Vertical Complementary Transistor (epo) Patents (Class 257/E27.057)
-
Patent number: 10797656Abstract: Systems, methods, and apparatuses for improving reliability and/or reducing or preventing breakdown of an amplifier, specifically breakdown of a transistor of an amplifier, are disclosed. A protection circuit can be electrically coupled to the amplifier, and can be configured to reduce a voltage swing at the amplifier. The amplifier can include a first transistor, and the protection circuit can include a second transistor electrically coupled to a control terminal of the first transistor of the amplifier. When a power at a control terminal of the second transistor of the protection circuit satisfies a threshold power, the protection circuit can be configured to reduce a power at a power terminal of the first transistor the amplifier. By reducing the voltage at the power terminal of the first transistor the amplifier, the protection circuit can allow the amplifier to operate safely, without breakdown.Type: GrantFiled: August 6, 2018Date of Patent: October 6, 2020Assignee: ANALONG DEVICES GLOBAL UNLIMITED COMPANYInventor: Mohamed Moussa Ramadan Esmael
-
Patent number: 8952441Abstract: According to one embodiment, a device includes a first fin structure having first to n-th semiconductor layers (n is a natural number equal to or more than 2) stacked in a first direction perpendicular to a surface of a semiconductor substrate, and extending in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory cells provided on surfaces of the first to n-th semiconductor layers in a third direction perpendicular to the first and second directions respectively, and first to n-th select transistors connected in series to the first to n-th memory cells respectively.Type: GrantFiled: May 16, 2013Date of Patent: February 10, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Kiwamu Sakuma, Haruka Kusai, Yasuhito Yoshimizu, Masahiro Kiyotoshi
-
Patent number: 8704311Abstract: The semiconductor device includes a first transistor including a first impurity layer of a first conductivity type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, and a first gate electrode formed above the first gate insulating film, and a second transistor including a second impurity layer of the second conductivity type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and having a thickness different from that of the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer and having a film thickness equal to that of the first gate insulating film and a second gate electrode formed above the second gate insulating film.Type: GrantFiled: January 4, 2012Date of Patent: April 22, 2014Assignee: Fujitsu Semiconductor LimitedInventors: Kazushi Fujita, Taiji Ema, Hiroyuki Ogawa
-
Patent number: 8304825Abstract: The present technology is related generally to vertical discrete devices with a trench at the topside of the vertical discrete devices. The trench is filled with a conducting material. In this approach, a drain or cathode of the vertical discrete devices is electrically connected to the topside to result in a small area with low RON*AREA.Type: GrantFiled: September 22, 2010Date of Patent: November 6, 2012Assignee: Monolithic Power Systems, Inc.Inventor: Martin E. Garnett
-
Patent number: 8299516Abstract: A vertical thin film transistor and a method for manufacturing the same and a display device including the vertical thin film transistor and a method for manufacturing the same are disclosed. The vertical thin film transistor is applied to a substrate. In the present invention, a gate layer of the vertical thin film transistor is formed to have a plurality of concentric annular structures and the adjacent concentric annular structures are linked. By the concentric annular structures of the gate electrode layer, resistance to stress and an on-state current of the vertical thin film transistor can be increased.Type: GrantFiled: February 1, 2010Date of Patent: October 30, 2012Assignee: Chunghwa Picture Tubes, Ltd.Inventors: Shou-cheng Weng, Huai-an Li, Chi-neng Mo
-
Patent number: 8119471Abstract: A method for manufacturing a semiconductor device including a vertical double-diffusedmetal-oxide-semiconductor (VDMOS) transistor includes preparing a semiconductor substrate and injecting a first impurity of a second conductivity type to a first region, injecting a second impurity to a second region that is located inside and is narrower than the first region, and forming an epitaxial layer on the semiconductor substrate and forming the semiconductor layer constituted by the semiconductor substrate and the epitaxial layer, and at a same time, diffusing the first and the second impurities injected in a first impurity injection and a second impurity injection to form a buried layer of the second conductivity type.Type: GrantFiled: August 8, 2011Date of Patent: February 21, 2012Assignee: Renesas Electronics CorporationInventor: Hiroki Fujii
-
Patent number: 7928490Abstract: A vertical transistor including a substrate, a gate, a base line and a gate dielectric layer is provided. The substrate includes a pillar protruding out of a surface of the substrate. The pillar includes a first doped region, a channel region and a second doped region from bottom to top. The gate is disposed on a sidewall at one side of the channel region. The base line is disposed on a sidewall at the other side of the channel region and not contacted with the gate. The gate dielectric layer is disposed between the gate and the channel region.Type: GrantFiled: February 9, 2009Date of Patent: April 19, 2011Assignee: Nanya Technology CorporationInventor: Jung-Hua Chen
-
Patent number: 7915113Abstract: A method for manufacturing a semiconductor device including a vertical cell transistor structure may include forming a vertical cell transistor structure over a semiconductor substrate of a cell region; forming an insulating film over the vertical cell transistor structure; planarizing the insulating film to expose a hard mask film disposed at a top portion of the vertical cell transistor structure; and forming a storage node contact by removing the hard mask film.Type: GrantFiled: October 14, 2008Date of Patent: March 29, 2011Assignee: Hynix Semiconductor Inc.Inventors: Jin Soo Kim, Chang Moon Lim
