For Tft (epo) Patents (Class 257/E29.151)
  • Patent number: 7601566
    Abstract: It is an object of the present invention to provide a method for preventing a breaking and poor contact, without increasing the number of steps, thereby forming an integrated circuit with high driving performance and reliability. The present invention applies a photo mask or a reticle each of which is provided with a diffraction grating pattern or with an auxiliary pattern formed of a semi-translucent film having a light intensity reducing function to a photolithography step for forming wires in an overlapping portion of wires. And a conductive film to serve as a lower wire of a two-layer structure is formed, and then, a resist pattern is formed so that a first layer of the lower wire and a second layer narrower than the first layer are formed for relieving a steep step.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 13, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Hideto Ohnuma, Hideaki Kuwabara
  • Patent number: 7598111
    Abstract: A thin film transistor and a method of manufacturing the same are disclosed. More specifically, there is provided a thin film transistor having a thin film transistor and a method of manufacturing the same wherein an inorganic layer and an organic planarization layer are sequentially formed on the surface of a substrate on source/drain electrode of a thin film transistor having a semiconductor layer, a gate, source/drain areas and the source/drain electrodes, and a blanket etching process is performed to the organic planarization layer to planarize the inorganic layer. After forming a photoresist pattern on the inorganic layer, an etching process is performed to form a hole coupling a pixel electrode with one of the source/drain electrodes. According to the manufacturing method, the hole may be formed using one mask, thereby simplifying a manufacturing process, and improving an adhesion with the pixel electrode by the inorganic layer formed above.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: October 6, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Choong-Youl Im, Tae-Wook Kang, Chang-Yong Jeong
  • Patent number: 7582904
    Abstract: The purpose of the present invention is to provide a semiconductor device or a display device that can be manufactured by improving the use efficiency of a material as well as simplifying the manufacturing process, and a manufacturing technique of those devices. Also, another purpose of the present invention is to provide a technique for forming a pattern of wirings, etc., constituting the semiconductor device or the display device, in a desired shape and with good adhesiveness. The adhesiveness between first and second conductive layers is increased by forming a conductive buffer layer including at least one pore between them. The second conductive layer is formed by filling the pores of the buffer layer including at least one pore with a particle shaped conductive material which is solidified by baking. The conductive layer solidified in the pores functions like a wedge, and the second conductive layer is formed over the first conductive layer with good adhesiveness and stability.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 1, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Gen Fujii, Masafumi Morisue
  • Patent number: 7582894
    Abstract: Organic TFTs having uniform characteristics and a flat panel display having the organic TFT, wherein the organic TFTs include an organic semiconductor layer formed by spin coating are disclosed. One embodiment of the organic TFT includes: a substrate, a gate electrode disposed on the substrate, a gate insulating film covering the gate electrode, an organic semiconductor layer disposed on the gate insulating film, and a source electrode and a drain electrode that contact the organic semiconductor layer, wherein a plurality of protrusion parts is formed on the gate insulating film and the protrusion parts extend toward the drain electrode from the source electrode.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: September 1, 2009
    Assignee: Samsung Mobile Displays Co., Ltd.
