Structural Or Functional Details (epo) Patents (Class 257/E27.151)
  • Publication number: 20110220971
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 15, 2011
    Applicant: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Publication number: 20110198481
    Abstract: An image sensor and a method of operating the image sensor are provided. At least one pixel of the image sensor includes a detection portion including a plurality of doping areas having different pinning voltages, and a demodulation portion to receive an electron from the detection portion, and to demodulate the received electron.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 18, 2011
    Applicant: SAMSUNG ELECTRONICS Co., LTD.
    Inventors: Seong Jin Kim, Sang Woo Han
  • Patent number: 7928477
    Abstract: A solid-state imaging apparatus, controlling a potential on a semiconductor substrate for an electronic shutter operation, includes: a first semiconductor region of the first conductivity type for forming a photoelectric conversion region; a second semiconductor region of the first conductivity type, formed separately from the photoelectric conversion region, for accumulating carriers; a third semiconductor region of a second conductivity type arranged under the second semiconductor region, for operating as a potential barrier; a fourth semiconductor region of the second conductivity type extending between the first semiconductor region and the semiconductor substrate, and between the third semiconductor region and the semiconductor substrate; and a first voltage supply portion for supplying a voltage to the third semiconductor region; wherein the first voltage supply portion includes a fifth semiconductor region of the second conductivity type arranged in the pixel region, and a first electrode connected to
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: April 19, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masahiro Kobayashi, Yuichiro Yamashita
  • Publication number: 20110068251
    Abstract: A solid-state image sensor includes: four or more photoelectric conversion units having spectral sensitivity characteristics different from one another; an amplifier unit disposed in correspondence to each group of photoelectric conversion units among N groups (N represents an integer less than a quantity of the four or more photoelectric conversion units and equal to or greater than one), the four or more photoelectric conversion units being divided into the N groups; and transfer units, each disposed in correspondence to one of the four or more photoelectric conversion units, which transfer a signal generated at the photoelectric conversion unit to the amplifier unit disposed for the group to which the photoelectric conversion unit belongs.
    Type: Application
    Filed: August 6, 2010
    Publication date: March 24, 2011
    Applicant: NIKON CORPORATION
    Inventor: Tadashi NARUI
  • Patent number: 7910964
    Abstract: A part of a semiconductor layer directly under a light-receiving gate electrode functions as a charge generation region, and electrons generated in the charge generation region are injected into a part of a surface buried region directly above the charge generation region. The surface buried region directly under a first transfer gate electrode functions as a first transfer channel, and the surface buried region directly under a second transfer gate electrode functions as a second transfer channel. Signal charges are alternately transferred to an n-type first floating drain region and a second floating drain region through the first and second floating transfer channels.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: March 22, 2011
    Assignees: National University Corporation Shizuoka University, Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Mitsuru Homma
  • Patent number: 7897417
    Abstract: Hybrid semiconductor materials have an inorganic semiconductor incorporated into a hole-conductive fluorene copolymer film. Nanometer-sized particles of the inorganic semiconductor may be prepared by mixing inorganic semiconductor precursors with a steric-hindering coordinating solvent and heating the mixture with microwaves to a temperature below the boiling point of the solvent.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 1, 2011
    Assignee: National Research Council of Canada
    Inventors: Farid Bensebaa, Pascal L'Ecuyer, Jianfu Ding, Andrea Firth
  • Patent number: 7880206
    Abstract: Provided is a CMOS image sensor with an asymmetric well structure of a source follower. The CMOS image sensor includes: a well disposed in an active region of a substrate; a drive transistor having one terminal connected to a power voltage and a first gate electrode disposed to cross the well; and a select transistor having a drain-source junction between another terminal of the drive transistor and an output node, and a second gate electrode disposed in parallel to the drive transistor. A drain region of the drive transistor and a source region of the select transistor are asymmetrically arranged.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 1, 2011
    Assignee: Crosstek Capital, LLC
    Inventor: Hee-Jeong Hong
  • Publication number: 20100327325
    Abstract: A charge transfer device formed in a semiconductor substrate and including an array of electrodes distributed in rows and columns, wherein: each electrode is formed in a cavity with insulated walls formed of a groove which generally extends in the row direction, having a first end closer to an upper row and a second end closer to a lower row; and the electrodes of two adjacent rows are symmetrical with respect to a plane orthogonal to the sensor and comprising the direction of a row.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Publication number: 20100327326
    Abstract: A charge-coupled unit formed in a semiconductor substrate and including an array of identical electrodes forming rows and columns, wherein: each electrode extends in a cavity with insulated walls formed of a groove, oriented along a row, dug into the substrate thickness, and including, at one of its ends, a protrusion extending towards at least one adjacent row.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Publication number: 20100282944
    Abstract: A solid state imaging device includes: a light receiving section performing photoelectric conversion; a transfer register formed in a semiconductor base; a transfer electrode formed of a semiconductor layer on the transfer register; a charge transfer section which formed of the transfer register and the transfer electrode and transferring a signal charge accumulated in the light receiving section; a bus line electrically connected to a portion of the transfer electrode to supply a driving pulse to the transfer electrode and formed of a metal layer; and a barrier metal layer formed near an interface between the transfer electrode and the bus line in a contact section that connects the transfer electrode and the bus line with each other and having a work function of the size between a work function of the semiconductor layer of the transfer electrode and a work function of the metal layer of the bus line.
