In Different Semiconductor Regions (e.g., Heterojunctions) (epo) Patents (Class 257/E29.091)
  • Publication number: 20120217511
    Abstract: A vertical power transistor device comprises: a substrate formed from a III-V semiconductor material and a multi-layer stack at least partially accommodated in the substrate. The multi-layer stack comprises: a semi-insulating layer disposed adjacent the substrate and a first layer formed from a first III-V semiconductor material and disposed adjacent the semi-insulating layer. The multi-layer stack also comprises a second layer formed from a second III-V semiconductor material disposed adjacent the first layer and a heterojunction is formed at an interface of the first and second layers.
    Type: Application
    Filed: November 19, 2009
    Publication date: August 30, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Philippe Renaud, Bruce Green
  • Publication number: 20120217512
    Abstract: A lateral power transistor device comprises a substrate and a multi-layer mesa structure comprising a heterojunction. A filled trench region is located adjacent the multi-layer mesa structure, the filled trench region being occupied by a metal.
    Type: Application
    Filed: November 19, 2009
    Publication date: August 30, 2012
    Inventor: Philippe Renaud
  • Publication number: 20120211801
    Abstract: There is provided a normally-off group III nitride semiconductor device having a high breakdown field strength and minimal crystal defects, and a group III nitride laminated semiconductor wafer used to make the group III nitride semiconductor device. The group III nitride laminated semiconductor wafer 10 includes a substrate 27 which is made of AlN and has a main surface 27a along the c-axis of the AlN crystal, a first AlX1InY1Ga1-X1-Y1N layer 13 which is made of a group III nitride-based semiconductor containing Al and is provided on the main surface 27a, and a second AlX2InY2Ga1-X2-Y2N layer 15 which is provided on the main surface 27a, is made of a group III nitride-based semiconductor having a larger bandgap than the first AlX1InY1Ga1-X1-Y1N layer 13, and forms a heterojunction with the first AlX1InY1Ga1-X1-Y1N layer 13.
    Type: Application
    Filed: August 23, 2010
    Publication date: August 23, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Hashimoto, Katsushi Akita, Hideaki Nakahata, Hiroshi Amano
  • Patent number: 8247842
    Abstract: A device includes a substrate; a buffer layer; and a device formation layer, wherein the buffer layer is formed by sequentially stacking, a plurality of times, a first nitride-based semiconductor layer made of a material having a lattice constant lower than a lattice constant of a material of the substrate; a first composition graded layer made of a material having a lattice constant gradually higher than the lattice constant of the first nitride-based semiconductor layer in a thickness direction; a second nitride-based semiconductor layer made of a material having a lattice constant higher than the lattice constant of the first nitride-based semiconductor layer; and a second composition graded layer made of a material having a lattice constant gradually lower than the lattice constant of the second nitride-based semiconductor layer in the thickness direction, and the second composition graded layer is thicker than the first composition graded layer.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 21, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ken Sato
  • Publication number: 20120205625
    Abstract: A nitride light emitting diode, on a patterned substrate, comprising a nitride interlayer having at least two periods of alternating layers of InxGa1-xN and InyGa1-yN where 0<x<1 and 0?y<1, and a nitride based active region having at least one quantum well structure on the nitride interlayer.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael Iza, Hitoshi Sato, Eu Jin Hwang, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8236648
    Abstract: Provided is a semiconductor device formed with a trench portion for providing a concave portion having a continually varying depth in a gate width direction and with a gate electrode provided within the trench portion and on a top surface thereof via a gate insulating film. Before the formation of the gate electrode, an impurity is added to at least a part of the source region and the drain region by ion implantation from an inner wall of the trench portion, and then heat treatment is performed for diffusion and activation to form a diffusion region from the surface of the trench portion down to a bottom portion thereof. Current flowing through a top surface of the concave portion of the gate electrode at high concentration can flow uniformly through the entire trench portion.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 7, 2012
    Assignee: Seiko Instruments Inc.
    Inventor: Masayuki Hashitani
  • Publication number: 20120193637
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a gallium nitride (GaN) layer on a substrate; an aluminum gallium nitride (AlGaN) layer disposed on the GaN layer; and a gate stack disposed on the AlGaN layer. The gate stack includes a III-V compound n-type doped layer; a III-V compound p-type doped layer adjacent the III-V compound n-type doped layer; and a metal layer formed over the III-V compound p-type doped layer and the III-V compound n-type doped layer.
