Having Emitter-base And Base-collector Junctions In Same Plane (epo) Patents (Class 257/E29.184)
  • Patent number: 11695064
    Abstract: Device structures and fabrication methods for a bipolar junction transistor. The device structure includes a substrate and a trench isolation region in the substrate. The trench isolation region surrounds an active region of the substrate. The device structure further includes a collector in the active region of the substrate, a base layer having a first section positioned on the active region and a second section oriented at an angle relative to the first section, an emitter positioned on the first section of the base layer, and an extrinsic base layer positioned over the trench isolation region and adjacent to the emitter. The second section of the base layer is laterally positioned between the extrinsic base layer and the emitter.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: July 4, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Vibhor Jain, Judson R. Holt, Tayel Nesheiwat, John J. Pekarik, Christopher Durcan
  • Patent number: 8441031
    Abstract: Electrostatic discharge (ESD) protection is provided for discharging current between input and output nodes. In accordance with various embodiments, an ESD protection device includes an open-base transistor having an emitter connected to the input node and a collector connected to pass current to the output node via a resistor in response to a voltage at the input node exceeding a threshold that causes the transistor to break down. The resistor is coupled across emitter and collector regions of a second open-base transistor that is configured to turn on for passing current in response to the current across the resistor exceeding a threshold that applies a threshold breakdown voltage across the second transistor. In some implementations, an emitter and/or base of the second transistor are connected to, or are respectively the same region as, a base and a collector of the first transistor.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: May 14, 2013
    Assignee: NXP B.V.
    Inventors: Steffen Holland, Zhihao Pan
  • Publication number: 20130001747
    Abstract: A method for manufacturing a bipolar transistor includes forming a first epitaxial layer on a semiconductor substrate, forming a second epitaxial layer on the first epitaxial layer, forming an oxide layer on the second epitaxial layer, etching the oxide layer to form an opening in which the second epitaxial layer is exposed, and forming a third epitaxial layer in the opening. The first and third epitaxial layers have a first-type conductivity, and the second epitaxial layer has a second-type conductivity.
    Type: Application
    Filed: December 2, 2010
    Publication date: January 3, 2013
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Le Wang, Linchun Gui, Kongwei Zhu, Zhiyong Zhao
  • Patent number: 8263469
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 11, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Patent number: 8115256
    Abstract: A semiconductor device includes an inverter having an NMOSFET and a PMOSFET having sources, drains and gate electrodes respectively, the drains being connected to each other and the gate electrodes being connected to each other, and a pnp bipolar transistor including a collector (C), a base (B) and an emitter (E), the base (B) receiving an output of the inverter.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 14, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Haruki Yoneda, Hideaki Fujiwara
  • Patent number: 8058704
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: November 15, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Patent number: 8022496
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 7989843
    Abstract: A method produces a semiconductor by conducting superimposed doping of a plurality of dopants in a semiconductor substrate, which includes evaporating a (2×n) structure by a first dopant and forming its thin line structure on the substrate, then bringing the semiconductor substrate to a temperature capable of epitaxial growth, vapor depositing a second or third or subsequent dopants above the semiconductor substrate where the first dopant has been deposited, then epitaxially growing a semiconductor crystal layer over the semiconductor substrate, subsequently forming a superimposed doping layer composed of the first, second, or the third or subsequent dopants in the semiconductor substrate, and applying an annealing treatment to the superimposed doping layer at a high temperature, thereby activating the plurality of dopants electrically or optically. Superimposed doping of a plurality kinds of elements as dopants is performed to a predetermined depth in the case of an elemental semiconductor.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: August 2, 2011
    Assignee: National Institute For Materials Science
    Inventors: Kazushi Miki, Shuhei Yagi, Kohichi Nittoh, Kunihiro Sakamoto
  • Patent number: 7701012
    Abstract: An electrostatic discharge (ESD) protection clamp (61) for I/O terminals (22, 23) of integrated circuits (ICs) (24) comprises an NPN bipolar transistor (25) coupled to an integrated Zener diode (30). Variations in the break-down current-voltage characteristics (311, 312, 313, 314) of multiple prior art ESD clamps (31) in different parts of the same IC chip is avoided by forming the anode (301) of the Zener (30) in the shape of a base-coupled P+ annular ring (75) surrounded by a spaced-apart N+ annular collector ring (70) for the cathode (302) of the Zener (30).