    Inventors: Min-Chul Suh, Jae-Bon Koo, Taek Ahn
  • Patent number: 7579653
    Abstract: The invention provides an improved thin film transistor (TFT) that can be formed at room temperature and has an improved contact resistance between an active layer and source and drain electrodes, and further provides a flat display device using such a TFT. The TFT includes an active layer including at least two nano particle layers which include at least one nano particle type, an insulating layer interposed between the nano particle layers, a gate electrode insulated from the active layer, and source and drain electrodes formed in respective channels, the source and drain electrodes contact one of the nano particle layers of the active layer. The structure of the TFT facilitates the simultaneous manufacturing of a plurality of different types of TFTs.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: August 25, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Min-Chul Suh, Jae-Bon Koo, Hye-Dong Kim
  • Patent number: 7575960
    Abstract: A method for fabricating a thin film transistor matrix device which includes forming a transparent insulating substrate, arranging a plurality of thin film transistors on the substrate in a matrix, arranging a plurality of picture element electrodes on the substrate in a matrix and connecting the picture element electrodes to sources of the thin film transistors. The method also includes forming a plurality of bus lines for commonly connecting gates or drains of the thin film transistors, forming a plurality of bus line terminals on the ends of the bus lines, respectively, with each bus line terminal being provided for each bus line, and forming one connection line on the substrate in a region outer of plurality of the bus line terminals and commonly connecting the plurality of bus lines. The method further includes the step of electrically disconnecting the bus lines from the connection line by laser melting.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: August 18, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hidaki Takizawa, Shougo Hayashi, Takeshi Kinjo, Makoto Tachibanaki, Kenji Okamoto
  • Patent number: 7576354
    Abstract: An organic light emitting diode display may have a power supply line that is coplanar with a first pixel electrode of an organic light emitting element. The power supply line, first source and drain electrodes of a first thin film transistor (TFT), second source and drain electrodes of a second TFT, a data line, and an upper electrode of a storage capacitor constitute source/drain wire lines. In addition to the power supply line, any one(s) of or all of the source/drain wire lines may be coplanar with the first pixel electrode.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: August 18, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hyun-Chul Son, Moo-Soon Ko, Woong-Sik Choi, Ji-Yeon Baek
  • Patent number: 7576394
    Abstract: A thin film transistor includes a substrate, and a pair of source/drain electrodes (i.e., a source electrode and a drain electrode) formed on the substrate and defining a gap therebetween. A pair of low resistance conductive thin films are provided such that each coats at least a part of one of the source/drain electrodes. The low resistance conductive thin films define a gap therebetween. An oxide semiconductor thin film layer is continuously formed on upper surfaces of the pair of low resistance conductive thin films and extends along the gap defined between the low resistance conductive thin films so as to function as a channel. Side surfaces of the oxide semiconductor thin film layer and corresponding side surfaces of the low resistance conductive thin films coincide with each other in a channel width direction of the channel.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 18, 2009
    Assignees: Kochi Industrial Promotion Center, Casio Computer Co., Ltd.
    Inventors: Mamoru Furuta, Takashi Hirao, Hiroshi Furuta, Tokiyoshi Matsuda, Takahiro Hiramatsu, Hiromitsu Ishii, Hitoshi Hokari, Motohiko Yoshida
  • Publication number: 20090200543
    Abstract: A method for forming an electronic device on a flexible substrate conditions the surface of a carrier to form a holding area for retaining the flexible substrate. A contact surface of the flexible substrate is applied against the carrier with an intermediate binding material applied between at least the holding area of the carrier and the corresponding area of the contact surface. Entrapped gas between the flexible substrate and the carrier is removed and the substrate processed to form the electronic device thereon. The substrate can then be removed from the holding area to yield the resultant electronic device.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Inventors: Roger Stanley Kerr, Timothy John Tredwell, Mark A. Harland, James T. Murray
  • Patent number: 7569886
    Abstract: An object is to provide an element structure of a semiconductor device for increasing an etching margin for various etching steps and a method for manufacturing the semiconductor device having the element structure. An island-shaped semiconductor layer is provided over an insulator having openings. The island-shaped semiconductor layer includes embedded semiconductor layers and a thin film semiconductor layer. The embedded semiconductor layers have a larger thickness than that of the thin film semiconductor layer.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 4, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideki Matsukura
  • Patent number: 7569856