    Type: Application
    Filed: April 20, 2010
    Publication date: November 11, 2010
    Applicant: SONY CORPORATION
    Inventor: Fuminobu Saiho
  • Publication number: 20100258847
    Abstract: A six-phase charge coupled device (CCD) pixel includes a pixel pair, with each pixel having two adjacent control gates overlying corresponding variable potential wells, where voltages applied to the control gates enable charge to be accumulated into and transferred out of the wells. A clear window region overlies a fixed potential gradient region, decreasing in potential away from the control gates. This region enables a wide band of photons to be sensed by the photosensitive silicon of the CCD. The decreasing potential levels facilitate high charge transfer efficiency (i.e., high CTE) from pixel to pixel via the control or transfer gates. By applying particular voltages to the control gates, charge can be quickly and efficiently transferred between pixels.
    Type: Application
    Filed: May 14, 2010
    Publication date: October 14, 2010
    Applicant: IMAGERLABS INC.
    Inventor: Mark Wadsworth
  • Publication number: 20100230730
    Abstract: A solid-state imaging device includes: an imaging region including a plurality of light-receiving parts; a first transfer section provided on the imaging region and transferring, in a first direction, signals generated by the light-receiving parts; a second transfer section provided at a first side of the imaging region and transferring, in a second direction intersecting the first direction, the signals transferred from the first transfer section; an output circuit for outputting the signals; and bonding pads provided at the first side of the imaging region with the second transfer section sandwiched between the imaging region and the bonding pads. The bonding pads are arranged in a plurality of rows each extending in the second direction. Each of the bonding pads in one of the rows at least partially overlaps one of the bonding pads in another one of the rows when viewed in the first direction.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Applicant: Panasonic Corporation
    Inventors: Ikuya SHIBATA, Wataru Kamisaka, Kozo Orihara
  • Patent number: 7795654
    Abstract: In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode comprising a first conductive film and a second layer electrode comprising a second conductive film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film having a two-layer structure comprising a sidewall insulating film consisting of a first insulating layer formed by a CVD method to cover the lateral wall of the first layer electrode and a second insulating film.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 14, 2010
    Assignee: Fujifilm Corporation
    Inventor: Maki Saito
  • Patent number: 7781815
    Abstract: Pixel auxiliary capacitors (10) and pixel TFTs, which are thin-film elements, are formed on a substrate a lower electrode (Si) (3), insulating film, and an upper electrode (GE) (5) in this order. Each upper electrode (GE) (5) opposing to the corresponding lower electrode (Si) (3) is entirely enclosed within the outline of the lower electrode (Si) (3) in a plane view. Thus, it is possible to provide thin-film elements, which are not affected by edges of the lower electrode (Si) (3), a display device and a memory cell using the thin-film elements, and their fabrication methods.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: August 24, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroyuki Moriwaki
  • Patent number: 7719036
    Abstract: A six-phase charge coupled device (CCD) pixel includes a pixel pair, with each pixel having two adjacent control gates overlying corresponding variable potential wells, where voltages applied to the control gates enable charge to be accumulated into and transferred out of the wells. A clear window region overlies a fixed potential gradient region, decreasing in potential away from the control gates. This region enables a wide band of photons to be sensed by the photosensitive silicon of the CCD. The decreasing potential levels facilitate high charge transfer efficiency (i.e., high CTE) from pixel to pixel via the control or transfer gates. By applying particular voltages to the control gates, charge can be quickly and efficiently transferred between pixels.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: May 18, 2010
    Assignee: ImagerLabs, Inc.