    Type: Application
    Filed: March 16, 2011
    Publication date: August 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alexander Kalnitsky, Chih-Wen Hsiung, Chun Lin Tsai
  • Patent number: 8232557
    Abstract: A semiconductor substrate includes: an AlN layer provided on a silicon substrate; an AlGaN layer that is provided on the AlN layer and has an Al composition ratio of 0.3 to 0.6; and a GaN layer provided on the AlGaN layer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: July 31, 2012
    Assignee: Eudyna Devices Inc.
    Inventors: Isao Makabe, Ken Nakata
  • Publication number: 20120187452
    Abstract: According to one embodiment, the semiconductor element includes a first semiconductor layer. The first semiconductor layer contains AlXGa1-XN. A top layer of the first semiconductor layer is terminated by nitrogen. The semiconductor element includes a second semiconductor layer containing non-doped or first conductivity-type AlYGa1-YN formed on the first semiconductor layer. The semiconductor element includes a third semiconductor layer containing AlZGa1-ZN formed on the second semiconductor layer. The semiconductor element includes a first major electrode connected to the third semiconductor layer. The semiconductor element includes a second major electrode connected to the third semiconductor layer. The semiconductor element includes a gate electrode provided on the third semiconductor layer between the first major electrode and the second major electrode.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 26, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Hidetoshi Fujimoto
  • Publication number: 20120175631
    Abstract: Enhancement-mode GaN devices having a gate spacer, a gate metal material and a gate compound that are self-aligned, and a methods of forming the same. The materials are patterned and etched using a single photo mask, which reduces manufacturing costs. An interface of the gate spacer and the gate compound has lower leakage than the interface of a dielectric film and the gate compound, thereby reducing gate leakage. In addition, an ohmic contact metal layer is used as a field plate to relieve the electric field at a doped III-V gate compound corner towards the drain contact, which leads to lower gate leakage current and improved gate reliability.
    Type: Application
    Filed: February 23, 2012
    Publication date: July 12, 2012
    Inventors: Alexander Lidow, Robert Beach, Alana Nakata, Jianjun Cao, Guang Yuan Zhao, Robert Strittmatter, Fang Chang Liu
  • Publication number: 20120175682
    Abstract: Embodiments of an ohmic contact structure for a Group III nitride semiconductor device and methods of fabrication thereof are disclosed. In one embodiment, the ohmic contact structure has less than or equal to 5%, more preferably less than or equal to 2%, more preferably less than or equal to 1.5%, and even more preferably less than or equal to 1% degradation for 1000 hours High Temperature Soak (HTS) at 300 degrees Celsius. In another embodiment, the ohmic contact structure additionally or alternatively has less than or equal to 10% degradation, more preferably less than or equal to 7.5% degradation, more preferably less than or equal to 6% degradation, more preferably less than or equal to 5% degradation, and even more preferably less than 3% degradation for 1000 hours High Temperature operating Life (HToL) at 225 degrees Celsius and 50 milliamps (mA) per millimeter (mm).
    Type: Application
    Filed: July 14, 2011
    Publication date: July 12, 2012
    Applicant: CREE, INC.
    Inventors: Helmut Hagleitner, Daniel Namishia
  • Publication number: 20120168771
    Abstract: A semiconductor device is provided such that a reverse leak current is suppressed, and a Schottky junction is reinforced. The semiconductor device includes an epitaxial substrate formed by laminating a group of group-III nitride layers on a base substrate in such a manner that (0001) surfaces of said group-III nitride layers are substantially parallel to a substrate surface, and a Schottky electrode, in which the epitaxial substrate includes a channel layer formed of a first group-III nitride having a composition of Inx1Aly1Gaz1N, a barrier layer formed of a second group-III nitride having a composition of Inx2Aly2N, and a contact layer formed of a third group-III nitride having insularity and adjacent to the barrier layer, and the Schottky electrode is connected to the contact layer. In addition, a heat treatment is performed under a nitrogen atmosphere after the gate electrode has been formed.