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: August 4, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Patent number: 7566950
    Abstract: The present invention provides a method for fabricating a flexible pixel array substrate as follows. First, a release layer is formed on a rigid substrate. Next, on the release layer, a polymer film is formed, the adhesive strength between the rigid substrate and the release layer being higher than that between the release layer and the polymer film. The polymer film is formed by spin coating a polymer monomer and performing a curing process to form a polymer layer. Afterwards, a pixel array is formed on the polymer film. The polymer film with the pixel array formed thereon is separated from the rigid substrate.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: July 28, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Jen Huang, Jung-Fang Chang, Yih-Rong Luo, Yu-Hung Chen
  • Patent number: 7564059
    Abstract: In order to realize a higher reliability TFT and a high reliability semiconductor device, an NTFT of the present invention has a channel forming region, n-type first, second, and third impurity regions in a semiconductor layer. The second impurity region is a low concentration impurity region that overlaps a tapered potion of a gate electrode with a gate insulating film interposed therebetween, and the impurity concentration of the second impurity region increases gradually from the channel forming region to the first impurity region. And, the third impurity region is a low concentration impurity region that does not overlap the gate electrode. Moreover, a plurality of NTFTs on the same substrate should have different second impurity region lengths, respectively, according to difference of the operating voltages.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 21, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 7563660
    Abstract: A silicon film, crystalline film and method for manufacturing the same are provided. The silicon film and/or crystalline film may be an epitaxy-formed layer. A method for manufacturing a silicon film and/or crystalline film may include forming a insulating substrate, forming a buffer layer using a material selected from the group consisting of metals, compounds and/or oxides on the insulating substrate, crystallizing the buffer layer by annealing, and forming a crystalline and/or silicon film by epitaxy. Silicon and crystalline films manufactured by the method provided may have greater crystallinity, greater uniformity and/or higher charge carrier mobility.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: July 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jai-Yong Han
  • Patent number: 7563658
    Abstract: The present invention relates to a method for manufacturing a semiconductor film, including the steps of forming a transparent conductive film, forming a first conductive film over the transparent conductive film, forming a second conductive film over the first conductive film, etching the second conductive film with a gas including chlorine, and etching the first conductive film with a gas including fluorine. During etching of the second conductive film with a gas including chlorine, the transparent conductive film is protected by the first conductive film. During etching of the first conductive film with the gas including fluorine, the transparent conductive film does not react with the gas including fluorine. Therefore, no particle is formed.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 21, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihiro Ishizuka, Satoru Okamoto, Shigeharu Monoe, Shunpei Yamazaki
  • Publication number: 20090166641
    Abstract: A thin film transistor (TFT) includes a substrate, a transparent semiconductor layer on the substrate, the transparent semiconductor layer including zinc oxide and exhibiting a charge concentration of about 1×1014 atom/cm3 to about 1×1017 atom/cm3, a gate electrode on the substrate, a gate insulating layer between the gate electrode and the transparent semiconductor layer, the gate insulting layer insulating the gate electrode from the transparent semiconductor layer, and source and drain electrodes on the substrate, the source and drain electrodes being in contact with the transparent semiconductor layer.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Inventors: Jae-Kyeong Jeong, Hyun-Soo Shin, Yeon-Gon Mo, Hyung-Jun Kim, Seong-Joon Lim
  • Patent number: 7553708
    Abstract: A liquid crystal display having an applied horizontal electric field comprising: a gate line; a common line substantially parallel to the gate line; a data line arranged to cross the gate line and the common line to define a pixel area; a thin film transistor formed at each crossing of the gate line and the data line; a common electrode formed in the pixel area and connected to the common line; a pixel electrode connected to the thin film transistor, wherein the horizontal electric field is formed between the pixel electrode and the common electrode in the pixel area; a gate pad formed with at least one conductive layer included in the gate line; a data pad formed with at least one conductive layer included in the data line; a common pad formed with at least one conductive layer included in the common line; a passivation film to expose at least one of the gate pad, the data pad and the common pad; and a driving integrated circuit mounted on a substrate to connect directly to one of the gate pad and the data p
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 30, 2009
    Assignee: LG Display Co., Ltd.