-
Patent number: 7888712Abstract: A semiconductor device includes a first conductive type SiC semiconductor substrate; a second conductive type well formed on the SiC semiconductor substrate; a first impurity diffusion layer formed by introducing a first conductive type impurity so as to be partly overlapped with the well in a region surrounding the well; a second impurity diffusion layer formed by introducing the first conductive type impurity in a region spaced apart for a predetermined distance from the impurity diffusion layer in the well; and a gate electrode opposed to a channel region between the first and the second impurity diffusion layers with gate insulating film sandwiched therebetween.Type: GrantFiled: April 18, 2006Date of Patent: February 15, 2011Assignee: Rohm Co., Ltd.Inventor: Mineo Miura
-
Patent number: 7868387Abstract: A high-voltage, low-leakage, bidirectional electrostatic discharge (ESD, or other electrical overstress) protection device includes a doped well disposed between the terminal regions and the substrate. The device includes an embedded diode for conducting current in one direction, and a transistor feedback circuit for conducting current in the other direction. Variations in the dimensions and doping of the doped well, as well as external passive reference via resistor connections, allow the circuit designer to flexibly adjust the operating characteristics of the device, such as trigger voltage and turn-on speed, to suit the required mixed-signal operating conditions.Type: GrantFiled: June 13, 2008Date of Patent: January 11, 2011Assignee: Analog Devices, Inc.Inventors: Javier A. Salcedo, Jean-Jacques Hajjar, Todd Thomas
-
Patent number: 7851842Abstract: A method of fabricating a vertical channel transistor for a semiconductor device includes forming, on a substrate, a plurality of active pillars each having a gate electrode formed on and surrounding a lower portion thereof; forming a first insulation layer over the active pillars to fill a gap region between the active pillars; partially removing the first insulation layer to exposes a circumferential surface of the gate electrode in all directions, without exposing the substrate in the gap region between the active pillars; forming a conductive layer on the remaining first insulation layer to fill the gap region between the active pillars; and patterning the conductive layer to form a word line that surrounds and contacts the circumferential surface of the gate electrode in all directions.Type: GrantFiled: July 23, 2010Date of Patent: December 14, 2010Assignee: Hynix Semiconductor Inc.Inventor: Yun-Seok Cho
-
Patent number: 7768075Abstract: A semiconductor die package is disclosed. The semiconductor die package comprises a metal substrate, and a semiconductor die comprising a first surface comprising a first electrical terminal, a second surface including a second electrical terminal, and at least one aperture. The metal substrate is attached to the second surface. A plurality of conductive structures is on the semiconductor die, and includes at least one conductive structure disposed in the at least one aperture. Other conductive structures may be disposed on the first surface of the semiconductor die.Type: GrantFiled: April 6, 2006Date of Patent: August 3, 2010Assignee: Fairchild Semiconductor CorporationInventors: Hamza Yilmaz, Steven Sapp, Qi Wang, Minhua Li, James J. Murphy, John Robert Diroll
-
Patent number: 7723781Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.Type: GrantFiled: April 23, 2008Date of Patent: May 25, 2010Assignee: Sharp Laboratories of America, Inc.Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
-
Patent number: 7691698Abstract: The invention relates to a semiconductor structure and method of manufacturing and more particularly to a CMOS device with at least one embedded SiGe layer in the source/drain region of the PFET, and at least one embedded SiGe layer in the channel region of the NFET. In one embodiment, the structure of the invention enhances the electron mobility in the NFET device, and further enhances the hole mobility in the PFET device. Additionally, by using the fabrication methods and hence achieving the final structure of the invention, it is also possible to construct a PFET and NFET each with embedded SiGe layers on the same substrate.Type: GrantFiled: February 21, 2006Date of Patent: April 6, 2010Assignee: International Business Machines CorporationInventors: Dureseti Chidambarrao, Anda C. Mocuta, Dan M. Mocuta, Carl Radens
-
Patent number: 7670911Abstract: A method for manufacturing a vertical MOS transistor comprising forming a protrusion-like region, forming a silicon oxide film on an exposed surface of the protrusion-like region and a surface of the silicon semiconductor substrate, increasing a film thickness of at least the silicon oxide film on the silicon semiconductor substrate by thermal oxidation to form a first insulating film, forming a lower impurity diffusion region, removing the silicon oxide film to expose a silicon side of the protrusion-like region, thermally oxidizing the silicon side to form a second insulating film having a thinner film thickness than a film thickness of the first insulating film, forming a gate electrode over a side of the protrusion-like region, and forming an upper impurity diffusion region.Type: GrantFiled: July 31, 2008Date of Patent: March 2, 2010Assignee: Elpida Memory, Inc.Inventor: Kiyonori Oyu
-
Patent number: 7619299Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. In the substrate and the epitaxial layer, an N type buried diffusion layer is formed on a P type buried diffusion layer. With this structure, an upward expansion of the P type buried diffusion layer is checked and a thickness of the epitaxial layer can be made small while maintaining the breakdown voltage characteristics of a power semiconductor element. Accordingly, a device size of a control semiconductor element can be reduced.Type: GrantFiled: November 21, 2006Date of Patent: November 17, 2009Assignee: Sanyo Electric Co., Ltd.Inventors: Keiji Mita, Kentaro Ooka
