Metal-insulator-semiconductor (e.g., Mos Capacitor) (epo) Patents (Class 257/E29.345)
  • Patent number: 11968828
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor substrate and a first gate stack. An isolation feature is formed in the semiconductor substrate, and a cell region and a peripheral region adjacent to the cell region are defined in the semiconductor substrate. The first gate stack is disposed on the peripheral region of the semiconductor substrate. The first gate stack includes a first dielectric layer and a gate electrode layer disposed on the first dielectric layer and covering a top surface of the first dielectric layer. The first dielectric layer is disposed on the semiconductor substrate and has a concave profile.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Wen-Tuo Huang, Yong-Shiuan Tsair
  • Patent number: 11955512
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A trench capacitor including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density dielectric material.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: April 9, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Somilkumar J. Rathi, Noriyuki Sato, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Tanay Gosavi, Pratyush Pandey, Jason Y. Wu, Sasikanth Manipatruni
  • Patent number: 11943908
    Abstract: Systems and methods are provided for forming an intra-connection structure. A first gate structure and a first source/drain region adjacent to the first gate structure is formed on a substrate. A first dielectric material is disposed on the first source/drain region. A spacer material is formed on the first gate structure. The first dielectric material is removed to expose at least part of the first source/drain region. At least part of the spacer material is removed to expose at least part of the first gate structure. A first conductive material is formed between the first gate structure and the first source/drain region to electrically connect the first source/drain region and the first gate structure.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Ming Chang, Kuo-Hsiu Hsu
  • Patent number: 11942402
    Abstract: An isolator device includes a laminate die having a dielectric laminate material with a metal laminate layer on one side of the dielectric laminate material, the metal laminate layer being a patterned layer providing at least a first plate, including a dielectric layer over the first plate that includes an aperture exposing a portion of the first plate. An integrated circuit (IC) including a substrate having a semiconductor surface includes circuitry including a transmitter and/or a receiver, the IC including a top metal layer providing at least a second plate coupled to a node in the circuitry, with at least one passivation layer on the top metal layer. A non-conductive die attach (NCDA) material for attaching a side of the dielectric laminate material is opposite the metal laminate layer to the IC so that the first plate is at least partially over the second plate to provide a capacitor.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: March 26, 2024
    Assignee: Texas Instruments Incorporated
    Inventor: Thomas Dyer Bonifield
  • Patent number: 11907636
    Abstract: A method of generating an IC layout diagram includes receiving a first gate resistance value of a gate region in an IC layout diagram, the first gate resistance value corresponding to a location of a gate via positioned within an active region and along a width of the gate region extending across the active region, determining a second gate resistance value based on the location and the width, using the first and second resistance values to determine that the IC layout diagram does not comply with a design specification, and based on the non-compliance with the design specification, modifying the IC layout diagram.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ke-Ying Su, Jon-Hsu Ho, Ke-Wei Su, Liang-Yi Chen, Wen-Hsing Hsieh, Wen-Koi Lai, Keng-Hua Kuo, Kuopei Lu, Lester Chang, Ze-Ming Wu
  • Patent number: 11909383
    Abstract: The invention relates to an electrical circuit (1) for transmitting a useful analogue signal, which has a signal transmission path (16) with an input path (2) and an output path (3) and at least one switch (6), with which the useful signal which is carried on the input path (2) can be connected through to the output path (3) or the signal transmission path (16) can be interrupted. According to the invention, a compensation circuit (4) which substantially compensates for a distortion of the useful analogue useful signal generated by the at least one switch (6) when it is switched off (OFF) is provided, wherein the compensation circuit (4) is connected to a control terminal (G) of the at least one switch (6) and comprises at least one non-linear capacitance.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 20, 2024
    Inventor: Thomas Meier
  • Patent number: 11901463
    Abstract: A method includes implanting a first dopant having a first dopant type into a substrate to define a plurality of source/drain (S/D) regions. The method further includes implanting a second dopant having the first dopant type into the substrate to define a channel region between adjacent S/D regions of the plurality of S/D regions, wherein a dopant concentration of the second dopant in the channel region is less than half of a dopant concentration of the first dopant in each of the plurality of S/D regions. The method further includes forming a gate stack over the channel region. The method further includes electrically coupling each of the plurality of S/D regions together.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Szu-Lin Liu, Jaw-Juinn Horng
  • Patent number: 11903179
    Abstract: The present disclosure provides a method of manufacturing a semiconductor structure. The method includes providing a semiconductor substrate including an active region and an isolation structure. The method also includes forming a contact structure on the active region of the semiconductor substrate. The method further includes forming a dielectric spacer on opposite sides of the contact structure. The method also includes forming a conductive element on the isolation structure of the semiconductor substrate, wherein the dielectric spacer has a concave surface facing the conductive element.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: February 13, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih-Ying Tsai, Jui-Seng Wang, Yi-Yi Chen
  • Patent number: 11901462
    Abstract: An integrated circuit includes an SOI substrate having a semiconductor layer over a buried insulator layer; the semiconductor layer contains white space regions that include a PWELL region. An electronic device includes an NWELL region in the semiconductor layer, a dielectric over the NWELL region, and a polysilicon plate over the dielectric. A sacrificial NWELL ring is adjacent to and separated from the NWELL region by a first gap.