    Inventors: Byung Chul Ahn, Byoung Ho Lim
  • Patent number: 7550768
    Abstract: The present invention provides a TFT array panel and a manufacturing method of the same, which has signal lines including a lower layer of an Al containing metal and an upper layer of a molybdenum alloy (Mo-alloy) comprising molybdenum (Mo) and at least one of niobium (Nb), vanadium (V), and titanium (Ti). Accordingly, undercut, overhang, and mouse bites which may arise in an etching process, are prevented, and TFT array panels that have signal lines having low resistivity and good contact characteristics are provided.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: June 23, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-Seok Cho, Yang-Ho Bae, Je-Hun Lee, Chang-Oh Jeong
  • Patent number: 7550771
    Abstract: A thin film transistor includes a metal substrate, a first conductive barrier layer placed on the metal substrate to prevent diffusion of substance of the metal substrate, a protective insulating film placed on the first conductive barrier layer, a semiconductor layer placed on the protective insulating film and including a source region, a drain region and a channel region, a gate insulating film placed on the semiconductor layer, and a gate electrode placed above the semiconductor layer with the gate insulating film interposed therebetween. The first conductive barrier layer and the semiconductor layer are electrically connected through a first opening of the protective insulating film.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 23, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hitoshi Nagata
  • Patent number: 7541223
    Abstract: In an array substrate and an LCD apparatus having the same, the array substrate includes a signal line, a first insulating layer formed on the signal line, and a pixel electrode formed on the first insulating layer and overlapped with the signal line. The pixel electrode is electrically connected with the signal line so as to discharge a signal through the signal line. A second insulating layer is disposed between the pixel electrode and the first insulating layer, and includes an opening formed in an overlapped area of the pixel electrode and the signal line so as to partially expose the first insulating layer. Thus, the LCD apparatus may have an enhanced display quality.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Ho Yang, Joo-Sun Yoon, Kyo-Seop Choo, Jin-Suk Park
  • Patent number: 7537975
    Abstract: An organic thin film transistor (TFT) and a method of fabricating the same are provided. In the method, an organic semiconductor layer is formed by mixing carbon nanotubes with an organic semiconductor material or coating the organic semiconductor material on a carbon nanotube layer. The resulting organic semiconductor layer has enhanced charge mobility and switching speed owing to the carbon nanotubes' high electric conductivity and charge mobility.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 26, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hee-Sung Moon, Jae-Myung Kim
  • Patent number: 7535024
    Abstract: The present invention provides a fabrication method of a display device which aims at the reduction of fabricating man-hours.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 19, 2009
    Assignee: Hitachi Displays, Ltd.
    Inventors: Eiji Oue, Toshihiko Itoga, Toshiki Kaneko, Daisuke Sonoda, Takeshi Kuriyagawa
  • Patent number: 7531904
    Abstract: The present invention provides Al-based wiring material that allows, in a display device including thin film transistors and transparent electrode layers, direct bonding to the transparent electrode layer made of ITO, IZO or the like as well as direct bonding to the semiconductor layer, such as n+-Si. The Al—Ni—B alloy wiring material according to the present invention is configured such that the nickel content X at %, the nickel atomic percent, and the boron content Y at %, the boron atomic percent, satisfy the following equations: 0.5?X?10.0, 0.05?Y?11.0, Y+0.25X?1.0 and Y+1.15X?11.5, and the remainder is aluminum.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: May 12, 2009
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hironari Urabe, Yoshinori Matsuura, Takashi Kubota
  • Patent number: 7528409
    Abstract: An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor connected to the gate line and the data line and including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the data line includes a transparent conductive layer and an opaque conductive layer, and each of the source and drain electrodes and the pixel electrode includes a transparent conductive layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 5, 2009
    Assignee: LG. Display Co., Ltd.
    Inventors: Hyo-Uk Kim, Chang-Bin Lee, Byung-Kook Choi, Dong-Young Kim
  • Patent number: 7528448
    Abstract: The invention relates to thin film transistors comprising novel dielectric layers and novel electrodes comprising metal compositions that can be provided by a dry thermal transfer process.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: May 5, 2009
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Richard Kevin Bailey, Graciela Beatriz Blanchet, John W. Catron, Jr., Reid John Chesterfield, Howard David Glicksman, Marc B. Goldfinger, Gary Delmar Jaycox, Lynda Kaye Johnson, Roupen Leon Keusseyan, Irina Malajovich, Hong Meng, Jeffrey Scott Meth, Geoffrey Nunes, Gerard O'Neil, Kenneth George Sharp, Feng Gao
  • Patent number: 7525125
    Abstract: A thin film transistor includes a semiconductor pattern on a substrate, a gate insulating film to cover the semiconductor pattern, a gate electrode partially overlapping the semiconductor pattern with the gate insulating film there between, a hole in the gate electrode to expose the gate insulating film, an interlayer insulating film to cover the gate electrode, and a source electrode and a drain electrode contacting the semiconductor pattern through the interlayer insulating layer and the gate insulating layer, wherein the semiconductor pattern includes at least two channels between the source electrode and the drain electrode, the at least two channels having a region with a varying width.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 28, 2009
    Assignee: LG Display Co., Ltd.