    Type: Application
    Filed: March 8, 2012
    Publication date: July 5, 2012
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20120161205
    Abstract: A group III nitride semiconductor device and a group III nitride semiconductor wafer are provided. The group III nitride semiconductor device has a channel layer comprising group III nitride-based semiconductor containing Al. The group III nitride semiconductor device can enhance the mobility of the two-dimensional electron gas and improve current characteristics. The group III nitride semiconductor wafer is used to make the group III nitride semiconductor device. The group III nitride semiconductor wafer comprises a substrate made of AlXGa1-XN (0<X?1), a first AlGaN layer made of group III nitride-based semiconductor containing Al and disposed on the substrate, and a second AlGaN layer made of group III nitride-based semiconductor having a bandgap greater than the first AlGaN layer and disposed thereon. The full width at half maximum values of X-ray rocking curves for (0002) and (10-12) planes of the first AlGaN layer are less than 1000 areseconds.
    Type: Application
    Filed: March 1, 2012
    Publication date: June 28, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Shin HASHIMOTO, Tatsuya Tanabe, Katsushi Akita, Hideaki Nakahata, Hiroshi Amano
  • Publication number: 20120161152
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a buffer layer, and a crystal layer. The buffer layer is formed of a first lamination unit and a second lamination unit being alternately laminated. The first lamination unit includes a composition modulation layer and a first intermediate layer. The composition modulation layer is formed of a first unit layer and a second unit layer having different compositions being alternately and repeatedly laminated so that a compressive strain exists therein. The first intermediate layer enhances the compressive strain existing in the composition modulation layer. The second lamination unit is a second intermediate layer that is substantially strain-free.
    Type: Application
    Filed: March 7, 2012
    Publication date: June 28, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8207556
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device includes a group III nitride semiconductor supporting base, a GaN based semiconductor region, an active layer, and a GaN semiconductor region. The primary surface of the group III nitride semiconductor supporting base is not any polar plane, and forms a finite angle with a reference plane that is orthogonal to a reference axis extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region, grown on the semipolar primary surface, includes a semiconductor layer of, for example, an n-type GaN based semiconductor doped with silicon. A GaN based semiconductor layer of an oxygen concentration of 5×1016 cm?3 or more provides an active layer, grown on the primary surface, with an excellent crystal quality.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 26, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 8203172
    Abstract: A nitride semiconductor device includes: a first layer made of a first nitride semiconductor; a second layer provided on the first layer and made of a second nitride semiconductor having a larger band gap than the first nitride semiconductor; a first electrode electrically connected to the second layer; a second electrode provided on the second layer and juxtaposed to the first electrode in a first direction; and a floating electrode provided on the second layer, the floating electrode including: a portion sandwiched by the second electrode in a second direction orthogonal to the first direction; and a portion protruding from the second electrode toward the first electrode.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: June 19, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Yasunobu Saito, Takao Noda, Hidetoshi Fujimoto, Tetsuya Ohno
  • Publication number: 20120138954
    Abstract: According to one embodiment, provided is a semiconductor device includes: a high frequency semiconductor chip; an input matching circuit disposed at the input side of the high frequency semiconductor chip; an output matching circuit disposed at the output side of the high frequency semiconductor chip; a high frequency input terminal connected to the input matching circuit; a high frequency output terminal connected to the output matching circuit, and a smoothing capacitor terminal connected to the high frequency semiconductor chip. The high frequency semiconductor chip, the input matching circuit and the output matching circuit are housed by one package.
    Type: Application
    Filed: June 20, 2011
    Publication date: June 7, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kazutaka TAKAGI
  • Publication number: 20120139038
    Abstract: A first AlGaN layer formed over a substrate, a second AlGaN layer formed over the first AlGaN layer, an electron transit layer formed over the second AlGaN layer, and an electron supply layer formed over the electron transit layer are provided. A relationship of “0?x1<x2?1” is found when a composition of the first AlGaN layer is represented by Alx1Ga1-x1N, and a composition of the second AlGaN layer is represented by Alx2Ga1-x2N. Negative charges exist at an upper surface of the AlGaN layer more than positive charges existing at a lower surface of the AlGaN layer.
    Type: Application
    Filed: September 21, 2011
    Publication date: June 7, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Kenji IMANISHI, Toshihide Kikkawa
  • Publication number: 20120138952
    Abstract: A composition, reactor apparatus, method, and control system for growing epitaxial layers of group III-nitride alloys. Super-atmospheric pressure is used as a process parameter to control the epitaxial layer growth where the identity of alloy layers differ within a heterostructure stack of two or more layers.