    Type: Grant
    Filed: February 5, 2022
    Date of Patent: February 13, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Honglin Guo, Zachary K Lee, Jingjing Chen
  • Patent number: 11895825
    Abstract: A semiconductor device includes an insulating base including a trench, a transistor including a gate electrode and vertical channel in the trench, and a source electrode in the insulating base outside the trench, an isolation layer on the gate electrode in the trench, and a capacitor including a trench capacitor portion that is on the isolation layer in the trench, and a stacked capacitor portion that is coupled to the source electrode of the transistor outside the trench.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yun-Feng Kao, Katherine H. Chiang
  • Patent number: 11869951
    Abstract: Various embodiments of the present application are directed towards a control gate layout to improve an etch process window for word lines. In some embodiments, an integrated chip comprises a memory array, an erase gate, a word line, and a control gate. The memory array comprises a plurality of cells in a plurality of rows and a plurality of columns. The erase gate and the word line are elongated in parallel along a row of the memory array. The control gate is elongated along the row and is between and borders the erase gate and the word line. Further, the control gate has a pad region protruding towards the erase gate and the word line. Because the pad region protrudes towards the erase gate and the word line, a width of the pad region is spread between word-line and erase-gate sides of the control gate.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Hsu, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
  • Patent number: 11869950
    Abstract: A steep-slope field-effect transistor and a fabrication method thereof are disclosed. The steep-slope field-effect transistor according to an embodiment of the inventive concept includes a source, a channel region, and a drain formed on a substrate; a gate insulating film formed on an upper portion of the channel region; a floating gate formed on an upper portion of the gate insulating film; a transition layer formed on an upper portion of the floating gate; and a control gate formed on an upper portion of the transition layer. The steep-slope field-effect transistor applies a reference potential or more to the control gate to discharge or bring in at least one charge stored in the floating gate.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 9, 2024
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yang-Kyu Choi, Myung-Su Kim
  • Patent number: 11855361
    Abstract: A method for fabricating a semiconductor die is provided. The method can include providing a semiconductor substrate, forming a set of field-effect transistors on the semiconductor substrate, each field-effect transistor in the set of field-effect transistors having a respective source, drain, gate, and body, forming a compensation circuit on the semiconductor substrate, and connecting the compensation circuit to the set of field-effect transistors in parallel, the compensation circuit configured to compensate a non-linearity effect generated by the set of field-effect transistors.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: December 26, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Zhiyang Liu, Nuttapong Srirattana
  • Patent number: 11854938
    Abstract: The present disclosure provides an electrostatic protection device and an electrostatic protection circuit. The electrostatic protection device includes: a discharge transistor, located on a substrate for discharging electrostatic charges; and a first pad, located on a first metal layer and electrically connected to a drain region of the discharge transistor; wherein a projection of the first pad on the substrate partially overlaps a projection of the drain region on the substrate.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: December 26, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Xin Li, Zhan Ying
  • Patent number: 11855071