    Inventors: Tae Joon Ahn, Hong Koo Lee
  • Patent number: 7521298
    Abstract: A thin film transistor (TFT) array panel structure and a fabrication method thereof are provided. The method includes the following steps. An insulating substrate is provided, on which a first metal layer is deposited to form a plurality of gate electrodes, a plurality of lower electrodes of storage capacitors, a plurality of scan lines, and a plurality of scan line pads with a first mask process. A TFT island region is formed with a second mask process. Drain electrodes and source electrodes of the TFT, upper electrodes of storage capacitors, pixel electrodes, data lines and data line pads are formed, and a plurality of pixel display regions is defined with a third mask process. The pattern of a passivation layer is defined with a fourth mask. A second metal layer in the pixel display region is removed by selective etching.
    Type: Grant
    Filed: November 25, 2006
    Date of Patent: April 21, 2009
    Assignee: Wintec Corporation
    Inventor: Chien-Chung Kuo
  • Publication number: 20090090915
    Abstract: A thin film transistor with excellent electric characteristics, a display device having the thin film transistor, and methods for manufacturing the thin film transistor and the display device are proposed. The thin film transistor includes a gate insulating film formed over a gate electrode, a microcrystalline semiconductor film formed over the gate insulating film, a pair of buffer layers formed over the microcrystalline semiconductor film, a pair of semiconductor films to which an impurity element imparting one conductivity type is added and which are formed over the pair of buffer layers, and wirings formed over the pair of semiconductor films to which the impurity element imparting one conductivity type is added. A part of the gate insulating film or the entire gate insulating film, and/or a part of the microcrystalline semiconductor or the entire microcrystalline semiconductor includes the impurity element which serves as a donor.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 9, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Yoshiyuki KUROKAWA, Yasuhiro JINBO, Satoshi KOBAYASHI, Daisuke KAWAE
  • Patent number: 7514714
    Abstract: A thin film power transistor includes a plurality of first doped regions over a substrate and a second doped region forming a body. At least a portion of the body is disposed between the plurality of first doped regions. The thin film power transistor also includes a gate over the substrate. The thin film power transistor further includes a dielectric layer, at least a portion of which is disposed between (i) the gate and (ii) the first and second doped regions. In addition, the thin film power transistor includes a plurality of contacts contacting the plurality of first doped regions, where the plurality of first doped regions forms a source and a drain of the thin film power transistor. The first doped regions could represent n-type regions (such as N? regions), and the second doped region could represent a p-type region (such as a P? region). The first doped regions could also represent p-type regions, and the second doped region could represent an n-type region.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: April 7, 2009
    Assignee: STMicroelectronics, Inc.
    Inventors: Ming Fang, Fuchao Wang
  • Publication number: 20090085041
    Abstract: A method of manufacturing a thin film transistor array panel is provided, which includes: forming a thin film transistor including a gate electrode, a drain electrode, a source electrode and a semiconductor on a substrate; forming a first passivation layer on the drain and the source electrodes; forming a transparent conductive layer on the first passivation layer; etching the transparent conductive layer using a photoresist as an etch mask to expose the portion of the first passivation layer and to form a pixel electrode connected the drain electrode; ashing the first passivation layer and the photoresist; and removing the photoresist.
    Type: Application
    Filed: December 2, 2008
    Publication date: April 2, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-Min PARK, Jin-Goo JUNG, Chun-Gi YOU
  • Patent number: 7507996
    Abstract: First, a conductive material made of aluminum-based material is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode. A gate insulating layer is formed, and a semiconductor layer and an ohmic contact layer are sequentially formed. Next, a conductor layer including a lower layer of Cr and an upper layer of aluminum-based material is deposited and patterned to form a data wire include a data line intersecting the gate line, a source electrode, a drain electrode and a data pad. Then, a passivation layer is deposited and patterned to form contact holes exposing the drain electrode, the gate pad and the data pad, respectively. Next, an amorphous silicon layer is deposited, an annealing process is executed to form inter-layer reaction layers on the drain electrode, the gate pa and the data pad, which are exposed through the contact holes. Then, the amorphous silicon layer is removed.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: March 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mun-Pyo Hong, Sang-Gab Kim
  • Patent number: 7507612
    Abstract: A flat panel display and fabrication method thereof. The present invention uses four etching processes to define a second conducting layer, a doped semiconductor layer and a semiconductor layer. The first etching process is a wet etching using a first resist layer to etch the second conducting layer. The second etching process is executed with an etchant comprising oxygen to etch the doped semiconductor layer and the semiconductor layer, and the first resist layer undergoes ashing during etching so as to become a second resist layer with a channel pattern. The third etching process is another wet etching, and the second conducting layer is etched again using the second resist layer as the etching mask. The fourth etching process is executed to dry etch the doped semiconductor layer using the second resist layer as the etching mask.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: March 24, 2009
    Assignee: AU Optronics Corp.
