Collector Regions Of Bipolar Transistors (epo) Patents (Class 257/E29.034)
  • Patent number: 11942534
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a bipolar transistor with thermal conductor and methods of manufacture. The structure includes: a base formed within a semiconductor substrate; a thermal conductive material under the base and extending to an underlying semiconductor material; an emitter on a first side of the base; and a collector on a second side of the base.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: March 26, 2024
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Hong Yu, Judson R. Holt, Vibhor Jain
  • Patent number: 11818901
    Abstract: The disclosure relates to integrated circuits and methods including one or more rows of transistors. In an embodiment, an integrated circuit includes a row of bipolar transistors including a plurality of first conduction regions, a second conduction region, and a common base between the first conduction regions and the second conduction region. An insulating trench is in contact with each bipolar transistor of the row of bipolar transistors. A conductive layer is on the insulating trench and the common base between the first conduction regions. A spacer layer is between the conductive layer and the first conduction regions.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: November 14, 2023
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Boivin, Jean Jacques Fagot, Emmanuel Petitprez, Emeline Souchier, Olivier Weber
  • Patent number: 11728380
    Abstract: Aspects of the disclosure provide a bipolar transistor structure with a sub-collector on a substrate, a first collector region on a first portion of the sub-collector, a trench isolation (TI) on a second portion of the sub-collector and adjacent the first collector region, and a second collector region on a third portion of the sub-collector and adjacent the TI. A base on first collector region and a portion of the TI. An emitter is on a first portion of the base above the first collector region. The base includes a second portion horizontally displaced from the emitter in a first horizontal direction, and horizontally displaced from the second collector region in a second horizontal direction orthogonal to the first horizontal direction.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: August 15, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Viorel C. Ontalus
  • Patent number: 11374092
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to virtual bulk in semiconductor on insulator technology and methods of manufacture. The structure includes a heterojunction bipolar transistor formed on a semiconductor on insulator (SOI) wafer with a doped sub-collector material in a buried insulator region under a semiconductor substrate of the SOI wafer.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 28, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: John J. Pekarik, Vibhor Jain, Herbert Ho, Claude Ortolland, Qizhi Liu
  • Patent number: 8860092
    Abstract: A heterojunction bipolar transistor having an emitter, a base, and a collector, the heterojunction bipolar transistor including a metallic sub-collector electrically and thermally coupled to the collector wherein the metallic sub-collector comprises a metallic thin film, and a collector contact electrically connected to the metallic sub-collector.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 14, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Donald A. Hitko, Yakov Royter, Pamela R. Patterson
  • Patent number: 8674480
    Abstract: A high voltage bipolar transistor with shallow trench isolation (STI) comprises the areas of a collector formed by implanting first electric type impurities into active area and connected with pseudo buried layers at two sides; Pseudo buried layers which are formed by implanting high dose first type impurity through the bottoms of STI at two sides if active area, and do not touch directly; deep contact through field oxide to contact pseudo buried layers and pick up the collectors; a base deposited on the collector by epitaxial growth and in-situ doped by second electric type impurity, in which the intrinsic base touches local collector and extrinsic base is used for base pick-up; a emitter which is a polysilicon layer deposited on the intrinsic base and doped with first electric type impurities. This invention makes the depletion region of collector/base junction from 1D (vertical) distribution to 2D (vertical and lateral) distribution.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: March 18, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, Wensheng Qian, YungChieh Fan, Jun Hu, Donghua Liu, Yukun Lv
  • Patent number: 8536680
    Abstract: An electrostatic discharge protection circuit has a bipolar transistor which includes a first diffusion layer of a first conductive type connected with a first power supply and functioning as a base; a second diffusion layer of a second conductive type connected with a second power supply and functioning as a collector; and a third diffusion layer of the second conductive type connected with an input/output pad and functioning as an emitter. An area of a first region of the third diffusion layer which is opposite to the first diffusion layer is larger than an area of a second region of the second diffusion layer which is opposite to the first diffusion layer.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yukio Takahashi, Kousuke Yoshida
  • Patent number: 8420495