    Inventor: Mark Wadsworth
  • Patent number: 7671386
    Abstract: The solid-state imaging device of the present invention includes: a floating diffusion capacity unit which is formed on a semiconductor substrate, and is operable to hold signal charges derived from incident light; an amplifier which is operable to convert the signal charges held in the floating diffusion capacity unit into a voltage; the first wire which connects the floating diffusion capacity unit to an input of the amplifier; and a second wire which is made of the same material as the first wire, formed in the same layer as the first wire, arranged around the first wire at least along long sides of the first wire, and electrically insulated from the first wire.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 2, 2010
    Assignee: Panasonic Corporation
    Inventor: Toshihiro Kuriyama
  • Patent number: 7659136
    Abstract: It is an object to provide solid-state imaging device, which can easily be manufactured and has a high reliability, and a method of manufacturing the solid-state imaging device. In the present invention, a manufacturing method comprises the steps of forming a plurality of IT-CCDs on a surface of a semiconductor substrate, bonding a translucent member to the surface of the semiconductor substrate in order to have a gap opposite to each light receiving region of the IT-CCD, and isolating a bonded member obtained at the bonding step for each of the IT-CCDs.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: February 9, 2010
    Assignee: Fujifilm Corporation
    Inventors: Hiroshi Maeda, Kazuhiro Nishida, Yoshihisa Negishi, Shunichi Hosaka
  • Patent number: 7642581
    Abstract: A solid-state image sensing device has a pixel that includes a photodiode that generates an electrical charge according to an amount of incoming light, a floating diffusion portion, a charge transfer transistor that transfers the electrical charge to the floating diffusion portion from the photoelectric conversion portion, a reading circuit that outputs an signal on the basis of said electrical charge held in said floating diffusion portion, and a light-shielding member disposed so as to cover a side wall of a gate electrode of the charge transfer transistor on the photoelectric conversion portion side.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 5, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shunsuke Inoue
  • Patent number: 7638354
    Abstract: An image sensor can include a gate insulation layer, a gate electrode, a photodiode, and a floating diffusion region. The gate insulation layer can be formed on and/or over a semiconductor substrate for a transfer transistor. The gate insulation layer includes a first gate insulation layer having a central opening and a second gate insulation layer formed on and/or over an uppermost surface of the first gate insulation layer including the opening. The gate electrode can be formed on and/or over the gate insulation layer. The photodiode can be formed in the semiconductor substrate at one side of the gate electrode so as to generate an optical charge. The floating diffusion region can be formed in the semiconductor at the other side of the gate electrode opposite to the photodiode. The floating diffusion region can be electrically connected to the photodiode through a channel so as to store the optical charge generated from the photodiode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: December 29, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ji-Hoon Hong
  • Publication number: 20090278174
    Abstract: A pixel structure of a solid-state image sensor in which residual electrons in a photodiode is reduced and which has a first-stage gate that is arranged adjacent to the photodiode and controls read-out of electrons generated in the photodiode, a second-stage gate that is adjacent to the first-stage gate on the rear stage of the gate at a predetermined gap and controls movement of electrons read out by the readout control of the first-stage gate to the plurality of the charge-storage sections, and a plurality of third-stage gates that are adjacent to the second-stage gate on the rear stage of the gate at a predetermined gap, severally arranged corresponding to the plurality of the charge-storage sections, and perform control of distributing the electrons moved by the movement control of the second-stage gate severally to the plurality of the charge-storage sections, and gradient on which electrons are moved in the first-stage gate direction is formed on the potential of the photodiode.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 12, 2009
    Applicants: Brainvision Inc., STANLEY ELECTRIC CO., LTD.