    Inventors: Han-Chung Lai, Ta-Wen Liao
  • Patent number: 7501654
    Abstract: A thin film transistor including: an active layer on a substrate, the active layer having at least two unit channels; and source and drain electrodes on the active layer, wherein an interval D between each of the channels is larger than a unit channel width W.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: March 10, 2009
    Assignee: LG Display Co., Ltd.
    Inventor: Seok Woo Lee
  • Patent number: 7488979
    Abstract: A method of fabricating an array substrate structure for a liquid crystal display device includes defining a display area and a non-display area on a substrate, the display area having a pixel TFT portion and a pixel electrode area, and the non-display area having an n-type driving TFT portion and a p-type driving TFT portion; forming a first gate electrode in the display area, a second and a third gate electrodes and a first capacitor electrode in the non-display area; an amorphous silicon layer on the substrate; crystallizing the amorphous silicon layer to a polycrystalline silicon layer and doping specific portions of the polycrystalline silicon layer with plurality of impurity concentrations; and forming a first semiconductor layer in the display area, a second and a third semiconductor layers and a second capacitor electrode in the non-display area.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 10, 2009
    Assignee: LG Display Co., Ltd.
    Inventors: Kum-Mi Oh, Kwang-Sik Hwang
  • Patent number: 7485927
    Abstract: Disclosed are a thin film transistor substrate of an LCD device and a method of manufacturing the same. The thin film transistor substrate includes a nickel-silicide layer formed on an insulating layer pattern including silicon and a metal layer formed on the nickel-silicide layer. Nickel is coated on the insulating layer pattern including silicon and a metal material is coated on the nickel-coated layer. After that, a heat treatment is performed at about 200 to about 350° C. to obtain the nickel-silicide layer. Since the thin film transistor substrate of the LCD device is manufactured by applying the nickel-silicide wiring, a device having low resistivity and good ohmic contact property can be obtained.
    Type: Grant
    Filed: February 28, 2004
    Date of Patent: February 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Oh Jeong, Beom-Seok Cho, Hee-Hwan Choe
  • Patent number: 7482185
    Abstract: A vertical pixel structure for emi-flective display and a method thereof are provided. The vertical pixel structure has a substrate, a emitting pixel unit arranged on the substrate and a reflective pixel unit arranged on the emitting pixel unit. By using the vertical pixel structure the aperture of the display can be increased, and the power consumption can be reduced as well.
    Type: Grant
    Filed: January 2, 2006
    Date of Patent: January 27, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Hui Yeh, Yu-Wu Wang, Yu-Lung Liu, Chi-Chang Liao, Hsing-Lung Wang
  • Patent number: 7479417
    Abstract: A method for manufacturing a pixel electrode contact structure of a thin-film transistors liquid crystal display is disclosed. First, a transparent substrate having a first insulating layer thereon is provided. Afterward, a first metal layer and a second metal layer are sequentially formed on the substrate and then be patterned by a halftone technology and an etching process, wherein the second metal layer is removed within the pixel electrode contact area. In the meantime, the drain lines of the thin-film transistor comprising the first metal layer and the second metal layer are formed. Next, a patterned passivation layer is formed on the substrate. Finally, a pixel electrode layer directly connecting the first metal layers within the pixel electrode contact structure is formed on the substrate. This invention provides the pixel electrode contact structure with low contact resistance and prevents the current leakage from the drain line to the storage capacitor.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 20, 2009
    Assignee: Au Optronics
    Inventor: Wen-Yi Shyu
  • Patent number: 7476937
    Abstract: A crystalline semiconductor film in which the position and size of a crystal grain is controlled is fabricated, and the crystalline semiconductor film is used for a channel formation region of a TFT, so that a high performance TFT is realized. An island-like semiconductor layer is made to have a temperature distribution, and a region where temperature change is gentle is provided to control the nucleus generation speed and nucleus generation density, so that the crystal grain is enlarged. In a region where an island-like semiconductor layer 1003 overlaps with a base film 1002, a thick portion is formed in the base film 1002. The volume of this portion increases and heat capacity becomes large, so that a cycle of temperature change by irradiation of a pulse laser beam to the island-like semiconductor layer becomes gentle (as compared with other thin portion).