    Abstract: This invention disclosed a manufacturing approach of collector and buried layer of a bipolar transistor. One aspect of the invention is that a pseudo buried layer, i.e, collector buried layer, is manufactured by ion implantation and thermal anneal. This pseudo buried layer has a small area, which makes deep trench isolation to divide pseudo buried layer unnecessary in subsequent process. Another aspect is, the doped area, i.e, collector, is formed by ion implantation instead of high cost epitaxy process. This invention simplified the manufacturing process, as a consequence, saved manufacturing cost.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 16, 2013
    Assignee: Shanghai Hua Hong Nec Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, YungChieh Fan, Wensheng Qian, Fan Chen, Jiong Xu, Haifang Zhang
  • Patent number: 8222114
    Abstract: This invention disclosed a novel manufacturing approach of collector and buried layer of a bipolar transistor. One aspect of the invention is that an oxide-nitride-oxide (ONO) sandwich structure is employed instead of oxide-nitride dual layer structure before trench etching. Another aspect is, through the formation of silicon oxide spacer in trench sidewall and silicon oxide remaining in trench bottom in the deposition and etch back process, the new structure hard mask can effectively protect active region from impurity implanted in ion implantation process.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: July 17, 2012
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, YungChieh Fan, Wensheng Qian, Fan Chen, Jiong Xu, Haifang Zhang
  • Patent number: 8044488
    Abstract: The invention is based upon a semiconductor device where a high voltage bipolar transistor is manufactured on the same wafer with a high-speed bipolar transistor, and has a characteristic that the high-speed bipolar transistor and the high voltage bipolar transistor are formed on each epitaxial collector layer having the same thickness and are provided with a buried collector region formed in the same process and having the same impurity profile, the buried collector region exists immediately under a base of the high-speed bipolar transistor, no buried collector region and no SIC region exist immediately under a base of the high voltage bipolar transistor and distance between a base region and a collector plug region of the high voltage bipolar transistor is equal to or is longer than the similar distance of the high-speed bipolar transistor.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 25, 2011
    Assignees: Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd.
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideyuki Hosoe
  • Patent number: 8022496
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 8003475
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: August 23, 2011
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Patent number: 8003473
    Abstract: Embodiments of the invention provide a method of fabricating a semiconductor device. The method includes defining a sub-collector region in a layer of doped semiconductor material; forming an active region, a dielectric region, and a reach-through region on top of the layer of doped semiconductor material with the dielectric region separating the active region from the reach-through region; and siliciding the reach-through region and a portion of the sub-collector region to form a partially silicided conductive pathway. A semiconductor device made thereby is also provided.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Francois Pagette, Christian Lavoie, Anna Topol
  • Patent number: 8004023
    Abstract: A semiconductor device having a semiconductor substrate including a first region and a second region is provided. The semiconductor device further includes a gate electrode on the first region and having a first sidewall and a second sidewall, a first source region in the first region proximate to the first sidewall, a first drain region in the first region proximate to the second sidewall, an upper electrode on the second region and having a first sidewall and a second sidewall, a second source region in the second region proximate to the first sidewall of the upper electrode, and a second drain region in the second region proximate to the second sidewall of the upper electrode, wherein an impurity doping concentration of the first source region and the first drain region is greater than an impurity doping concentration of the second source region and the second drain region.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-won Ha, Tae-hyun An, Min-young Shim
  • Patent number: 7872326
    Abstract: A process for manufacturing an array of bipolar transistors, wherein deep field insulation regions of dielectric material are formed in a semiconductor body, thereby defining a plurality of active areas, insulated from each other and a plurality of bipolar transistors are formed in each active area. In particular, in each active area, a first conduction region is formed at a distance from the surface of the semiconductor body; a control region is formed on the first conduction region; and, in each control region, at least two second conduction regions and at least one control contact region are formed. The control contact region is interposed between the second conduction regions and at least two surface field insulation regions are thermally grown in each active area between the control contact region and the second conduction regions.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti
  • Publication number: 20100314665
    Abstract: A hetero-junction bipolar transistor includes a sub-collector layer formed on a substrate and having conductivity, a first collector layer formed on the sub-collector layer and a second collector layer formed on the first collector layer and having the same conductive type as a conductive type of the sub-collector layer. In the first collector layer, a delta-doped layer is provided.
