically couple to the primary conductor. The one or more switch has two sides connected to the first or second secondary conductor, respectively. The first and second secondary conductors are formed a single-loop structure with two or more changeable current paths which are operated by the states of the one or more switch. An integrated circuit using the variable inductor is also introduced.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: July 23, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chia-Jen Liang, Yen-Cheng Kuan, Ching-Wen Chiang, Chien-Te Yu
  • Patent number: 10291338
    Abstract: Advanced detectors for vector signaling codes are disclosed which utilize multi-input comparators, generalized on-level slicing, reference generation based on maximum swing, and reference generation based on recent values. Vector signaling codes communicate information as groups of symbols which, when transmitted over multiple communications channels, may be received as mixed sets of symbols from different transmission groups due to propagation time variations between channels. Systems and methods are disclosed which compensate receivers and transmitters for these effects and/or utilize codes having increased immunity to such variations, and circuits are described that efficiently implement their component functions.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 14, 2019
    Assignee: KANDOU LABS, S.A.
    Inventors: Brian Holden, Amin Shokrollahi, Anant Singh
  • Patent number: 10236852
    Abstract: An integrated circuit (IC) includes an input pad and an output pad separated from the input pad by a predetermined distance. A plurality of capacitors are coupled in series between the input pad and the output pad. The plurality of capacitors are distributed to substantially span the predetermined distance. An inductor is formed from a bond wire, having a first end attached at the first input pad and a second end attached at the output pad. The inductor and plurality of capacitors configured to form a predetermined open circuit resonance.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 19, 2019
    Assignee: NXP USA, INC.
    Inventors: Joseph Gerard Schultz, Hussain Hasanali Ladhani, Enver Krvavac, Yu-Ting Wu
  • Patent number: 10181868
    Abstract: An apparatus includes a radio-frequency (RF) receiver. The RF receiver includes a single-balanced passive mixer driven by the output of a low noise amplifier (LNA) and a passive filter driven by an output of the single-balanced passive mixer. The RF receiver further includes a programmable gain amplifier (PGA) having an input resistance that generates noise, where the PGA is driven by an output of the passive filter, and the noise generated by the input resistance of the PGA is suppressed.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: January 15, 2019
    Assignee: Silicon Laboratories Inc.
    Inventors: Navin Harwalkar, Arup Mukherji, John M. Khoury
  • Patent number: 10147677
    Abstract: This invention discloses a structure of an integrated inductor, comprising: an outer metal segment which comprises a first metal sub-segment and a second metal sub-segment; an inner metal segment which is arranged inside an area surrounded by the outer metal segment and comprises a third metal sub-segment and a fourth metal sub-segment; and at least a connecting structure for connecting the outer metal segment and the inner metal segment. The first metal sub-segment corresponds to the third metal sub-segment, and the first metal sub-segment and the third metal sub-segment belong to different metal layers in a semiconductor structure. The second metal sub-segment corresponds to the fourth metal sub-segment, and the second metal sub-segment and the fourth metal sub-segment belong to different metal layers in a semiconductor structure.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 4, 2018
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Hsiao-Tsung Yen, Yuh-Sheng Jean, Ta-Hsun Yeh
  • Patent number: 10139468
    Abstract: A low cost planar transmission line sensor and simple calibration method for measuring the complex permittivity of materials with minimal sample preparation over a wide band of radio- and microwave frequencies. The sensor is also used for measuring anisotropic dielectric properties of materials with a defined grain.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 27, 2018
    Assignee: The United States of America, as Represented by the Secretary of Agriculture
    Inventors: Jochem T. Roelvink, Samir Trabelsi
  • Patent number: 10135393
    Abstract: A signal detector includes a signal input terminal, N first resistors, (N?1) second resistors, a third resistor, M voltage-to-current units and a collection unit. A first terminal of a 1st first resistor is coupled to the signal input terminal. A first terminal of an ith first resistor is coupled to a second terminal of an (i?1)th first resistor. A first terminal of a kth second resistor is coupled to a second terminal of a kth first resistor. A second terminal of each second resistor is coupled to a reference voltage terminal. The third resistor is coupled between the reference voltage terminal and a second terminal of an Nth first resistor. Each voltage-to-current unit is coupled to a first terminal of a corresponding first resistor for converting a corresponding detection voltage to a detection current. The collection unit is coupled to the M voltage-to-current units for generating a detection signal according to at least the M detection currents.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: November 20, 2018
    Assignee: RichWave Technology Corp.