    Abstract: Devices and methods of manufacture for a deep trench layout area-saving semiconductor structure for use with bipolar-CMOS-DMOS (BCD) devices. A semiconductor device may comprise a first BCD device formed within a first perimeter of a first BCD layout area, and a deep trench isolation structure defining the first perimeter of the first BCD layout area, in which the deep trench isolation structure may comprise a first rounded corner that may define a first corner of the first BCD layout area. A semiconductor device may comprise, a substrate, BCD device formed on the substrate, and a deep trench isolation structure laterally surrounding the BCD device. The deep trench isolation structure, with respect to a top-down view, may comprise vertical portions, horizontal portions, a “T”-shaped intersection connecting at least one vertical portion and at least one horizontal portion, and a cross-shaped intersection connecting two vertical portions and two horizontal portions.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Yu Yang, Po-Wei Liu
  • Patent number: 11764221
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a dielectric fin is formed in order to help isolate adjacent semiconductor fins. The dielectric fin is formed using a deposition process in which deposition times and temperatures are utilized to increase the resistance of the dielectric fin to subsequent etching processes.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wan-Yi Kao, Hung Cheng Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui
  • Patent number: 11763870
    Abstract: Apparatuses, systems, and methods for ferroelectric memory (FeRAM) cell operation. An FeRAM cell may have different charge regions it can operate across. Some regions, such as dielectric regions, may operate faster, but with reduced signal on a coupled digit line. To improve the performance while maintaining increased speed, two digit lines may be coupled to the same sense amplifier, so that the FeRAM cells coupled to both digit lines contribute signal to the sense amplifier. For example a first digit line in a first deck of the memory and a second digit line in a second deck of the memory may both be coupled to the sense amplifier. In some embodiments, additional digit lines may be used as shields (e.g., by coupling the shield digit lines to a ground voltage) to further improve the signal-to-noise ratio.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Patent number: 11756913
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a substrate having one or more devices formed thereon, one or more bonding pads disposed over the substrate, and a first passivation layer disposed over the one or more bonding pads. The first passivation layer includes a first passivation sublayer having a first dielectric material, a second passivation sublayer disposed over the first passivation sublayer, and the second passivation sublayer has a second dielectric material different from the first dielectric material. The first passivation layer further includes a third passivation sublayer disposed over the second passivation sublayer, and the third passivation sublayer has a third dielectric material different from the second dielectric material. At least two of the first, second, and third passivation sublayers each includes a nitride.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Chi Chen, Hsun-Ying Huang, Chih-Ming Lee, Shang-Yen Wu, Chih-An Yang, Hung-Wei Ho, Chao-Ching Chang, Tsung-Wei Huang
  • Patent number: 11742039
    Abstract: A small-area side-capacitor read-only memory device, a memory array and a method for operating the same are provided. The small-area side-capacitor read-only memory device embeds a field-effect transistor in a semiconductor substrate. The field-effect transistor includes a first dielectric layer and a first conductive gate stacked on the first dielectric layer. The side of the first conductive gate extends to the top of the second dielectric layer and connects to the second conductive gate to generate a capacitance effect. The second conductive gate has finger portions connected to a strip portion. Thus, the memory device employs the smallest layout area to generate the highest capacitance value, thereby decreasing the overall area of the read-only memory and performing efficient reading and writing.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: August 29, 2023
    Assignee: Yield Microelectronics Corp.