    Type: Application
    Filed: August 24, 2010
    Publication date: December 16, 2010
    Applicant: PANASONIC CORPORATION
    Inventor: Masanobu NOGOME
  • Patent number: 7679164
    Abstract: Embodiments of the invention provide a semiconductor device including a collector in an active region; a first and a second sub-collector, the first sub-collector being a heavily doped semiconductor material adjacent to the collector and the second sub-collector being a silicided sub-collector next to the first sub-collector; and a silicided reach-through in contact with the second sub-collector, wherein the first and second sub-collectors and the silicided reach-through provide a continuous conductive pathway for electrical charges collected by the collector from the active region. Embodiments of the invention also provide methods of fabricating the same.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: March 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Francois Pagette, Christian Lavoie, Anna Topol
  • Patent number: 7656002
    Abstract: The present invention relates to a microelectronic device having a bipolar epitaxial structure that provides at least one bipolar transistor element formed over at least one field effect transistor (FET) epitaxial structure that provides at least one FET element. The epitaxial structures are separated with at least one separation layer. Additional embodiments of the present invention may use different epitaxial layers, epitaxial sub-layers, metallization layers, isolation layers, layer materials, doping materials, isolation materials, implant materials, or any combination thereof.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 2, 2010
    Assignee: RF Micro Devices, Inc.
    Inventors: Curtis A. Barratt, Michael T. Fresina, Brian G. Moser, Dain C. Miller, Walter A. Wohlmuth
  • Patent number: 7619299
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. In the substrate and the epitaxial layer, an N type buried diffusion layer is formed on a P type buried diffusion layer. With this structure, an upward expansion of the P type buried diffusion layer is checked and a thickness of the epitaxial layer can be made small while maintaining the breakdown voltage characteristics of a power semiconductor element. Accordingly, a device size of a control semiconductor element can be reduced.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: November 17, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Keiji Mita, Kentaro Ooka
  • Publication number: 20090014838
    Abstract: The invention is based upon a semiconductor device where a high voltage bipolar transistor is manufactured on the same wafer with a high-speed bipolar transistor, and has a characteristic that the high-speed bipolar transistor and the high voltage bipolar transistor are formed on each epitaxial collector layer having the same thickness and are provided with a buried collector region formed in the same process and having the same impurity profile, the buried collector region exists immediately under a base of the high-speed bipolar transistor, no buried collector region and no SIC region exist immediately under a base of the high voltage bipolar transistor and distance between a base region and a collector plug region of the high voltage bipolar transistor is equal to or is longer than the similar distance of the high-speed bipolar transistor.
    Type: Application
    Filed: June 23, 2008
    Publication date: January 15, 2009
    Inventors: Mitsuru ARAI, Shinichiro Wada, Hideyuki Hosoe
  • Patent number: 7420228
    Abstract: A bipolar transistor comprising a collector region of a first conduction type, and a subcollector region of the first conduction type at a first side of the collector region. The transistor further includes a base region of the second conduction type provided at a second side of the collector region, and an emitter region of the first conduction type which is provided above the base region on the side remote from the collection region. A carbon-doped semiconductor region is provided on the first side alongside the collector region. The bipolar transistor is characterized in that the carbon-doped semiconductor region has a carbon concentration of 1019-1021 cm?3 and the base region has a smaller cross section than the collector region and the collector region has, in the overlap region with the base region, a region having an increased doping compared with the remaining region.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 2, 2008
    Assignee: Infineon Technologies AG
    Inventors: Josef Bock, Thomas Meister, Reinhard Stengl, Herbert Schafer
  • Patent number: 7371650
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Patent number: 7323390
    Abstract: The semiconductor device according to the invention includes a substrate, a field insulating region which delimits an active region of the semiconductor substrate, a collector, at least one collector contact region associated with the collector, and a base with an associated base connection region. The collector and the collector contact region are formed in the same active region. In addition the base connection region extends partially over the active region and is separated from the surface of the active region by an insulator layer.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: January 29, 2008
    Assignee: IHP GmbH - Innovations for High Performance Microelectronics/Institut fur innovative Mikroelektronik
    Inventors: Bernd Heinemann, Dieter Knoll, Karl-Ernst Ehwald, Holger Rücker