    Inventor: Hwey-Ching Chien
  • Patent number: 10026735
    Abstract: A MOS IC includes pMOS transistors, each having a pMOS transistor drain, source, and gate. Each pMOS transistor gate extends in a first direction and is coupled to other pMOS transistor gates. Each pMOS transistor source/drain are coupled to a first voltage source. The MOS IC further includes a first metal interconnect extending over the pMOS transistors. The first metal interconnect has first and second ends. The first metal interconnect is coupled to each pMOS transistor gate and is coupled to a second voltage source less than the first voltage source. One of each pMOS transistor gate or the second voltage source is coupled to the first metal interconnect through at least one tap point located between the first and second ends. The pMOS transistors and the first metal interconnect function as a decoupling capacitor.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: July 17, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Andi Zhao, Ramaprasath Vilangudipitchai, Dorav Kumar
  • Patent number: 9954267
    Abstract: A multiplexer structure includes a passive substrate. The multiplexer structure may also include a high band filter on the passive substrate. The high band filter may include a 2D planar spiral inductor(s) on the passive substrate. The multiplexer structure may further include a low band filter on the passive substrate. The low band filter may include a 3D through-substrate inductor and a first capacitor(s) on the passive substrate. The multiplexer structure may also include a through substrate via(s) coupling the high band filter and the low band filter.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: April 24, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Changhan Hobie Yun, Daeik Daniel Kim, Mario Francisco Velez, Chengjie Zuo, David Francis Berdy, Jonghae Kim
  • Patent number: 9922926
    Abstract: A semiconductor device sends and receives electrical signals. The semiconductor device includes a first substrate provided with a first circuit region containing a first circuit; a multi-level interconnect structure provided on the first substrate; a first inductor provided in the multi-level interconnect structure so as to include the first circuit region; and a second inductor provided in the multi-level interconnect structure so as to include the first circuit region, wherein one of the first inductor and the second inductor is connected to the first circuit and the other of the first inductor and the second inductor is connected to a second circuit.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: March 20, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Yasutaka Nakashiba
  • Patent number: 9653772
    Abstract: A resonator includes a laminate, an inductive element on the laminate, and a semiconductor die attached to the inductive element and the laminate. The semiconductor die includes a substrate and a device layout area. The device layout area is separated into a number of device layout sub-areas, each of which has an area between about 1.0 ?m2 and 100.0 ?m2. By limiting the area of each one of the device layout sub-areas with the charge carrier trap trenches, the total area of the semiconductor die prone to inducement of eddy currents (i.e., the layer of accumulated charge at the interface of the substrate and the device layout area) is reduced, which in turn reduces interference with the magnetic field of the inductive element and thus improves the performance of the resonator.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: May 16, 2017
    Assignee: Qorvo US, Inc
    Inventors: George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 9640603
    Abstract: A semiconductor device has a trench formed in a substrate. The trench has tapered sidewalls and depth of 10-120 micrometers. A first insulating layer is conformally applied over the substrate and into the trench. An insulating material, such as polymer, is deposited over the first insulating layer in the trench. A first conductive layer is formed over the insulating material. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and electrically contacts the first conductive layer. The first and second conductive layers are isolated from the substrate by the insulating material in the trench. A third insulating layer is formed over the second insulating layer and second conductive layer. The first and second conductive layers are coiled over the substrate to exhibit inductive properties.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: May 2, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Meenakshi Padmanathan, Seung Wook Yoon, YongTaek Lee
  • Patent number: 9621113
    Abstract: Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: April 11, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9608624
    Abstract: An apparatus for performing signal driving with aid of MOSFET and an associated IC are provided, where the apparatus includes a PMOSFET coupled between a predetermined voltage level and a terminal, and further includes an NMOSFET coupled between the predetermined voltage level and the terminal. The PMOSFET is arranged for selectively driving a signal that passes through the terminal. In addition, the NMOSFET is arranged for selectively driving the signal. Additionally, the apparatus further includes another NMOSFET coupled between another predetermined voltage level and the terminal, wherein the other NMOSFET is arranged for selectively driving the signal. More particularly, the PMOSFET, the NMOSFET, and the other NMOSFET does not drive the signal at the same time. For example, each of the PMOSFET, the NMOSFET, and the other NMOSFET selectively drives the signal to have one of a plurality of logical states.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: March 28, 2017
    Assignee: MEDIATEK INC.