    Inventors: Michinori Ichikawa, Takanori Tanite, Tadashi Kawata, Ryohei Ikeno
  • Patent number: 7605411
    Abstract: An HCCD includes a channel 21 that transfers electric charges in an X direction, a channel 25 that transfers the electric charges in a Z1 direction, a channel 23 that transfers the electric charges in a Z2 direction, and a channel 22 that connects the channels 23, 25 to the channel 21. The following relation is satisfied in impurity concentration of the channels: channel 21 channel 22 channel 23, 25. A fixed DC voltage is applied to branch electrodes 12a, 12b above the channel 22. The channel 22 has protrusion portions 19 that protrude inward from an outer circumference, which connects T1 and T2, and an outer circumference, which connects T3 and T4. The protrusion portions 19 causes charges below the transfer electrode 11b to move near the center of the channel 22 in a Y direction. Thereby, the travel distance of the charges in the channel 22 is reduced.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 20, 2009
    Assignee: Fujifilm Corporation
    Inventors: Hirokazu Shiraki, Makoto Kobayashi, Katsumi Ikeda
  • Publication number: 20090256176
    Abstract: A solid-state imaging apparatus, controlling a potential on a semiconductor substrate for an electronic shutter operation, includes: a first semiconductor region of the first conductivity type for forming a photoelectric conversion region; a second semiconductor region of the first conductivity type, formed separately from the photoelectric conversion region, for accumulating carriers; a third semiconductor region of a second conductivity type arranged under the second semiconductor region, for operating as a potential barrier; a fourth semiconductor region of the second conductivity type extending between the first semiconductor region and the semiconductor substrate, and between the third semiconductor region and the semiconductor substrate; and a first voltage supply portion for supplying a voltage to the third semiconductor region; wherein the first voltage supply portion includes a fifth semiconductor region of the second conductivity type arranged in the pixel region, and a first electrode connected to
    Type: Application
    Filed: April 2, 2009
    Publication date: October 15, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Masahiro Kobayashi, Yuichiro Yamashita
  • Patent number: 7586123
    Abstract: A thin film transistor array substrate and a fabricating method thereof are disclosed. The thin film transistor array substrate protects a thin film transistor without a protective film and accordingly reduces the manufacturing cost. In the thin film transistor array substrate, a gate electrode is connected to a gate line. A source electrode is connected to a data line crossing the gate line to define a pixel area. A drain electrode is opposed to the source electrode with a channel therebetween. A semiconductor layer is in the channel. A pixel electrode in the pixel area contacts the drain electrode over substantially the entire overlapping area between the two. A channel protective film is provided on-the semiconductor layer corresponding to the channel to protect the semiconductor layer.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 8, 2009
    Assignee: LG. Display Co., Ltd.
    Inventors: Young Seok Choi, Byung Yong Ahn, Ki Sul Cho, Hong Woo Yu
  • Publication number: 20090200580
    Abstract: What is disclosed is an apparatus comprising a transfer gate formed on a substrate and a photodiode formed in the substrate next to the transfer gate. The photodiode comprises a shallow N-type collector formed in the substrate, a deep N-type collector formed in the substrate, wherein a lateral side of the deep N-type collector extends at least under the transfer gate, and a connecting N-type collector formed in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector. Also disclosed is a process comprising forming a deep N-type collector in the substrate, forming a shallow N-type collector formed in the substrate, and forming a connecting N-type collector in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Howard E. Rhodes, Hidetoshi Nozaki, Sohei Manabe
  • Publication number: 20090194794
    Abstract: Crosstalk between the adjacent pixels can be prevented by a structure in which an overflow barrier is provided at the deep portion of a substrate. A partial P type region 150 is provided at the predetermined position of a lower layer region of the vertical transfer register 124 and a channel stop region 126. This P type region 150 is used to adjust potential in the lower layer region of the vertical transfer register 124 and the channel stop region 126 so that the potential may become smaller than that of the lower layer region of the photosensor 122 in a range from the minimum potential position of the vertical transfer register 124 to the overflow barrier 128. Accordingly, since the potential in the lower layer region of the vertical transfer register 124 and the channel stop region 126 at both sides of the lower layer region is low, electric charges photoelectrically-converted by the sensor region are blocked by this potential barrier and cannot be diffused easily.
