Device Being Resistive Element (e.g., Ballasting Resistor) (epo) Patents (Class 257/E29.176)
  • Patent number: 8871561
    Abstract: Provided is a method for manufacturing a variable resistance nonvolatile storage device, which prevents electrical conduction between lower electrodes and upper electrodes of variable resistance elements in the memory cell holes. The method includes: forming lower copper lines; forming a third interlayer insulating layer; forming memory cell holes in the third interlayer insulating layer, an opening diameter of upper portions of the memory cell holes being smaller than bottom portions; forming a metal electrode layer on the bottom of each memory cell holes by sputtering; embedding and forming a variable resistance layer in each memory cell hole; and forming upper copper lines connected to the variable resistance layer embedded and formed in each memory cell hole.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventors: Ichirou Takahashi, Takumi Mikawa
  • Patent number: 8692329
    Abstract: An electric resistance element comprising: a base body, which is formed with a semiconductor material; a first contact element, which is electrically conductively connected to the base body; and a second contact element, which is electrically conductively connected to the base body. The base body has a first main surface into which a cutout is introduced. The first contact element is electrically conductively connected to the base body at least in places in the cutout. The base body has a second main surface, which is arranged in a manner lying opposite the first main surface. The second contact element is electrically conductively connected to the base body at least in places at the second main surface.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: April 8, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Krister Bergenek
  • Patent number: 8129250
    Abstract: A resistor with improved switchable resistance and a non-volatile memory device includes a first electrode, a second electrode facing the first electrode and a resistance structure between the first electrode and the second electrode. The resistance structure includes an insulating dielectric material in which a confined switchable conductive region is formed between the first and second electrode. The resistor further includes a perturbation element, locally exerting mechanical stress on the resistance structure in the vicinity of the perturbation element at least during a forming process in which the confined switchable conductive region is formed.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Christophe P. Rossel, Michel Despont
  • Patent number: 8072001
    Abstract: A heterojunction bipolar transistor with InGaP as the emitter layer and capable of both reliable electrical conduction and thermal stability wherein a GaAs layer is inserted between the InGaP emitter layer and AlGaAs ballast resistance layer, to prevent holes reverse-injected from the base layer from diffusing and reaching the AlGaAs ballast resistance layer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Isao Ohbu, Chushiro Kusano, Yasunari Umemoto, Atsushi Kurokawa
  • Patent number: 7923783
    Abstract: A semiconductor memory device according to an embodiment of the present invention includes a resistance element which is constructed with a first conductor which extends in a first direction and is connected to a first contact; a second conductor which extends in said first direction and is connected to a second contact; and a first insulation film which exists between said first conductor and said second conductor, said first insulation film also having an opening in which a third conductor which connects said first conductor and said second conductor is arranged.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takumi Abe
  • Patent number: 7804109
    Abstract: A heterojunction bipolar transistor with InGaP as the emitter layer and capable of both reliable electrical conduction and thermal stability wherein a GaAs layer is inserted between the InGaP emitter layer and AlGaAs ballast resistance layer, to prevent holes reverse-injected from the base layer from diffusing and reaching the AlGaAs ballast resistance layer.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: September 28, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Isao Ohbu, Chushiro Kusano, Yasunari Umemoto, Atsushi Kurokawa
  • Publication number: 20100200894
    Abstract: An energy level Ec in a vicinity of an interface between a graded layer 1G a ballast resistor 1R is smoothly continuous. This is because an n-type impurity concentration CION in the vicinity of the interface is increased and thus an ionized donor (having a positive charge) exists in the vicinity of the interface. That is, the donor ion cancels out a spike-like potential barrier ?BARRIER protruding in the negative direction of the potential in the vicinity of this interface. Accordingly, the resistance value of an HBT at room temperature decreases and the high frequency characteristics are improved.
    Type: Application
    Filed: July 10, 2008
    Publication date: August 12, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuyuki Kurita, Noboru Fukuhara
  • Patent number: 7714390
    Abstract: An integrated circuit includes a substrate and a resistor. The resistor is formed from at least two access wells of a first conductivity type and a deep buried layer electrically connecting the wells. The deep buried layer is at least partly covered by a region of opposite conductivity.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 11, 2010
    Assignee: STMicroelectronics S.A.