    Inventors: Yu Ting Huang, Chi Pei Wu
  • Patent number: 11737268
    Abstract: The present disclosure provides a stack capacitor, a flash memory device, and a manufacturing method thereof. The stack capacitor of the flash memory device has a a memory transistor structure which at least comprises a substrate, and a tunneling oxide layer, a floating gate layer, an interlayer dielectric layer and a control gate layer which are sequentially stacked on the substrate, the interlayer dielectric layer of the stack capacitor comprises a first oxide layer and a nitride layer; the stack capacitor further comprises a first contact leading out of the control gate layer and a second contact leading out of the floating gate layer. The capacitance per unit area of the stack capacitor provided by the disclosure is effectively improved, and the size of the transistor device is reduced. The manufacturing method according to the disclosure does not add any additional photomask than a conventional process flow.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Shanghai Huali Integrated Circuit Corporation
    Inventors: Zhi Tian, Juanjuan Li, Hua Shao, Haoyu Chen
  • Patent number: 11721699
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a dielectric fin is formed in order to help isolate adjacent semiconductor fins. The dielectric fin is formed using a deposition process in which deposition times and temperatures are utilized to increase the resistance of the dielectric fin to subsequent etching processes.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wan-Yi Kao, Hung Cheng Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui
  • Patent number: 11682675
    Abstract: A method of forming a semiconductor device includes: forming a gate structure over a fin that protrudes above a substrate, the gate structure being surrounded by a first interlayer dielectric (ILD) layer; forming a trench in the first ILD layer adjacent to the fin; filling the trench with a first dummy material; forming a second ILD layer over the first ILD layer and the first dummy material; forming an opening in the first ILD layer and the second ILD layer, the opening exposing a sidewall of the first dummy material; lining sidewalls of the opening with a second dummy material; after the lining, forming a conductive material in the opening; after forming the conductive material, removing the first and the second dummy materials from the trench and the opening, respectively; and after the removing, sealing the opening and the trench by forming a dielectric layer over the second ILD layer.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: June 20, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11659709
    Abstract: A nonvolatile memory device is provided. The nonvolatile memory device comprises an active region surrounded by an isolation structure. A floating gate may be arranged over the active region, the floating gate having a first end and a second end over the isolation structure. A first doped region may be provided in the active region adjacent to a first side of the floating gate and a second doped region may be provided in the active region adjacent to a second side of the floating gate. A first capacitor may be provided over the floating gate, whereby a first electrode of the first capacitor is electrically coupled to the floating gate. A second capacitor may be provided, whereby a first electrode of the second capacitor is over the isolation structure and adjacent to the floating gate.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: May 23, 2023
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Xinshu Cai, Shyue Seng Tan, Juan Boon Tan, Kiok Boone Elgin Quek, Eng Huat Toh
  • Patent number: 11641731
    Abstract: A DRAM including following components is provided. A bit line stack structure includes a bit line structure and a hard mask layer. The bit line structure is located on the substrate. The hard mask layer is located on the bit line structure. A dielectric layer is located on the bit line stack structure and has an opening. A contact structure is located on the substrate and includes an active region contact and a capacitor contact. The active region contact is located on the substrate. The top surface of the active region contact is exposed by the opening. The capacitor contact is located in the opening over the active region contact. An isolation layer is located between the hard mask layer and the dielectric layer and between the capacitor contact and the bit line stack structure. An etch stop layer is located between the dielectric layer and the isolation layer.
    Type: Grant
    Filed: June 6, 2021
    Date of Patent: May 2, 2023
    Assignee: Winbond Electronics Corp.
    Inventor: Shu-Mei Lee
  • Patent number: 11638375
    Abstract: The present disclosure provides a method for preparing a semiconductor memory device with air gaps for reducing capacitive coupling between a bit line and an adjacent conductive feature. The method includes forming an isolation member defining an active region in a substrate and a doped area in the active region; forming a gate structure in the substrate, wherein the gate structure divides the doped are into a first doped region and a second doped region; forming a bit line structure on the first doped region; forming an air gap adjacent to the bit line structure; forming a capacitor plug on the second doped region and a barrier layer on a sidewall of the capacitor plug; and forming a landing pad on a top portion of the capacitor plug, wherein the landing pad comprises a first silicide layer over the protruding portion and a second silicide layer on a sidewall of the barrier layer.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: April 25, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Kuo-Hui Su
  • Patent number: 11626407
    Abstract: A method for manufacturing a dynamic random access memory device includes providing a semiconductor substrate and forming a highly doped diffusion region in a surface of the semiconductor substrate. A wordline structure is then deposited on the surface of the semiconductor substrate, where the wordline structure includes an electrically conductive gate layer. An opening is further formed in the wordline structure, where the opening is located at a first end of and extending to the highly doped diffusion region. A semiconductor pillar is then formed in the opening by selective epitaxial growth. An end of the semiconductor pillar is then doped and the doped end is connected with a memory element.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 11, 2023
    Assignee: Integrated Silicon Solution, (Cayman) Inc.
    Inventors: Andrew J. Walker, Dafna Beery, Peter Cuevas, Amitay Levi
  • Patent number: 11569393
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 31, 2023
    Assignee: Futurewei Technologies, Inc.