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 20, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongzhong Xu, Chai Ean Gill, James D. Whitfield, Jinman Yang
  • Patent number: 7622790
    Abstract: A transistor assembly having a transistor includes a plurality of transistor regions, each of which has a vertical transistor structure having a collector semiconductor region, a base semiconductor region and an emitter semiconductor region, emitter contacting regions arranged above the transistor regions and base contacting regions connected to the base semiconductor regions via a polycrystalline semiconductor layer, wherein the polycrystalline semiconductor layer is structured such that the base contacting regions of transistor regions which are not part of the transistor are electrically isolated from base contacting regions of transistor regions which are part of the transistor.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: November 24, 2009
    Assignee: Infineon Technologies AG
    Inventor: Jakob Huber
  • Publication number: 20090026578
    Abstract: A vertical NPN bipolar transistor includes a P-type semiconductor structure, an N-well as the collector, a P-Base region in the N-well and an N-type region as the emitter. The transistor further includes P-type region formed in the P-Base region and underneath the field oxide layer where the P-type region has a doping concentration higher than the P-base region. The P-type region functions to inhibit the lateral parasitic bipolar action so that the transistor action is confined to the intrinsic base region vertically underneath the emitter. In one embodiment, the P-type region is a boron field doping region. The boron field doping region can be the same field doping region used to form channel stops for NMOS transistors in a CMOS fabrication process.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Applicant: MICREL, INC.
    Inventors: Schyi-yi Wu, Martin Alter
  • Patent number: 7332778
    Abstract: To refine a semiconductor device (100), in particular a S[ilicon]O[n]I[nsulator] device, comprising: at least one isolating layer (10) made of a dielectric material; at least one silicon substrate (20) arranged on said isolating layer (10); at least one component (30) integrated in the silicon substrate (20), which component has at least one slightly doped zone (34); as well as at least a first, in particular planar, metallization region (40) arranged between the isolating layer (10) and the component (30), in particular between the isolating layer (10) and the slightly doped zone (34) of the component (30), as well as a method of manufacturing at least one semiconductor device (100) in such a manner that trouble-free operation also of slightly doped components (30), such as pnp transistors, is guaranteed in a SOI process transferred onto the insulator, it is proposed that at least a second, in particular planar, metallization region (42) is arranged on the side of the silicon substrate (20) facing away fr
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: February 19, 2008
    Inventors: Wolfgang Schnitt, Hauke Pohlmann
  • Patent number: 7288829
    Abstract: Disclosed is a method of forming a transistor in an integrated circuit structure that begins by forming a collector in a substrate and an intrinsic base above the collector. Then, the invention patterns an emitter pedestal for the lower portion of the emitter on the substrate above the intrinsic base. Before actually forming the emitter or associates spacer, the invention forms an extrinsic base in regions of the substrate not protected by the emitter pedestal. After this, the invention removes the emitter pedestal and eventually forms the emitter where the emitter pedestal was positioned.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Marwan H Khater, Francois Pagette
  • Patent number: 6887765
    Abstract: According to one embodiment of the invention, a method used in manufacturing an intermediate structure in a bipolar junction transistor includes implanting a base dopant in a semiconductor substrate to form a base, forming a dielectric layer outwardly from the semiconductor substrate, etching a portion of the dielectric layer to form an emitter region, forming an emitter polysilicon layer on the semiconductor substrate, and after forming the emitter polysilicon layer, annealing the semiconductor substrate.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: May 3, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Angelo Pinto