    Inventor: Shang-Pin Chen
  • Patent number: 9590561
    Abstract: An apparatus includes a differential amplifier. The differential amplifier includes a first side circuit configured to receive a first input signal, a second side circuit configured to receive a second input signal, and a resonant tank circuit coupled between the first and second side circuits. A first capacitor and first switch may be provided in series between a source and drain of a cascode transistor. A second capacitor and second switch may be provided in series between a source and drain of an input transistor. A method includes receiving a first input signal by a first side circuit, receiving a second input signal by a second side circuit, controlling a resource of a resonant tank circuit, and outputting an output signal according to the first and second input signals. The resource of the resonant tank circuit may be controlled according to a transmission mode, frequency band, or both.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: March 7, 2017
    Assignee: MARVELL WORLD TRADE LTD.
    Inventors: Li Cai, Juan Xie, Poh Boon Leong
  • Patent number: 9553547
    Abstract: Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system used to manage the power delivered to a linear RF power amplifier.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: January 24, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Michael R. Kay
  • Patent number: 9018730
    Abstract: A galvanic-isolated coupling of circuit portions is accomplished on the basis of a stacked chip configuration. The semiconductor chips thus can be fabricated on the basis of any appropriate process technology, thereby incorporating one or more coupling elements, such as primary or secondary coils of a micro transformer, wherein the final characteristics of the micro transformer are adjusted during the wafer bond process.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: April 28, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Crocifisso Marco Antonio Renna, Antonino Scuderi, Carlo Magro, Nunzio Spina, Egidio Ragonese, Barbaro Marano, Giuseppe Palmisano
  • Patent number: 9000533
    Abstract: A semiconductor device having five gate stacks on different regions of a substrate and methods of making the same are described. The device includes a semiconductor substrate and isolation features to separate the different regions on the substrate. The different regions include a p-type field-effect transistor (pFET) core region, an input/output pFET (pFET IO) region, an n-type field-effect transistor (nFET) core region, an input/output nFET (nFET IO) region, and a high-resistor region.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Cheng Wu, Po-Nien Chen, Jin-Aun Ng, Bao-Ru Young, Harry-Hak-Lay Chuang
  • Patent number: 8963211
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a high-leakage dielectric formed over an active region of a FET and a low-leakage dielectric formed on the active region and adjacent the high-leakage dielectric. The low-leakage dielectric has a lower leakage than the high-leakage dielectric. Also provided is a structure and method of fabricating the structure.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8906767
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yue-Der Chih, Jam-Wem Lee, Cheng-Hsiung Kuo, Tsung-Che Tsai, Ming-Hsiang Song, Hung-Cheng Sung, Hung Cho Wang
  • Patent number: 8823136
    Abstract: A set of metal line structures including a signal transmission metal line and a capacitively-grounded inductively-signal-coupled metal line is embedded in a dielectric material layer. A capacitor is serially connected between the capacitively-grounded inductively-signal-coupled metal line and a local electrical ground, which may be on the input side or on the output side. The set of metal line structures and the capacitor collective provide a frequency dependent inductor. The Q factor of the frequency dependent inductor has multiple peaks that enable the operation of the frequency dependent inductor at multiple frequencies. Multiple capacitively-grounded inductively-signal-coupled metal lines may be provided in the frequency-dependent inductor, each of which is connected to the local electrical ground through a capacitor. By selecting different capacitance values for the capacitors, multiple values of the Q-factor may be obtained in the frequency dependent inductor at different signal frequencies.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Wayne H. Woods
  • Patent number: 8810042