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: January 13, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ritsuko Kawasaki, Kenji Kasahara, Hisashi Ohtani
  • Patent number: 7470572
    Abstract: A manufacturing method and the structure of a thin film transistor liquid crystal display (TFT-LCD) are disclosed. The TFT-LCD uses metal electrodes as a mask to thoroughly remove the unwanted semiconductor layer during the etching process for forming the source and drain electrodes. This manufacturing method can reduce the problems caused by the unwanted semiconductor layer, hence improving the quality of the TFT.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: December 30, 2008
    Assignee: Au Optronics Corporation
    Inventor: Jia-Fam Wong
  • Publication number: 20080315207
    Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 25, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Tae-Hoon YANG, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
  • Publication number: 20080303020
    Abstract: A thin film transistor includes a gate electrode, a first insulating layer on the gate electrode, a semiconductor layer on the gate electrode and separated from the gate electrode by the first insulating layer, the semiconductor layer including a channel region corresponding to the gate electrode, a source region, and a drain region, a hydrogen diffusion barrier layer on the semiconductor layer, the hydrogen diffusion barrier layer covering the channel region and exposing the source and drain regions, and a second insulation layer on the source and drain regions and on the hydrogen diffusion barrier layer, such that the hydrogen diffusion barrier layer is between the second insulation layer and the channel region.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 11, 2008
    Inventors: Hyun-soo Shin, Yeon-gon Mo, Jae-kyeong Jeong, Jin-seong Park, Hun-jung Lee, Jong-han Jeong
  • Patent number: 7459753
    Abstract: An electro-optical device includes a substrate having a display region; TFTs each including a first electrode in the display region, a first insulating layer on the first electrode, a second electrode on the first insulating layer, and a second insulating layer on the second electrode; and terminals each including a first metal on a protruding section extending from the display region, which is located at the same level and made of the same metal as the first electrode, a second metal which is located at the same level and made of the same metal as the second electrode, and which partly overlaps the first metal in plan view, and a portion of the first insulating layer. The first insulating layer separates the first and second metals and the first metal is electrically connected to the first electrode or the second metal is electrically connected to the second electrode.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 2, 2008
    Assignee: Epson Imaging Devices Corporation
    Inventors: Masahiro Horiguchi, Hideki Kaneko
  • Patent number: 7453087
    Abstract: A thin-film transistor including a channel layer being formed of an oxide semiconductor transparent to visible light and having a refractive index of nx, a gate-insulating layer disposed on one face of the channel layer, and a transparent layer disposed on the other face of the channel layer and having a refractive index of nt, where there is a relationship of nx>nt. A thin-film transistor including a substrate having a refractive index of no, a transparent layer disposed on the substrate and having a refractive index of nt, and a channel layer disposed on the transparent layer and having a refractive index of nx, where there is a relationship of nx>nt>no.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: November 18, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tatsuya Iwasaki
  • Patent number: 7449410
    Abstract: The invention included to methods of forming CoSi2, methods of forming field effect transistors, and methods of forming conductive contacts. In one implementation, a method of forming CoSi2 includes forming a substantially amorphous layer comprising MSix over a silicon-containing substrate, where “M” comprises at least some metal other than cobalt. A layer comprising cobalt is deposited over the substantially amorphous MSix-comprising layer. The substrate is annealed effective to diffuse cobalt of the cobalt-comprising layer through the substantially amorphous MSix-comprising layer and combine with silicon of the silicon-containing substrate to form CoSi2 beneath the substantially amorphous MSix-comprising layer. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: November 11, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 7446392
    Abstract: An electronic device is provided using wiring comprising aluminum to prevent hillock or whisker from generating, wherein the wiring contains oxygen atoms at a concentration of 8×1018 atoms·cm?3 or less, carbon atoms at a concentration of 5×1018 atoms·cm?3 or less, and nitrogen atoms at a concentration of 7×1017 atoms·cm?3 or less; furthermore, a silicon nitride film is formed on the aluminum gate, and an anodic oxide film is formed on the side planes thereof.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 4, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto
  • Patent number: 7439090
    Abstract: A method for manufacturing a lower substrate of a liquid crystal display device is disclosed and more particularly, a method for manufacturing a color filter layer on a lower substrate is disclosed. This method is achieved by using a photosensitive insulating layer as a passivation layer or an overcoat of a thin film transistor to reduce the number of masks, or of photographic steps. The photosensitive insulating layer used in the method has the characteristics of both photoresist and passivation layers so as to protect a thin film transistor from moisture and oxygen. In addition, the number of masks, or of photographic steps used in this method can be further reduced by ink-jet printing a color filter layer or by half-tone mask technique.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: October 21, 2008
    Assignee: AU Optronics Corp.