-
Patent number: 7586130Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.Type: GrantFiled: February 1, 2006Date of Patent: September 8, 2009Assignee: Panasonic CorporationInventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
-
Publication number: 20090206335Abstract: The invention relates to a BiCMOS device comprising a substrate having a first type of conductivity and a number of active regions that are provided therein and are delimited in a lateral direction by flat field-insulating regions. Vertical npn bipolar epitaxial base transistors are disposed in a first partial number of the active regions while vertical pnp bipolar epitaxial base transistors are arranged in a second partial number of the active regions of the BiCMOS device. One transistor type or both transistor types are provided with both a collector region and a collector contact region in one and the same respective active region. In order to improve the high frequency characteristics, an insulation doping region that is configured so as to electrically insulate the collector and the substrate is provided between the collector region and the substrate exclusively in a first transistor type in which the type of conductivity of the substrate corresponds to that of the collector region.Type: ApplicationFiled: December 1, 2004Publication date: August 20, 2009Inventors: Bernd Heinemann, Jürgen Drews, Steffen Marschmayer, Holger Rücker
-
Patent number: 7545008Abstract: A semiconductor device may include a substrate and an insulating layer formed on the substrate. A multi-layer fin may be formed on the insulating layer and may include two semiconducting layers isolated by an insulating layer in vertical direction. A first MOS type device comprising a first source region, a first channel region and a first drain region is arranged on the first semiconducting layer in the multi-layer fin. A second MOS type device comprising a second source region, a second channel region and a second drain region is arranged on the second semiconducting layer in the multi-layer fin. A gate electrode is provided so as to be vertically adjacent to the first and second channel regions.Type: GrantFiled: February 3, 2006Date of Patent: June 9, 2009Assignee: The Hong Kong University of Science and TechnologyInventors: Philip Ching Ho Chan, Man Sun Chan, Xusheng Wu, Shengdong Zhang
-
Patent number: 7476941Abstract: A semiconductor integrated circuit includes an n-channel MOS transistor and a p-channel MOS transistor formed respectively in first and second device regions of a substrate, the n-channel MOS transistor including a first gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, the p-channel MOS transistor including a second gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, wherein there is provided a stressor film on the substrate over the first and second device regions such that the stressor film covers the first gate electrode including the sidewall insulation films thereof and the second gate electrode including the sidewall insulation films thereof, wherein the stressor film has a decreased film thickness in the second device region at least in the vicinity of a base part of the second gate electrode.Type: GrantFiled: March 1, 2007Date of Patent: January 13, 2009Assignee: Fujitsu Microelectronics LimitedInventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
-
Patent number: 7453103Abstract: The invention includes semiconductor structures having buried silicide-containing bitlines. Vertical surround gate transistor structures can be formed over the bitlines. The surround gate transistor structures can be incorporated into memory devices, such as, for example, DRAM devices. The invention can be utilized for forming 4F2 DRAM devices.Type: GrantFiled: November 22, 2005Date of Patent: November 18, 2008Assignee: Micron Technology, Inc.Inventors: Todd R. Abbott, H. Montgomery Manning
-
Patent number: 7371644Abstract: According to the present invention, there is provided a semiconductor device fabrication method, comprising: depositing a mask material on a semiconductor substrate; patterning the mask material and forming a trench in a surface portion of the semiconductor substrate by etching, thereby forming a first projection in a first region, and a second projection wider than the first projection in a second region; burying a device isolation insulating film in the trench; etching away a predetermined amount of the device isolation insulating film formed in the first region; etching away the mask material formed in the second region; forming a first gate insulating film on a pair of opposing side surfaces of the first projection, and a second gate insulating film on an upper surface of the second projection; depositing a first gate electrode material on the device isolation insulating film, mask material, and second gate insulating film; planarizing the first gate electrode material by using as stoppers the mask matType: GrantFiled: April 17, 2006Date of Patent: May 13, 2008Assignee: Kabushiki Kaisha ToshibaInventors: Atsushi Yagishita, Akio Kaneko, Kazunari Ishimaru
-
Patent number: 7276754Abstract: A memory structure having a vertically oriented access transistor with an annular gate region and a method for fabricating the structure. More specifically, a transistor is fabricated such that the channel of the transistor extends outward with respect to the surface of the substrate. An annular gate is fabricated around the vertical channel such that it partially or completely surrounds the channel. A buried annular bitline may also be implemented. After the vertically oriented transistor is fabricated with the annular gate, a storage device may be fabricated over the transistor to provide a memory cell.Type: GrantFiled: August 4, 2005Date of Patent: October 2, 2007Assignee: Micron Technology, Inc.Inventors: Lucien J. Bissey, Kevin G. Duesman