    Abstract: A semiconductor device includes a semiconductor chip having a multilayer interconnect, a first spiral inductor and a second spiral inductor formed in the multilayer interconnect, and an interconnect substrate formed over the semiconductor chip and having a third spiral inductor and a fourth spiral inductor. The third spiral inductor overlaps the first spiral inductor in a plan view. The fourth spiral inductor overlaps the second spiral inductor in the plan view. The third spiral inductor and the fourth spiral inductor collectively include a line, the line being spirally wound in a same direction in the third spiral inductor and the fourth spiral inductor.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 19, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 8809958
    Abstract: Integrated circuits and methods of manufacture and design thereof are disclosed. For example, a method of manufacturing includes using a first mask to pattern a gate material forming a plurality of first and second features. The first features form gate electrodes of the semiconductor devices, whereas the second features are dummy electrodes. Based on the location of these dummy electrodes, selected dummy electrodes are removed using a second mask. The use of the method provides greater flexibility in tailoring individual devices for different objectives.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: August 19, 2014
    Assignee: Infineon Technologies AG
    Inventors: Henning Haffner, Manfred Eller, Richard Lindsay
  • Patent number: 8791544
    Abstract: [Problem to be Solved] A semiconductor element having fine pitch electrodes is mounted on a substrate at low cost without reducing the number of input-output terminals. [Solution] Electrodes 1 for electrical connection and first inductors 2, arranged between the electrodes 1 in a manner neighboring the electrodes 1, for electromagnetic coupling are arranged on one main surface of the semiconductor element 3. On a substrate 5, second inductors 4 for electromagnetically coupling with the first inductors 2 are arranged in positions corresponding to the first inductors 2. The semiconductor element 3 is mounted on the substrate 5 so that the first and second inductors 2 and 4 face each other. Only desired input/output signals among input/output signals of the semiconductor element 3 are inputted or outputted from the external electrodes 11 of the substrate 5 in a manner being transmitted contactlessly by electromagnetic coupling between the first and second inductors 2 and 4 without going through the electrodes 1.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 29, 2014
    Assignee: NEC Corporation
    Inventor: Masamoto Tago
  • Patent number: 8763235
    Abstract: A method for bonding a first substrate to a second substrate is described. The first substrate includes a first plurality of solder pads, a first alignment mark set, and a first plurality of dots. The second substrate includes a second plurality of solder pads, a second alignment mark set, and a second plurality of dots configured to interlock with the first plurality of dots. The method includes aligning the first alignment mark set with the second alignment mark set. The first alignment mark sets being aligned corresponds to the dots and the solder pads being aligned. The method also includes locking the first plurality of dots with the second plurality of dots to form an interlocking key. The method also includes reflowing at least one of the first and second pluralities of solder pads. The dots remain substantially solid during the reflow.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 1, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Luc Ving Chung
  • Patent number: 8766452
    Abstract: A semiconductor device having a conductive pattern includes a plurality of conductive lines extending in parallel, each having a first region extending in a first direction and a second region coupled to the first region and extending in a second direction crossing the first direction, and a plurality of contact pads, each coupled to a respective conductive line of the second regions, wherein the conductive lines are grouped and arranged in a plurality of groups, the first region of a first group is longer than the first region of a second group, and the second region of the first group and the second region of the second group are spaced apart from each other.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 1, 2014
    Assignee: SK Hynix Inc.