    Type: Application
    Filed: August 12, 2010
    Publication date: June 7, 2012
    Applicant: GEORGIA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventor: Nikolaus Dietz
  • Patent number: 8193539
    Abstract: A compound semiconductor device includes: a conductive SiC substrate; an AlN buffer layer formed on said conductive SiC substrate and containing Cl; a compound semiconductor buffer layer formed on said AlN layer which contains Cl, said compound semiconductor buffer layer not containing Cl; and a device constituent layer or layers formed above said compound semiconductor buffer layer not containing Cl.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: June 5, 2012
    Assignee: Fujitsu Limited
    Inventors: Toshihide Kikkawa, Kenji Imanishi
  • Publication number: 20120132962
    Abstract: A method of manufacturing a semiconductor device, in which a second semiconductor layer of AlxGa1-x-yInyN (wherein x, y, and x+y satisfy x>0, y?0, and x+y?1, respectively) on a first semiconductor layer of GaN by hetero-epitaxial growth using a MOCVD method, the method including the steps of: (a) supplying N source gas and Ga source gas to form the first semiconductor layer; (b) supplying the N source gas without supplying the Ga source gas and Al source gas, after step (a); (c) supplying the N source gas and the Al source gas without supplying the Ga source gas, after step (b); and (d) supplying the N source gas, the Ga source gas and the Al source gas to form the second semiconductor layer, after step (c).
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Applicant: SANKEN ELECTRIC CO., LTD
    Inventor: Ken Sato
  • Publication number: 20120126246
    Abstract: According to one embodiment, provided is a package and high frequency terminal structure for the same including: a conductive base plate; a semiconductor device disposed on the conductive base plate; a metal wall disposed on the conductive base plate to house the semiconductor device; a through-hole disposed in input and output units of the metal wall; a lower layer feed through inserted into the through-hole and disposed on the conductive base plate; and an upper layer feed through disposed on the lower layer feed through, and adhered to a sidewall of the metal wall. The lower layer feed through is surrounded by the metal wall.
    Type: Application
    Filed: June 20, 2011
    Publication date: May 24, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kazutaka TAKAGI
  • Publication number: 20120126293
    Abstract: An epitaxial substrate, in which a group of group-III nitride layers is formed on a single-crystal silicon substrate so that a crystal plane is approximately parallel to a substrate surface, comprises: a first group-III nitride layer formed of AlN on the base substrate; a second group-III nitride layer formed of InxxAlyyGazzN (xx+yy+zz=1, 0?xx?1, 0<yy?1 and 0<zz?1) on the first group-III nitride layer; and at least one third group-III nitride layer epitaxially-formed on the second group-III nitride layer, wherein: the first group-III nitride layer is a layer containing multiple defects including at least one type of a columnar crystal, a granular crystal, a columnar domain and a granular domain; and an interface between the first group-III nitride layer and the second group-III nitride layer is a three-dimensional asperity surface.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 24, 2012
    Applicant: NGK INSULATORS, LTD.
    Inventors: Shigeaki Sumiya, Makoto Miyoshi, Tomohiko Sugiyama, Mikiya Ichimura, Yoshitaka Kuraoka, Mitsuhiro Tanaka
  • Patent number: 8183597
    Abstract: A GaN semiconductor device which has a low on-resistance, has a very small leak current when a reverse bias voltage is applied and is very excellent in withstand voltage characteristic, said GaN semiconductor device having a structure being provided with a III-V nitride semiconductor layer containing at least one hetero junction structure of III-V nitride semiconductors having different band gap energies; a first anode electrode arranged on a surface of said III-V nitride semiconductor by Schottky junction; a second anode electrode which is arranged on the surface of said III-V nitride semiconductor layer by Schottky junction, is electrically connected with said first anode electrode and forms a higher Schottky barrier than a Schottky barrier formed by said first anode electrode; and an insulating protection film which is brought into contact with said second anode electrode and is arranged on the surface of said III-V nitride semiconductor layer.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: May 22, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Jiang Li, Seikoh Yoshida
  • Publication number: 20120119223
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 17, 2012
    Inventors: T. Warren Weeks, JR., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8178898
    Abstract: A GaN-based semiconductor element includes a substrate, a buffer layer formed on the substrate, including an electrically conductive portion, an epitaxial layer formed on the buffer layer, and a metal structure in ohmic contact with the electrically conductive portion of the buffer layer for controlling an electric potential of the buffer layer.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 15, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Seikoh Yoshida, Masatoshi Ikeda, legal representative
  • Publication number: 20120104462