    Inventors: Brian Creed, Lawrence E. Connell, Kent Jaeger, Matthew Richard Miller
  • Patent number: 11557660
    Abstract: A mask layer is formed over a semiconductor device. The semiconductor device includes: a gate structure, a first layer disposed over the gate structure, and an interlayer dielectric (ILD) disposed on sidewalls of the first layer. The mask layer includes an opening that exposes a portion of the first layer and a portion of the ILD. A first etching process is performed to etch the opening partially into the first layer and partially into the ILD. A liner layer is formed in the opening after the first etching process has been performed. A second etching process is performed after the liner layer has been formed. The second etching process extends the opening downwardly through the first layer and through the gate structure. The opening is filled with a second layer after the second etching process has been performed.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Chang Lin, Wei-Hao Wu, Jia-Ni Yu, Huan-Chieh Su, Ting-Hung Hsu, Chih-Hao Wang
  • Patent number: 11515434
    Abstract: A semiconductor device includes a substrate and a plurality of source/drain (S/D) regions in the substrate, wherein each of the plurality of S/D regions includes a first dopant having a first dopant type, and the each of the plurality of S/D regions are electrically coupled together. The semiconductor device further includes a gate stack over the substrate. The semiconductor device further includes a channel region in the substrate, wherein the channel region is below the gate stack and between adjacent S/D regions of the plurality of S/D regions, the channel region includes a second dopant having the first dopant type, and a concentration of the second dopant in the channel region is less than a concentration of the first dopant in each of the plurality of S/D regions.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: November 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Szu-Lin Liu, Jaw-Juinn Horng
  • Patent number: 11502077
    Abstract: Semiconductor devices and manufacturing and design methods thereof are disclosed. In one embodiment, a semiconductor device includes an active FinFET disposed over a workpiece comprising a first semiconductive material, the active FinFET comprising a first fin. An electrically inactive FinFET structure is disposed over the workpiece proximate the active FinFET, the electrically inactive FinFET comprising a second fin. A second semiconductive material is disposed between the first fin and the second fin.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Tung Ying Lee, Wen-Huei Guo, Chih-Hao Chang, Shou-Zen Chang
  • Patent number: 11444087
    Abstract: The present disclosure provides a semiconductor memory device with air gaps for reducing capacitive coupling between a bit line and an adjacent conductive feature and a method for preparing the semiconductor memory device.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: September 13, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Kuo-Hui Su
  • Patent number: 11437406
    Abstract: A semiconductor device may be provided, including a substrate which includes a first semiconductor layer having a well region arranged within the first semiconductor layer, a buried insulator layer arranged over the first semiconductor layer, and a second semiconductor layer arranged over the buried insulator layer. The semiconductor device may include a capacitive structure including: the well region, at least one contact to the well region, at least a portion of the buried insulator layer over the well region, at least a portion of the second semiconductor layer, a source region and a drain region arranged over the second semiconductor layer, a gate dielectric layer arranged over the second semiconductor layer and arranged laterally between the source region and the drain region, and a gate layer arranged over the gate dielectric layer. The well region, the source region, and the drain region may have the same conductivity type.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: September 6, 2022
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Phyllis Shi Ya Lim, Handoko Linewih, Shu Zhong, Chor Shu Cheng
  • Patent number: 11437282
    Abstract: A method for fabricating a semiconductor device includes forming a bit line contact hole in a substrate; forming a first spacer on a sidewall of the bit line contact hole; forming a sacrificial spacer over the first spacer; forming a first conductive material that fills the bit line contact hole over the sacrificial spacer; forming a second conductive material over the first conductive material; forming a bit line by etching the second conductive material; and forming a bit line contact plug and a gap between the bit line contact plug and the first spacer by partially etching the first conductive material and the sacrificial spacer to be aligned with the bit line.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: September 6, 2022
    Assignee: SK hynix Inc.