    Type: Application
    Filed: April 9, 2009
    Publication date: August 6, 2009
    Inventors: Kazushi WADA, Kouichi Harada, Shuji Otsuka, Mitsuru Sato
  • Patent number: 7470581
    Abstract: A method of manufacturing an electromagnetic (EM) waveguide capable of guiding a wave along a pre-defined propagation path is described. The method includes providing a core region that extends along the propagation path and printing a colloidal crystal comprised of first particles on the waveguide core region.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: December 30, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Swaroop K. Kommera, Tim R. Koch
  • Patent number: 7456452
    Abstract: Light sensors in an imager having sloped features including, but not limited to, hemispherical, v-shaped, or other sloped shapes. Light sensors having such a sloped feature can redirect incident light that is not absorbed by one portion of the photosensor to another portion of the photosensor for absorption there.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: November 25, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David Wells, Shane P. Leiphart
  • Patent number: 7456453
    Abstract: A solid-state image sensing device has a pixel that includes a photodiode that generates an electrical charge according to an amount of incoming light, a floating diffusion portion, a charge transfer transistor that transfers the electrical charge to the floating diffusion portion from the photoelectric conversion portion, a reading circuit that outputs an signal on the basis of said electrical charge held in said floating diffusion portion, and a light-shielding member disposed so as to cover a side wall of a gate electrode of the charge transfer transistor on the photoelectric conversion portion side.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: November 25, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shunsuke Inoue
  • Patent number: 7449732
    Abstract: The substrate with electrodes is formed of a transparent material onto which is deposited a film (1) of a transparent conductive material of thickness e1 and of refractive index n1, said film being structured to form a set of electrodes (1a) whose contours (8) delimit insulating spaces (3), wherein the insulating spaces (3) are filled with a transparent dielectric material of thickness e2 and of refractive index n2 so that the respective thicknesses of the conductive material and the dielectric material are inversely proportional to the values of the refractive indices of said materials and said dielectric material forms neither depressions nor beads at the contour (8) of the electrodes. A hardcoating layer (7) may be disposed between the substrate (5) and the electrodes and a protective film (9) added. The substrate with electrodes is obtained by UV irradiation through a single mask.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: November 11, 2008
    Assignee: Asulab S.A.
    Inventors: Joachim Grupp, Gian-Carlo Poli, Pierre-Yves Baroni, Estelle Wagner, Patrik Hoffmann
  • Patent number: 7446353
    Abstract: A solid-state imaging apparatus includes a photoelectric conversion section generating a charge by photoelectric conversion; and a charge transfer section having first and second transfer electrodes arranged in parallel with each other in an output direction of a charge generated by the photoelectric conversion section and repeatedly transferring the charge between a semiconductor region underneath the first transfer electrode and a semiconductor region underneath the second transfer electrode obliquely to an array direction of the first and second transfer electrodes to output the charge.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: November 4, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Eiji Matsuyama
  • Publication number: 20080217661
    Abstract: A two dimensional time delay integration CMOS image sensor having a plurality of pinned photodiodes, each pinned photodiode collects a charge when light strikes the pinned photodiode, a plurality of electrodes separating the plurality of pinned photodiodes, the plurality of electrodes are configured for two dimensional charge transport between two adjacent pinned photodiodes, and a plurality of readout nodes connected to the plurality of pinned photodiodes via address lines.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Applicant: Teledyne Licensing, LLC
    Inventor: Stefan Lauxtermann
  • Patent number: 7375417
    Abstract: A package for an integrated circuit includes a chip having a plurality of nodes adapted to receive signals from or to output signals to an external circuit; and a frame having a plurality of contact points each coupled to one node of the chip and to a pad, wherein each pad comprises a nano material.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: May 20, 2008
    Inventor: Bao Tran
  • Publication number: 20080093533
    Abstract: A driving method for a solid-state imaging device including a plurality of photoelectric conversion elements, VCCDs, a line memory, and an HCCD includes: transferring all of the electric charges, which are stored in the line memory in an array, to the HCCD; and transferring only an electric charge, which is positioned at an upstream side of the HCCD in the charge transfer direction, of two adjacent electric charges having the same color components among the transferred electric charges in the horizontal direction and adding the two electric charges.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 24, 2008
