In Different Semiconductor Regions (e.g., Heterojunctions) (epo) Patents (Class 257/E29.081)
  • Publication number: 20080121897
    Abstract: A heterostructure having a heterojunction comprising: a diamond layer; and a boron aluminum nitride (B(x)Al(1-x)N) layer disposed in contact with a surface of the diamond layer, where x is between 0 and 1.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 29, 2008
    Inventors: Jeffrey R. LaRoche, William E. Hoke, Steven D. Bernstein, Ralph Korenstein
  • Patent number: 7348606
    Abstract: A method of producing nitride based heterostructure devices by using a quaternary layer comprised of AlInGaN. The quaternary layer may be used in conjunction with a ternary layer in varying thicknesses and compositions that independently adjust polarization charges and band offsets for device structure optimization by using strain compensation profiles. The profiles can be adjusted by altering profiles of molar fractions of In and Al.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: March 25, 2008
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Muhammad Asif Khan, Remigijus Gaska, Michael Shur, Jinwei Yang
  • Publication number: 20080061317
    Abstract: A method that includes forming a pattern of strained material and relaxed material on a substrate; forming a strained device in the strained material; and forming a non-strained device in the relaxed material is disclosed. In one embodiment, the strained material is silicon (Si) in either a tensile or compressive state, and the relaxed material is Si in a normal state. A buffer layer of silicon germanium (SiGe), silicon carbon (SiC), or similar material is formed on the substrate and has a lattice constant/structure mis-match with the substrate. A relaxed layer of SiGe, SiC, or similar material is formed on the buffer layer and places the strained material in the tensile or compressive state. In another embodiment, carbon-doped silicon or germanium-doped silicon is used to form the strained material. The structure includes a multi-layered substrate having strained and non-strained materials patterned thereon.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 13, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 7304330
    Abstract: A nitride semiconductor device, which includes a III-V Group nitride semiconductor layer being composed of a III Group element consisting of at least one of a group containing of gallium, aluminum, boron and indium and V Group element consisting of at least nitrogen among a group consisting of nitrogen, phosphorus and arsenic, including a first nitride semiconductor layer including the III-V Group nitride semiconductor layer being deposited on a substrate, a second nitride semiconductor layer including the III-V Group nitride semiconductor layer being deposited on the first nitride semiconductor and not containing aluminum and a control electrode making Schottky contact with the second nitride semiconductor layer wherein the second nitride semiconductor layer includes a film whose film forming temperature is lower than the first nitride semiconductor layer.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: December 4, 2007
    Assignee: New Japan Radio Co., Ltd.
    Inventor: Atsushi Nakagawa
  • Publication number: 20070210305
    Abstract: A method for forming a thermal oxide layer on the surface of a semiconductor substrate exposed during a semiconductor fabricating process. The thermal oxide layer is to be thin to minimize silicon substrate defects caused by volume expansion. A chemical vapor deposition (CVD) layer is then formed on the thin thermal oxide layer, creating a required thickness. The thin thermal oxide layer and the CVD material layer are formed in the same CVD apparatus. As a result, a process can be simplified and a particle-leading pollution can be prevented.
    Type: Application
    Filed: May 14, 2007
    Publication date: September 13, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Do-Hyung KIM, Sung-Eui KIM
  • Patent number: 7233041
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 19, 2007
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, Parce J. Wallace, Jay L. Goldman
  • Publication number: 20060249748
    Abstract: Gallium nitride material-based semiconductor structures are provided. In some embodiments, the structures include a composite substrate over which a gallium nitride material region is formed. The gallium nitride material structures may include additional features, such as strain-absorbing layers and/or transition layers, which also promote favorable stress conditions. The reduction in stresses may reduce defect formation and cracking in the gallium nitride material region, as well as reducing warpage of the overall structure. The gallium nitride material-based semiconductor structures may be used in a variety of applications such as transistors (e.g. FETs) Schottky diodes, light emitting diodes, laser diodes, SAW devices, and sensors, amongst others devices.
    Type: Application
    Filed: May 3, 2005
    Publication date: November 9, 2006
    Applicant: Nitronex Corporation
    Inventors: Edwin Piner, Pradeep Rajagopal, John Roberts, Kevin Linthicum
  • Patent number: 7112830
    Abstract: The invention provides a device having a substrate, a buffer region positioned upon the substrate, wherein the buffer region has an upper buffer region and a lower buffer region, a heterojunction region positioned upon the buffer region, and a superlattice positioned between the lower buffer region and the upper buffer region, wherein the device is configured to function as a heterojunction field effect transistor.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 26, 2006
    Assignee: APA Enterprises, Inc.
    Inventor: Gordon Munns