Abstract: A pixel structure includes a first electrode on a substrate, a first insulation layer covering the first electrode, a gate located on the first insulation layer, a second electrode located on the first insulation layer above the first electrode, a second insulation layer covering the gate and the second electrode, a semiconductor layer located on the second insulation layer above the gate, a source and a drain that are located on the semiconductor layer, a third electrode, a third insulation layer, and a pixel electrode. The third electrode is located on the second insulation layer above the second electrode and electrically connected to the first electrode. The third insulation layer covers the source, the drain, and the third electrode. The pixel electrode is located on the third insulation layer and electrically connected to the drain.
Abstract: High-voltage MOS transistors with a floated drain-side auxiliary gate are provided. The high-voltage MOS transistors include a source region and a drain region provided in a semiconductor substrate. A main gate electrode is disposed over the semiconductor substrate between the drain region and the source region. A lower drain-side auxiliary gate and an upper drain-side auxiliary gate are sequentially stacked over the semiconductor substrate between the main gate electrode and the drain region. The lower drain-side auxiliary gate is electrically insulated from the semiconductor substrate, the main gate electrode and the upper drain-side auxiliary gate. Methods of fabricating the high-voltage MOS transistors are also provided.
Type:
Grant
Filed:
September 11, 2006
Date of Patent:
April 13, 2010
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Sung-Hoi Hur, Young-Min Park, Sang-Bin Song, Min-Cheol Park, Ji-Hwon Lee, Su-Youn Yi, Jang-Min Yoo
Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
Abstract: In a low power consumption mode in which prior data is retained upon power shutdown, the return speed thereof is increased. While use of an existent data retaining flip-flop may be considered, this is not preferred since it increases area overhead such as enlargement of the size of a cell. A power line for data retention for power shutdown is formed with wirings finer than a usual main power line. Preferably, power lines for a data retention circuit are considered as signal lines and wired by automatic placing and mounting. For this purpose, terminals for the power line for data retention are previously designed by providing the terminals therefor for the cell in the same manner as in the existent signal lines. Additional layout for power lines is no longer necessary for the cell, which enables a decrease in the area and design by an existent placing and routing tool.
Abstract: There is provided a semiconductor device having TFTs whose thresholds can be controlled. There is provided a semiconductor device including a plurality of TFTs having a back gate electrode, a first gate insulation film, a semiconductor active layer a second gate insulation film and a gate electrode, which are formed on a substrate, wherein an arbitrary voltage is applied to the back gate electrode.
Type:
Grant
Filed:
January 14, 2005
Date of Patent:
July 24, 2007
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Inventors:
Shunpei Yamazaki, Jun Koyama, Setsuo Nakajima, Naoya Sakamoto