    Inventors: Yi-Pin Tung, Chin-Kuo Ting
  • Publication number: 20080251849
    Abstract: A semiconductor device comprising a first semiconductor region and a second semiconductor region, (a) wherein a field effect transistor is comprised of the first semiconductor region comprising at least one semiconductor layer(s) protruding upward from a substrate, a gate electrode(s) formed via an insulating film such that the gate electrode(s) strides over the semiconductor layer(s) and source/drain regions provided in the semiconductor layer(s) on both sides of the gate electrode(s), whereby a channel region is formed in at least both sides of the semiconductor layer(s), (b) wherein the second semiconductor region comprises semiconductor layers protruding upward from the substrate and placed, at least opposing the first semiconductor region at both ends in the direction perpendicular to a channel current direction and the side surface of the semiconductor layers facing the first semiconductor region is parallel to the channel current direction.
    Type: Application
    Filed: March 22, 2005
    Publication date: October 16, 2008
    Inventors: Shigeharu Yamagami, Hitoshi Wakabayashi, Kiyoshi Takeuchi, Atsushi Ogura, Masayasu Tanaka, Masahiro Nomura, Koichi Takeda, Toru Tatsumi, Koji Watanabe, Koichi Terashima
  • Patent number: 7425473
    Abstract: A method for making a thin film transistor, TFT, (306) on a substrate includes a photolithographic process step of patterning three layers of materials to form a TFT (306) and to form a bridging structure (308) crossing over a TFT gate bus-line conductor (202) at a cross over region; followed by patterning a conductor metal to form a TFT source electrode terminal (404) and a TFT drain electrode terminal (402), and to comprise a continuous data bus-line (206) extending over the bridging structure (308).
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: September 16, 2008
    Assignee: AU Optronics Corporation
    Inventor: Chih-Hung Shih
  • Publication number: 20080203390
    Abstract: A method for manufacturing a thin film transistor array panel includes forming a gate line on a substrate; sequentially forming a gate insulating layer, a silicon layer, and a conductor layer including a lower layer and an upper layer on the gate line, forming a photoresist film, on the conductor layer, patterning the photoresist film to form a photoresist pattern including a first portion and a second portion having a greater thickness than the first portion, etching the upper layer and the lower layer by using the photoresist pattern as art etch mask, etching the silicon layer by using the photoresist pattern as an etch mask to form a semiconductor, removing the second portion of the photoresist pattern by using an etch back process, selectively wet-etching the upper layer of the conductor layer by using the photoresist pattern as an etch mask, dry-etching the lower layer of the conductor layer by using the photoresist pattern as an etch mask to form a data line and a drain electrode including remaining upp
    Type: Application
    Filed: October 31, 2007
    Publication date: August 28, 2008
    Inventors: Do-Hyun Kim, Won-Suk Shin, Chang-Oh Jeong, Hong-Sick Park, Eun-Guk Lee, Je-Hun Lee
  • Patent number: 7414266
    Abstract: A TFT is manufactured using at least five photomasks in a conventional liquid crystal display device, and therefore the manufacturing cost is high. By performing the formation of the pixel electrode 127, the source region 123 and the drain region 124 by using three photomasks in three photolithography steps, a liquid crystal display device prepared with a pixel TFT portion, having a reverse stagger type n-channel TFT, and a storage capacitor can be realized.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: August 19, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideaki Kuwabara, Yasuyuki Arai