    Inventor: Dae Sung Eom
  • Patent number: 8748246
    Abstract: A transistor includes a semiconductor substrate includes having a gate hardmask over the gate electrode layer during the formation of transistor source/drain regions. An independent work function adjustment process implants Group IIIa series dopants into a gate polysilicon layer of a PMOS transistor and implants lanthanide series dopants into a gate polysilicon layer of a NMOS transistor.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Manfred Ramin, Michael Pas
  • Patent number: 8729639
    Abstract: According to one embodiment, a semiconductor device includes a gate electrode formed on a substrate with a gate insulation film interposed therebetween, and a source region of a first conductivity type and a drain region of a second conductivity type reverse to the first conductivity type, which are formed so as to hold the gate electrode therebetween within the substrate. The work function of a first region on the source region side within the gate electrode is shifted toward the first conductivity type as compared to the work function of a second region on the drain region side within the gate electrode.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakazu Goto
  • Patent number: 8704311
    Abstract: The semiconductor device includes a first transistor including a first impurity layer of a first conductivity type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, and a first gate electrode formed above the first gate insulating film, and a second transistor including a second impurity layer of the second conductivity type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and having a thickness different from that of the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer and having a film thickness equal to that of the first gate insulating film and a second gate electrode formed above the second gate insulating film.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazushi Fujita, Taiji Ema, Hiroyuki Ogawa
  • Patent number: 8698252
    Abstract: A semiconductor device having five gate stacks on different regions of a substrate and methods of making the same are described. The device includes a semiconductor substrate and isolation features to separate the different regions on the substrate. The different regions include a p-type field-effect transistor (pFET) core region, an input/output pFET (pFET IO) region, an n-type field-effect transistor (nFET) core region, an input/output nFET (nFET IO) region, and a high-resistor region.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Nien Chen, Jin-Aun Ng, Ming Zhu, Bao-Ru Young, Hak-Lay Chuang
  • Patent number: 8699257
    Abstract: The present invention discloses a three-dimensional writable printed memory (3D-wP). It comprises at least a printed memory array and a writable memory array. The printed memory array stores contents data, which are recorded with a printing means; the writable memory array stores custom data, which are recorded with a writing means. The writing means is preferably direct-write lithography. To maintain manufacturing throughput, the total amount of custom data should be less than 1% of the total amount of content data.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 15, 2014
    Assignees: HangZhou HaiCun Information Technology Co., Ltd.
    Inventor: Guobiao Zhang
  • Publication number: 20140097514
    Abstract: A semiconductor package includes a semiconductor chip, an inductor applied to the semiconductor chip. The inductor includes at least one winding. A space within the at least one winding is filled with a magnetic material.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Klaus Elian, Jens Pohl, Horst Theuss, Renate Hofmann, Alexander Glas, Carsten Ahrens
  • Patent number: 8648404
    Abstract: A three-dimensional semiconductor device includes a semiconductor substrate, a plurality of conductive layers and insulating layers, and a plurality of contacts. The plurality of conductive layers and insulating layers are stacked alternately above the semiconductor substrate. The plurality of contacts extend in a stacking direction of the plurality of conductive layers and insulating layers. The plurality of conductive layers form a stepped portion having positions of ends of the plurality of conductive layers gradually shifted from an upper layer to a lower layer. The plurality of contacts are connected respectively to each of steps of the stepped portion. The stepped portion is formed such that, at least from an uppermost conductive layer to a certain conductive layer, the more upwardly the conductive layer is located, the broader a width of the step is.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nikka Ko, Katsunori Yahashi
  • Patent number: 8610236
    Abstract: A word line driver includes an active area having a length that extends in a first direction over a semiconductor substrate. A plurality of fingers formed over an upper surface of the active area. Each of the plurality of fingers has a length that extends in a second direction and forms a MOS transistor with a portion of the active area. A first dummy structure is disposed between an outer one of the plurality of fingers and an edge of the semiconductor substrate. The first dummy structure includes a portion that is at least partially disposed over a portion of the active area.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Huei Chen, Jung-Hsuan Chen, Shao-Yu Chou, Hung-Jen Liao, Li-Chun Tien
  • Patent number: 8610220
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yue-Der Chih, Jam-Wem Lee, Cheng-Hsiung Kuo, Tsung-Che Tsai, Ming-Hsiang Song, Hung-Cheng Sung, Roger Wang
  • Publication number: 20130320490
    Abstract: A semiconductor device structure a semiconductor substrate having a first conductivity type and a top surface. A plurality of first doped regions is at a first depth below the top surface arranged in a checkerboard fashion. The first doped regions are of a second conductivity type. A dielectric layer is over the top surface. An inductive element is over the dielectric layer, wherein the inductive element is over the first doped regions.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Inventors: Ertugrul Demircan, Thomas F. McNelly
  • Patent number: 8592922
    Abstract: A transistor device is provided that includes a substrate, a first channel region formed in a first portion of the substrate and being doped with a dopant of a first type of conductivity, a second channel region formed in a second portion of the substrate and being doped with a dopant of a second type of conductivity, a gate insulating layer formed on the first channel region and on the second channel region, a dielectric capping layer formed on the gate insulating layer, a first gate region formed on the dielectric capping layer over the first channel region, and a second gate region formed on the dielectric capping layer over the second channel region, wherein the first gate region and the second gate region are made of the same material, and wherein one of the first gate region and the second gate region comprises an ion implantation.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jacob C. Hooker, Markus Mueller
  • Publication number: 20130307028
    Abstract: A nonvolatile memory device includes cell strings, each including a plurality of memory cells over a substrate, extending in a direction, channel layers, connected with one sides and the other sides of the cell strings, extending in another direction perpendicular to the substrate, select gate electrodes, located over the cell strings, surrounding side surfaces of the channel layers with a gate dielectric layer interposed therebetween, and conductive lines connected with upper ends of the channel layers.