    Abstract: A semiconductor wafer includes a first semiconductor, and a second semiconductor formed directly or indirectly on the first semiconductor. The second semiconductor contains a first impurity atom exhibiting p-type or n-type conductivity, and a second impurity atom selected such that the Fermi level of the second semiconductor containing both the first and second impurity atoms is closer to the Fermi level of the second semiconductor containing neither the first impurity atom nor the second impurity atom, than the Fermi level of the second semiconductor containing the first impurity atom is. For example, the majority carrier of the second semiconductor is an electron, and the Fermi level of the second semiconductor containing the first and second impurity atoms is lower than the Fermi level of the second semiconductor containing the first impurity atom.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 3, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Osamu ICHIKAWA
  • Patent number: 8168494
    Abstract: Trench portions (10) are formed in a well (5) in order to provide unevenness in the well (5). A gate electrode (2) is formed via an insulating film (7) on the upper surface and inside of the trench portions (10). A source region (3) is formed on one side of the gate electrode (2) in a gate length direction while a drain region (4) on another side. Both of the source region (3) and the drain region (4) are formed down to near the bottom portion of the gate electrode (2). By deeply forming the source region (3) and the drain region (4), current uniformly flows through the whole trench portions (10), and the unevenness formed in the well (5) increase the effective gate width to decrease the on-resistance of a semiconductor device 1 and to enhance the drivability thereof.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: May 1, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Tomomitsu Risaki, Jun Osanai
  • Publication number: 20120097973
    Abstract: In one example, we describe a new high performance AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistor (MISHFET), which was fabricated using HfO2 as the surface passivation and gate insulator. The gate and drain leakage currents are drastically reduced to tens of nA, before breakdown. Without field plates, for 10 ?m of gate-drain spacing, the off-state breakdown voltage is 1035V with a specific on-resistance of 0.9 m?-cm2. In addition, there is no current slump observed from the pulse measurements. This is the best performance reported on GaN-based, fast power-switching devices on sapphire, up to now, which efficiently combines excellent device forward, reverse, and switching characteristics. Other variations, features, and examples are also mentioned here.
    Type: Application
    Filed: July 12, 2010
    Publication date: April 26, 2012
    Inventors: Junxia Shi, Lester Fuess Eastman
  • Publication number: 20120097968
    Abstract: The present invention provides a method for forming a multilayer substrate having a gallium nitride layer, wherein a mesh layer having a plurality of openings is formed on a substrate, and a buffer layer, three aluminum gallium nitride layers with different aluminum concentrations and a gallium nitride layer are formed in sequence on the substrate in the openings. The three aluminum gallium nitride layers with different aluminum concentrations are capable of releasing stress, decreasing cracks on the surface of the gallium nitride layer and controlling interior defects, such that the present invention provides a gallium nitride layer with larger area, greater thickness, no cracks and high quality for facilitating the formation of high performance electronic components in comparison with the prior art. The present invention further provides a multilayer substrate having a gallium nitride layer.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 26, 2012
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi Chang, Yu-Lin Hsiao, Jung-Chi Lu
  • Patent number: 8148718
    Abstract: The invention provides a transistor having a substrate, a structure supported by the substrate including a source, drain, gate, and channel, wherein the source and the channel are made of different materials, and a tunnel junction formed between the source and the channel, whereby the tunnel junction is configured for injecting carriers from the source to the channel.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: April 3, 2012
    Assignee: The Regents of the University of California
    Inventors: Peter Asbeck, Lingquan Wang
  • Publication number: 20120061728
    Abstract: Semiconductor-on-insulator (XOI) structures and methods of fabricating XOI structures are provided. Single-crystalline semiconductor is grown on a source substrate, patterned, and transferred onto a target substrate, such as a Si/SiO2 substrate, thereby assembling an XOI substrate. The transfer process can be conducted through a stamping method or a bonding method. Multiple transfers can be carried out to form heterogenous compound semiconductor devices. The single-crystalline semiconductor can be II-IV or III-V compound semiconductor, such as InAs. A thermal oxide layer can be grown on the patterned single crystalline semiconductor, providing improved electrical characteristics and interface properties. In addition, strain tuning is accomplished via a capping layer formed on the single-crystalline semiconductor before transferring the single-crystalline semiconductor to the target substrate.