    Inventors: Jae Man Yoon, Dae Ik Kim, Hong Kyun Lee
  • Patent number: 11398392
    Abstract: An integrated circuit (IC) device includes a lower electrode including a main portion having a sidewall with at least one step portion, and a top portion having a width less than that of the main portion in a lateral direction. An upper support pattern contacts the top portion of the lower electrode. The upper support pattern includes a seam portion. To manufacture an IC device, a mold pattern and an upper sacrificial support pattern through which a plurality of holes pass are formed on a substrate. A plurality of lower electrodes are formed inside the plurality of holes. A peripheral space is formed on the mold pattern. An enlarged peripheral space is formed by reducing a width and a height of the top portion. An upper support pattern is formed to fill the enlarged peripheral space.
    Type: Grant
    Filed: May 24, 2020
    Date of Patent: July 26, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoungdeog Choi, Dongyoung Kim
  • Patent number: 11329130
    Abstract: An IGBT chip having a mixed gate structure includes a plurality of mixed gate units. Each of the mixed gate units includes a source region (3) and a gate region. The gate region includes a planar gate region (1) and a trench gate region (2), which are respectively disposed at both sides of the source region (3). A planar gate and a trench gate are compositely disposed on the same cell (16), thereby greatly improving chip density while retaining both trench gate's features of low on-state energy loss and high current density and planar gate's feature of wide safe operating area.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: May 10, 2022
    Assignee: ZHUZHOU CRRC TIMES ELECTRIC CO., LTD
    Inventors: Guoyou Liu, Chunlin Zhu, Liheng Zhu
  • Patent number: 10320211
    Abstract: In regard to a hearing aid and a hearing aid charging system, frequent replacement of a battery is avoided even if power consumption is large, and the structure is simplified and waterproofness is improved. A Hearing aid includes a secondary battery having a nominal voltage higher than a nominal voltage of an air battery, a driving component driven by power supplied from the secondary battery, and a transformation unit configured to output the charging power of the secondary battery at a voltage suitable for driving the driving component.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 11, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Takezo Hatanaka, Hisashi Tsuda
  • Patent number: 10228402
    Abstract: A hearing aid (200), adapted for detection of congestion of a sound output. The invention also relates to a method of detection of congestion of a sound output.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: March 12, 2019
    Assignee: Widex A/S
    Inventors: Klaus Krogsgaard, Jorgen Cederberg
  • Patent number: 9401677
    Abstract: A novel and useful LC-tank digitally controlled oscillator (DCO) incorporating a split transformer configuration. The LC-tank oscillator exhibits a significant reduction in area such that it is comparable in size to conventional ring oscillators (ROs) while still retaining its salient features of excellent phase noise and low sensitivity to supply variations. The oscillator incorporates an ultra-compact split transformer topology that is less susceptible to common-mode electromagnetic interference than regular high-Q LC tanks which is highly desirable in SoC environments. The oscillator, together with a novel dc-coupled buffer, can be incorporated within a wide range of circuit applications, including clock generators and an all-digital phase-locked loop (ADPLL) intended for wireline applications.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: July 26, 2016
    Assignee: Short Circuit Technologies LLC
    Inventors: Augusto Ronchini Ximenes, Robert Bogdan Staszewski
  • Patent number: 8957403
    Abstract: Select devices including an open volume that functions as a high bandgap material having a low dielectric constant are disclosed. The open volume may provide a more nonlinear, asymmetric I-V curve and enhanced rectifying behavior in the select devices. The select devices may comprise, for example, a metal-insulator-insulator-metal (MIIM) diode. Various methods may be used to form select devices and memory systems including such select devices. Memory devices and electronic systems include such select devices.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: February 17, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Bhaskar Srinivasan, Gurtej S. Sandhu
  • Patent number: 8946719
    Abstract: In at least one embodiment, a TFT includes: a first capacitor formed of a first capacitor electrode connected to a source electrode and a second capacitor electrode; a second capacitor formed of a third capacitor electrode and a fourth capacitor electrode; a first lead-out line; a second lead-out line connected to a gate electrode; a third lead-out line; a fourth lead-out line; a first interconnection; and a second interconnection. This realizes a TFT which can be easily saved from being a defective product even if leakage occurs in a capacitor connected to a TFT body section.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: February 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shinya Tanaka, Tetsuo Kikuchi, Hajime Imai, Hideki Kitagawa, Yoshiharu Kataoka
  • Patent number: 8907391
    Abstract: A semiconductor device includes a substrate including an active region having an isolated shape and a field region. A gate insulation layer is provided on an upper surface of the active region of the substrate. A gate electrode is provided on the gate insulation layer and spaced apart from the boundary of the active region to cover the middle portion of the active region. An impurity region is provided under a surface of the active region that is exposed by the gate electrode.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 9, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Jung-Soo Nam, Joon-Suk Oh, Hye-Young Park