    Inventors: Denis Cottin, Thierry Schwartzmann, Jean-Charles Vildeuil, Bertrand Martinet, Sophie Taupin, Mathieu Marin
  • Patent number: 7649229
    Abstract: A semiconductor device capable of preventing an electrostatic surge without increasing a leak current. In the semiconductor device, a protection circuit for protecting an internal circuit is provided between a source line and a ground line. The protection circuit has a protection transistor of which the drain is connected to the source line and the source and gate are connected to the ground line. The protection transistor is configured by integrally forming two types of transistor structural portions. The latter of the transistor structural portions is longer than the former thereof in gate length. In addition, the sum of gate widths of the latter transistor structural portions is larger than the sum of gate widths of the former transistor structural portions.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: January 19, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Katsuhiro Kato
  • Patent number: 7492011
    Abstract: To present a semiconductor device mounting ESD protective device appropriately applicable to transistors mutually different in dielectric strength, and its manufacturing method. The semiconductor device comprises a first ESD protective circuit 1A including a first transistor 3 and a first ballast resistance 4, and a second ESD protective circuit 1B including a second transistor 5 and a second ballast resistance 6. The impurity concentration of the second diffusion region forming the first ballast resistance 4 is set lower than the impurity concentration of the fourth diffusion region for forming the second ballast resistance 6.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: February 17, 2009
    Assignee: Fujitsu Limited
    Inventors: Teruo Suzuki, Kenji Hashimoto, Toshio Nomura
  • Patent number: 7485905
    Abstract: An electrostatic discharge protection device comprising a multi-finger gate, a first lightly doped region of a second conductivity, a first heavily doped region of the second conductivity, and a second lightly doped region of the second conductivity. The multi-finger gate comprises a plurality of fingers mutually connected in parallel over an active region of a first conductivity. The first lightly doped region of a second conductivity is disposed in the semiconductor substrate and between two of the fingers. The first heavily doped region of the second conductivity is disposed in the first lightly doped region of the second conductivity. The second lightly doped region of the second conductivity is beneath and adjoins the first lightly doped region of the second conductivity.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: February 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Chi Hung, Jian-Hsing Lee, Hung-Lin Chen, Deng-Shun Chang
  • Patent number: 7394110
    Abstract: Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, Kevin S. Petrarca, Anthony K. Stamper, Richard P. Volant
  • Publication number: 20080087983
    Abstract: Methods of forming and structures of a relatively large bipolar transistor is provided. The method includes forming a collector in a semiconductor region. Forming a base contiguous with a portion of the collector. Forming a plurality of emitters contiguous with portions of the base. Forming a common emitter interconnect and forming ballast emitter resistors for select emitters. Each ballast emitter resistor is coupled between an associated emitter and the common emitter interconnect. Each ballast resistor is further formed to have a selected resistance value. The selected resistance value of each ballast resistor is selected so the values of the ballast resistors vary in a two dimensional direction in relation to a working surface of the bipolar transistor.
    Type: Application
    Filed: December 14, 2007
    Publication date: April 17, 2008
    Applicant: INTERSIL AMERICAS INC.
    Inventor: James Beasom
  • Publication number: 20070205434
    Abstract: A method for recovery of degradation caused by avalanche hot carriers is provided that includes subjecting an idle bipolar transistor exhibiting avalanche degradation to a thermal anneal step which increases temperature of the transistor thereby recovering the avalanche degradation of the bipolar transistor. In one embodiment, the annealing source is a self-heating structure that is a Si-containing resistor that is located side by side with an emitter of the bipolar transistor. During the recovering step, the bipolar transistor including the self-heating structure is placed in the idle mode (i.e., without bias) and a current from a separate circuit is flown through the self-heating structure. In another embodiment of the present, the annealing step is a result of providing a high forward current (around the peak fT current or greater) to the bipolar transistor while operating below the avalanche condition (VCB of less than 1 V).
    Type: Application
    Filed: May 4, 2007
    Publication date: September 6, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fernando Guarin, J. Hostetter, Stewart Rauch, Ping-Chuan Wang, Zhijian Yang