    Inventor: Tatsuo Onodera
  • Patent number: 7294872
    Abstract: PROBLEM To provide a high quality solid state image pickup device. SOLUTION Impurities are implanted into a semiconductor substrate to form vertical transfer channels for transferring electric charges in a first direction and to form a drain near each of the vertical transfer channels via a gate which forms a barrier. A first silicon oxide film, a silicon nitride film and a second silicon oxide film are deposited in this order from the bottom, on the surfaces of the vertical transfer channels, gates and drains. A first layer vertical transfer electrode is formed on the second silicon oxide film above the vertical transfer channel, and an insulating film if formed on the surface of the first layer vertical transfer electrode. The second silicon oxide film and silicon nitride film are etched in such a manner that the silicon nitride film covers the vertical transfer channel and extends above the gate excepting a portion near the drain.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: November 13, 2007
    Assignee: Fujifilm Corporation
    Inventor: Masanori Nagase
  • Publication number: 20070257282
    Abstract: An image sensor applying a power voltage to a backside of a semiconductor substrate includes a first type semiconductor substrate, a first type semiconductor layer formed on the first type semiconductor substrate, a second type semiconductor layer formed on the first type semiconductor layer, and a power voltage receiver formed on a backside of the first type semiconductor substrate opposite the first type semiconductor layer with respect to the first type semiconductor substrate, wherein the power voltage receiver receives a power voltage from outside and applies the power voltage to the first type semiconductor substrate.
    Type: Application
    Filed: February 8, 2007
    Publication date: November 8, 2007
    Applicant: Samsung Electronics Co, Ltd.
    Inventors: Yo-han Sun, Jong-jin Lee, Bum-suk Kim, Yun-ho Jang, Sae-young Kim, Keun-chan Yuk, Getman Alexander
  • Publication number: 20070057286
    Abstract: A method for producing a solid-state imaging device, which including: a photoelectric conversion section; a charge transfer section having a charge transfer electrode; and an antireflection film covering a light-receiving region in the photoelectric conversion section, wherein forming the antireflection film includes: forming a sidewall on a lateral wall of the charge transfer electrode after forming the charge transfer electrode; forming an antireflection film on a substrate surface where the sidewall is formed; forming a resist on the antireflection film; melting and flattening the resist to expose the antireflection film on the charge transfer electrode; removing the antireflection film by using the resist as the mask; removing the sidewall; covering the charge transfer electrode with an insulating film; and forming a light-shielding film that reaches a level lower than the top surface of the antireflection film, and that surrounds the periphery of the antireflection film.
    Type: Application
    Filed: September 8, 2006
    Publication date: March 15, 2007
    Inventor: Takanori Sato
  • Patent number: 7115906
    Abstract: A thin film transistor array including a substrate, a plurality of scan lines, a plurality of data lines, a plurality of thin film transistors, an etch barrier layer and a plurality of pixel electrodes is provided. The scan lines and the data lines are disposed over the substrate to define a plurality of pixel areas. Each thin film transistor is disposed in one of the pixel areas and driven by the corresponding scan line and data line. The etch barrier layer including a plurality openings is disposed over the scan line or a common line. Each pixel electrode electrically connected to the corresponding thin film transistor is disposed in one of the pixel areas, wherein a portion of each pixel electrode is coupled to the corresponding scan line through one of the openings to form a storage capacitor. Furthermore, a fabricating method of the thin film array is also provided.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 3, 2006
    Assignee: Au Optronics Corporation
    Inventor: Han-Chung Lai
  • Publication number: 20050179144
    Abstract: For preventing the blooming phenomenon, there is provided an image pickup apparatus comprising a solid-state image pickup device adapted for a first readout method in which plural pixels are added to be read and a second readout method in which plural pixels are not added; and a circuit for applying a predetermined substrate voltage common to the first and second readout methods in an exposure period of the solid-state image pickup device and applying a predetermined substrate voltage corresponding to each readout method of the solid-state image pickup device in a period from the end of exposure of the solid-state image pickup device to the start of transfer to the signal transfer channel.
    Type: Application
    Filed: April 13, 2005
    Publication date: August 18, 2005
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Masashi Hori