    Type: Application
    Filed: July 1, 2011
    Publication date: March 15, 2012
    Applicant: The Regents of the University of California
    Inventors: ALI JAVEY, HYUNHYUB KO, KUNIHARU TAKEI
  • Publication number: 20120056244
    Abstract: A method includes forming a first epitaxial layer over a semiconductor substrate and etching the first epitaxial layer to form multiple separated first epitaxial regions. The method also includes forming a second epitaxial layer over the etched first epitaxial layer. Each epitaxial layer includes at least one Group III-nitride, and the epitaxial layers collectively form a buffer. The method further includes forming a device layer over the buffer and fabricating a semiconductor device using the device layer. The second epitaxial layer could include second epitaxial regions substantially only on the first epitaxial regions. The second epitaxial layer could also cover the first epitaxial regions and the substrate, and the second epitaxial layer may or may not be etched. The device layer could be formed during the same operation used to form the second epitaxial layer.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Applicant: National Semiconductor Corporation
    Inventors: Sandeep R. Bahl, Jamal Ramdani
  • Patent number: 8129725
    Abstract: A semiconductor sensor determines physical and/or chemical properties of a medium, in particular a pH sensor. The semiconductor sensor has an electronic component with a sensitive surface, said component being constructed for its part on the basis of semiconductors with a large band gap (wide-gap semiconductor). The sensitive surface is provided at least in regions with a functional layer sequence which has an ion-sensitive surface. The functional layer sequence has at least one layer which is impermeable at least for the medium and/or the materials or ions to be determined.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: March 6, 2012
    Assignee: MicroGan GmbH
    Inventors: Mike Kunze, Ingo Daumiler
  • Publication number: 20120049902
    Abstract: An embodiment of an integrated electronic device formed in a body of semiconductor material, which includes: a substrate of a first semiconductor material, the first semiconductor material having a first bandgap; a first epitaxial region of a second semiconductor material and having a first type of conductivity, which overlies the substrate and defines a first surface, the second semiconductor material having a second bandgap wider than the first bandgap; and a second epitaxial region of the first semiconductor material, which overlies, and is in direct contact with, the first epitaxial region. The first epitaxial region includes a first buffer layer, which overlies the substrate, and a drift layer, which overlies the first buffer layer and defines the first surface, the first buffer layer and the drift layer having different doping levels.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Donato CORONA, Nicolo' FRAZZETTO, Antonio Giuseppe GRIMALDI, Corrado IACONO, Monica MICCICHE'
  • Publication number: 20120043551
    Abstract: A Schottky diode includes a first nitride-based semiconductor layer disposed atop a substrate. A second nitride-based semiconductor layer is disposed atop a portion of the first nitride-based semiconductor layer. The second layer has a doping concentration lower than that of the first layer. A first Schottky contact metal layer having a first metal work function is disposed on a top planar surface of the second layer, forming a first Schottky junction. A second Schottky contact metal layer having a second metal work function is disposed atop of and laterally surrounding the first Schottky contact metal layer, the metal work function of the second metal layer is higher than that of the first metal layer. A metal layer disposed on first and second planar surfaces forms an ohmic contact with the first nitride-based semiconductor layer.
    Type: Application
    Filed: September 21, 2011
    Publication date: February 23, 2012
    Applicant: Power Integrations, Inc.