  • Patent number: 8884349
    Abstract: A semiconductor device includes, a semiconductor substrate, a first transistor of a first conductivity type, a second transistor of a second conductivity type, a first capacitor, and a first wiring. The semiconductor substrate includes first, second, and third regions. The third region is sandwiched between the first and second regions. The first transistor of the first conductivity type is disposed in the first region. The second transistor of the second conductivity type is disposed in the second region. The first capacitor is disposed in the third region. The first wiring electrically couples one of main electrodes of the first transistor and one of main electrodes of the second transistor. The first wiring passes above the first capacitor.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: November 11, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Yuki Miura
  • Patent number: 8878340
    Abstract: Devices or systems that include a composite thermal capacitor disposed in thermal communication with a hot spot of the device, methods of dissipating thermal energy in a device or system, and the like, are provided herein. In particular, the device includes a composite thermal capacitor including a phase change material and a high thermal conductivity material in thermal communication with the phase change material. The high thermal conductivity material is also in thermal communication with an active regeneration cooling device. The heat from the composite thermal capacitor is dissipated by the active regeneration cooling device.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: November 4, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Craig Green, Yogendra Joshi
  • Patent number: 8841717
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate having a first groove; and a plurality of first pillars over the substrate. The plurality of first pillars is disposed beside the first groove. A first insulator is disposed in the first groove. A bit contact is disposed in the first groove and over the first insulator. The bit contact is coupled to side surfaces of the plurality of first pillars.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: September 23, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Noriaki Mikasa
  • Patent number: 8829584
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8829647
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive metal oxide formed using a high temperature, low pressure ALD process. The high temperature ALD process results in a layer with enhanced crystallinity, higher density, reduced shrinkage, and lower carbon contamination. The high temperature ALD process can be used for either or both the bottom electrode and the top electrode layers.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: September 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Edward Haywood, Sandra Malhotra, Hiroyuki Ode
  • Patent number: 8786002
    Abstract: In terms of achieving a reduction in the cost of an antenna switch, there is provided a technology capable of minimizing harmonic distortion generated in the antenna switch even when the antenna switch is particularly formed of field effect transistors formed over a silicon substrate. Between the source region and the drain region of each of a plurality of MISFETs coupled in series, a distortion compensating capacitance circuit is coupled which has a voltage dependency such that, in either of the cases where a positive voltage is applied to the drain region based on the potential of the source region and where a negative voltage is applied to the drain region based on the potential of the source region, the capacitance decreases to a value smaller than that in a state where the potential of the source region and the potential of the drain region are at the same level.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 22, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masao Kondo, Masatoshi Morikawa, Satoshi Goto
  • Patent number: 8741730
    Abstract: A method of forming a field effect transistor (FET) capacitor includes forming a channel region; forming a gate stack over the channel region; forming a first extension region on a first side of the gate stack, the first extension region being formed by implanting a first doping material at a first angle such that a shadow region exists on a second side of the gate stack; and forming a second extension region on the second side of the gate stack, the second extension region being formed by implanting a second doping material at a second angle such that a shadow region exists on the first side of the gate stack.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Brian L. Ji, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8703548
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 22, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye
  • Patent number: 8698280
    Abstract: In the semiconductor device composing MOS transistor on which impurities are added from the surface of a P-type substrate, the region of immediate below a gate layer is the P-type substrate on which the impurities are not added, and first and second MOS devices, having an N-type diffusion layer are provided on the surface region of the P-type substrate circumscribing the gate layer. The gate layer of the first MOS device, and the N-type diffusion layer of the second MOS device are connected, and the N-type diffusion layer of the first MOS device and the gate layer of the second MOS device are connected, and thereby a first capacitive element is composed.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 15, 2014
    Assignee: Spansion LLC
    Inventor: Koji Shimbayashi