    Type: Application
    Filed: September 11, 2012
    Publication date: November 21, 2013
    Inventor: Nam-Jae LEE
  • Publication number: 20130277731
    Abstract: Various embodiments include methods and apparatuses, such as memory cells formed on two or more stacked decks. A method includes forming a first deck with first levels of conductor material and first levels of dielectric material over a substrate. Each level of the conductor material is separated from an adjacent level of conductor material by at least one of the first levels of dielectric material. A first opening is formed through the first levels of conductor material and dielectric material. A sacrificial material is formed at least partially filling the first opening. A second deck is formed over the first deck. The second deck has second levels of conductor material and second levels of dielectric material with each level of the conductor material being separated from an adjacent level of conductor material by at least one of the second levels of dielectric material. Additional apparatuses and methods are disclosed.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Inventors: Akira Goda, Roger W. Lindsay
  • Patent number: 8541880
    Abstract: A signal routing grid. A first metal layer has wires running in a first direction. A second metal layer, spaced from and substantially parallel to the first metal layer, has wires running in a second direction different to the first direction, such that the wires of the first and second metal layers appear from above or below to form virtual intersections. Vias or contacts are coupled between the first and second metal layers and configured to route signals between the first and second metal layers. Pins are coupled to the first metal layer and configured to provide input signals or receive output signals from a standard cell, the pins being positioned along the wires in the first metal layer so as to be spaced from the virtual intersections.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 24, 2013
    Assignee: Broadcom Corporation
    Inventor: Paul Penzes
  • Patent number: 8525269
    Abstract: A semiconductor device has a plurality of divided elements which are formed over a substrate, each of which containing a film having a predetermined pattern with the long-axis direction and the short-axis direction definable therein, and are arranged in a distributed manner in the same layer in the in-plane direction of the substrate, wherein the plurality of divided elements are arranged so that every adjacent divided element in a first direction has the long-axis direction thereof aligned differently from those of the neighbors, or, so that every adjacent divided element in the first direction is shifted in a second direction, which is orthogonal to the first direction, by an amount smaller than the length of the divided element in the second direction.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masayuki Furumiya, Yasutaka Nakashiba
  • Patent number: 8492796
    Abstract: An electronic circuit on a semiconductor substrate having isolated multiple field effect transistor circuit blocks is disclosed. In some embodiment, an apparatus includes a substrate, a first semiconductor circuit formed above the substrate, a second semiconductor circuit formed above the substrate, and a MuGFET device overlying the substrate and electrically coupled to the first semiconductor circuit and the second semiconductor circuit, wherein the MuGFET device provides a signal path between the first semiconductor circuit and the second semiconductor circuit in response to an input signal.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: July 23, 2013
    Assignee: Infineon Technologies AG
    Inventor: Gerhard Knoblinger
  • Publication number: 20130182487
    Abstract: A programmable metallization device comprises a first electrode and a second electrode, and a first dielectric layer, a second dielectric layer, and an ion-supplying layer in series between the first and second electrodes. In operation, a conductive bridge is formed or destructed in the first dielectric layer to represent a data value. During read, a read bias is applied that is sufficient to cause formation of a transient bridge in the second dielectric layer, and make a conductive path through the cell if the bridge is present in the first dielectric layer. If the bridge is not present in the first dielectric layer during the read, then the conductive path is not formed. Upon removal of the read bias voltage any the conductive bridge formed in the second dielectric layer is destructed while the conductive bridge in the corresponding other first dielectric layer, if any, remains.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Inventors: FENG-MING LEE, Yu-Yu Lin