    Inventors: Ting Gang Zhu, Marek Pabisz
  • Publication number: 20120025271
    Abstract: There is provided a high-performance compound semiconductor epitaxial wafer that has an improved linearity of the voltage-current characteristic, a producing method thereof, and a judging method thereof. Provided is a semiconductor wafer including a compound semiconductor that produces a two-dimensional carrier gas, a carrier supply semiconductor that supplies a carrier to the compound semiconductor, and a mobility lowering semiconductor that is disposed between the compound semiconductor and the carrier supply semiconductor and that has a mobility lowering factor that makes the mobility of the carrier in the mobility lowering semiconductor lower than the mobility of the carrier in the compound semiconductor.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tsuyoshi NAKANO
  • Publication number: 20120018782
    Abstract: An objective is to provide a semiconductor device capable of utilizing properties of a high-mobility electron transport layer with a thin film stacked structure having large ?Ec, high electron mobility, and simplified element fabrication process even when the substrate material and the electron transport layer greatly differ in lattice constant. The semiconductor device includes: a semiconductor substrate (1); a first barrier layer (2) on the substrate (1); an electron transport layer (3) on the first barrier layer (2); and a second barrier layer (4) on the electron transport layer (3). The first barrier layer (2) has an InxAl1-xAs layer. At least one of the first barrier layer (2) and the second barrier layer (4) has a stacked structure having an AlyGa1-yAszSb1-z layer in contact with the electron transport layer (3) and an InxAl1-xAs layer in contact with the AlyGa1-yAszSb1-z layer. The stacked structure is doped with a donor impurity.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Inventor: Hirotaka Geka
  • Patent number: 8093627
    Abstract: This nitride semiconductor device comprises: an n-type first layer made of a group III nitride semiconductor; a p-type second layer made of a group III nitride semiconductor layer provided on the first layer; and an n-type third layer made of a group III nitride semiconductor with a p-type impurity content of not more than 1×1018 cm?3 provided on the second layer.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: January 10, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Hirotaka Otake, Kentaro Chikamatsu
  • Publication number: 20110297961
    Abstract: A normally OFF field effect transistor (FET) comprising: a plurality of contiguous nitride semiconductor layers having different composition and heterojunction interfaces between contiguous layers, a Fermi level, and conduction and valence energy bands; a source and a drain overlying a top nitride layer of the plurality of nitride layers and having source and drain access regions respectively comprising regions of at least two of the heterojunctions near the source and drain; a first gate between the source and drain; wherein when there is no potential difference between the gates and a common ground voltage, a two dimensional electron gas (2DEG) is present in the access region at a plurality of heterojunctions in each of the source and drain access regions, and substantially no 2DEG is present adjacent any regions of the heterojunctions under the first gate.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 8, 2011
    Applicant: VISIC TECHNOLOGIES LTD.
    Inventors: Gregory Bunin, Tamara Baksht, David Rozman
  • Publication number: 20110297957
    Abstract: A method for manufacturing a compound semiconductor structure, includes (a) selecting a conductive SiC substrate in accordance with color and resistivity and (b) epitaxially growing a GaN series compound semiconductor layer on the selected conductive SiC substrate. The step (a) preferably selects a conductive SiC substrate whose main color is green, whose conductivity type is n-type and whose resistivity is 0.08 52 cm to 1×105 ?cm, or whose main color is black, whose conductivity type is p-type and whose resistivity is 1×103 ?cm to 1×105?cm, or whose main color is blue, whose conductivity type is p-type and whose resistivity is 10 ?cm to 1×105 ?cm. The step (b) preferably includes (b-1) growing an AlInGaN layer having a thickness not thinner than 10 ?m on the conductive SiC substrate by hydride VPE.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Toshihide Kikkawa, Kenji Imanishi
  • Publication number: 20110297958
    Abstract: A gate after diamond transistor and method of making comprising the steps of depositing a first dielectric layer on a semiconductor substrate, depositing a diamond particle nucleation layer on the first dielectric layer, growing a diamond thin film layer on the first dielectric layer, defining an opening for the gate in the diamond thin film layer, patterning of the diamond thin film layer for a gate metal to first dielectric layer surface, etching the first dielectric layer, depositing and defining a gate metal, and forming a contact window opening in the diamond thin film layer and the first dielectric layer to the ohmic contact.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis Kub, Karl Hobart
  • Publication number: 20110284869
    Abstract: A high voltage durability III-nitride semiconductor device comprises a support substrate including a first silicon body, an insulator body over the first silicon body, and a second silicon body over the insulator body. The high voltage durability III-nitride semiconductor device further comprises a III-nitride semiconductor body characterized by a majority charge carrier conductivity type, formed over the second silicon body. The second silicon body has a conductivity type opposite the majority charge carrier conductivity type. In one embodiment, the high voltage durability III-nitride semiconductor device is a high electron mobility transistor (HEMT) comprising a support substrate including a <100> silicon layer, an insulator layer over the <100> silicon layer, and a P type conductivity <111> silicon layer over the insulator layer.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Inventor: Michael A. Briere
  • Publication number: 20110284868
    Abstract: A high voltage durability III-nitride semiconductor device comprises a support substrate including a first silicon body, an insulator body over the first silicon body, and a second silicon body over the insulator body. The high voltage durability III-nitride semiconductor device further comprises a III-nitride semiconductor body characterized by a majority charge carrier conductivity type, formed over the second silicon body. The second silicon body has a conductivity type opposite the majority charge carrier conductivity type. In one embodiment, the high voltage durability III-nitride semiconductor device is a high electron mobility transistor (HEMT) comprising a support substrate including a <100> silicon layer, an insulator layer over the <100> silicon layer, and a P type conductivity <111> silicon layer over the insulator layer.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Inventor: Michael A. Briere
  • Publication number: 20110272708
    Abstract: According to one embodiment, a nitride semiconductor device includes a first, a second and a third semiconductor layer, a first and a second main electrode and a control electrode. The first layer made of a nitride semiconductor of a first conductivity type is provided on a substrate. The second layer made of a nitride semiconductor of a second conductivity type is provided on the first layer. The third layer made of a nitride semiconductor is provided on the second layer. The first electrode is electrically connected with the second layer. The second electrode is provided at a distance from the first electrode and electrically connected with the second layer. The control electrode is provided within a first trench via an insulating film. The first trench is disposed between the first and the second main electrodes, penetrates the third and the second layers, and reaches the first layer.
    Type: Application
    Filed: March 21, 2011
    Publication date: November 10, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akira Yoshioka, Wataru Saito, Yasunobu Saito, Hidetoshi Fujimoto, Tetsuya Ohno
  • Publication number: 20110266554
    Abstract: In a manufacturing method of a semiconductor device, first, a first semiconductor layer, a second semiconductor layer, and a p-type third semiconductor layer are sequentially epitaxially grown on a substrate. After that, the third semiconductor layer is selectively removed. Then, a fourth semiconductor layer is epitaxially grown on the second semiconductor layer. Then, a gate electrode is formed on the third semiconductor layer.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Masahiro HIKITA, Kenichiro Tanaka, Tetsuzo Ueda
  • Publication number: 20110254057
    Abstract: Disclosed herein is a nitride based semiconductor device. The nitride based semiconductor device includes: a base substrate; an epitaxial growth layer disposed on the base substrate and having a defect generated due to lattice disparity with the base substrate; a leakage current barrier covering the epitaxial growth layer while filling the defect; and an electrode part disposed on the epitaxial growth layer.
    Type: Application
    Filed: July 23, 2010
    Publication date: October 20, 2011
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
  • Patent number: 8035128
    Abstract: There is provided a semiconductor device and a method for fabricating the same whose withstanding characteristic may be enhanced and whose ON resistance may be reduced. A MIS-type HEMT includes a carrier traveling layer made of a group-III nitride semiconductor and formed on a supporting substrate, a carrier supplying layer made of a group-III nitride semiconductor and formed on the carrier traveling layer, source and drain electrodes formed on the carrier supplying layer, insulating films formed on the carrier supplying layer and a gate electrode formed on the insulating films. The insulating film is formed in a region interposed between the source and drain electrodes and has a trench whose cross-section is inverted trapezoidal and whose upper opening is wider than a bottom thereof. The gate electrode is formed at least from the bottom of the trench onto the insulating films on the side of the drain electrode.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: October 11, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Shusuke Kaya
  • Publication number: 20110241020
    Abstract: Embodiments of a high electron mobility transistor with recessed barrier layer, and methods of forming the same, are disclosed. Other embodiments are also be described and claimed.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventor: Paul Saunier
  • Publication number: 20110227090
    Abstract: Disclosed is a III-nitride heterojunction device that includes a conduction channel having a two dimensional electron gas formed at an interface between a first III-nitride material and a second III-nitride material. A modification including a contact insulator, for example, a gate insulator formed under a gate contact, is disposed over the conduction channel, wherein the contact insulator includes aluminum to alter formation of the two dimensional electron gas at the interface. The contact insulator can include AlSiN, or can be SiN doped with aluminum. The modification results in programming the threshold voltage of the III-nitride heterojunction device to, for example, make the device an enhancement mode device. The modification can further include a recess, an ion implanted region, a diffused region, an oxidation region, and/or a nitridation region. In one embodiment, the first III-nitride material comprises GaN and the second III-nitride material comprises AlGaN.
    Type: Application
    Filed: February 4, 2011
    Publication date: September 22, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Michael A. Briere