For Interference Filter (e.g., Multilayer Dielectric Filter) (epo) Patents (Class 257/E31.123)
  • Patent number: 10326252
    Abstract: A light projection system disclosed herein provides fast axis expansion of a light beam for high optical performance despite sizing constraints of a device into which the light projection system is integrated. In one implementation, the light projection system includes a diffuser, an edge-emitting semiconductor laser diode, and a printed circuit board. The diffuser defines a diffuser plane and is oriented to be substantially parallel to least a portion of the printed circuit board. The edge-emitting semiconductor laser diode emits laser light having a fast axis and a slow axis, with the fast axis of the laser light defining a fast axis plane corresponding to a path the laser light travels from the edge-emitting semiconductor laser diode. The edge-emitting semiconductor laser diode is oriented such that the fast axis plane is substantially parallel the diffuser plane between the diffuser and at least the parallel portion of the printed circuit board.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: June 18, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: David Bohn
  • Patent number: 10079358
    Abstract: Embodiments of the present invention disclose an array substrate comprising a base substrate and a plurality of pixel units disposed on the base substrate, the pixel unit comprising a transflective layer formed on the base substrate; a thin film transistor structure formed over the transflective layer; an organic light-emitting diode disposed in a pixel region of the pixel unit and driven by the thin film transistor structure, and in a direction away from the base substrate, the organic light-emitting diode sequentially comprising a first electrode that is transparent, an organic light-emitting layer and a second electrode for reflecting light; and a color filter, disposed between the second electrode of the organic light-emitting diode and the transflective layer; wherein the second electrode of the organic light-emitting diode and the transflective layer constitute a microcavity structure.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: September 18, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Young Suk Song, Seong Yeol Yoo, Seung Jin Choi, Hee Cheol Kim
  • Patent number: 8963268
    Abstract: Devices having features deposited on two sides of a device substrate and methods for making the same. The devices are useful, for example, as the components in a macroelectronic system. In a preferred embodiment, the devices are photosensors having a plurality of electrodes patterned on a first side of the device and an electromagnetic interference filter patterned on a second side of the device. The method facilitates the fabrication of two-sided devices through the use of an immobilizing layer deposited on top of devices patterned on a first side of a device substrate; flipping the device substrate; processing the second side of the device substrate to produce patterned features on the second side of the device substrate; and releasing the devices having patterned elements on two sides of each device.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 24, 2015
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Samuel Kim, Babak Amirparviz
  • Patent number: 8941202
    Abstract: A method for forming an image sensor device is provided. First, a lens is provided and a first sacrificial element is formed thereon. An electromagnetic interference layer is formed on the lens and the first sacrificial element, and the first sacrificial element and electromagnetic interference layer thereon are removed to form an electromagnetic interference pattern having an opening exposing a selected portion of the lens. A second sacrificial element is formed in the opening to cover a center region of the selected portion of the lens. A peripheral region of the selected portion of the lens remains exposed. A light-shielding layer is formed on the electromagnetic interference pattern, second sacrificial element, and peripheral region of the selected portion of the lens. The second sacrificial element and light-shielding pattern are removed to expose the center region of the selected portion of the lens as a light transmitting region.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: January 27, 2015
    Assignees: OmniVision Technologies, Inc., VisEra Technologies Company Limited
    Inventors: Ming-Kai Liu, Tzu-Wei Huang, Jui-Hung Chang, Chia-Hui Huang, Teng-Sheng Chen
  • Patent number: 8853813
    Abstract: Embodiments relate to photo cell devices. In an embodiment, a photo cell device includes an array of transmission layers having different optical thicknesses and with photo diodes underneath. The transmission layers can include two different materials, such as a nitride and an oxide, that cover each diode with a different proportional area density in a damascene-like manner. Embodiments provide advantages over conventional devices, including that they can be integrated into a standard CMOS process and therefore simpler and less expensive to produce.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Infineon Technologies AG
    Inventor: Thoralf Kautzsch
  • Patent number: 8847343
    Abstract: An oxide film capable of suppressing reflection of a lens is formed under a low temperature. A method of manufacturing a semiconductor device includes: (a) forming a lower layer oxide film on a lens formed on a substrate using a first processing source containing a first element, a second processing source containing a second element, an oxidizing source and a catalyst, the lower layer oxide film having a refractive index greater than that of air and less than that of the lens; and (b) forming an upper layer oxide film on the lower layer oxide film using the first processing source, the oxidizing source and the catalyst, the upper layer oxide film having a refractive index greater than that of the air and less than that of the lower layer oxide film.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: September 30, 2014
    Assignee: Hitachi Kokusai Electric, Inc.
    Inventors: Norikazu Mizuno, Tomohide Kato, Takaaki Noda
  • Patent number: 8779541
    Abstract: A solid-state imaging device including a plurality of pixels arranged two-dimensionally, wherein each of the pixels has at least a planarizing film formed on the upper side of a photoelectric conversion element, a filter formed on the upper side of the planarizing film, and a microlens formed on the upper side of the filter. The filter of some of the pixels is a color filter permitting transmission therethrough of light of a predetermined color component, whereas the filter of other pixels is a white filter permitting transmission therethrough of light in the whole visible spectral range. The refractive indices of the white filter, the microlens and the planarizing film have the following relationship: (Refractive index of white filter)?(Refractive index of microlens)>(Refractive index of planarizing film).
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: July 15, 2014
    Assignee: Sony Corporation
    Inventors: Sintaro Nakajiki, Yukihiro Sayama, Yuichi Seki, Masanori Harasawa, Yoshinori Toumiya
  • Patent number: 8766291
    Abstract: The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer—i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen Forrest, Xiangfei Qi, Michael Slootsky
  • Patent number: 8759850
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 24, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Peter T. Kazlas
  • Patent number: 8669631
    Abstract: A solid state imaging device according to one embodiment of the present invention includes a substrate with a solid state imaging element, a first impurity layer, a plurality of external electrodes, and a translucent substrate. The first impurity layer is formed on a back surface side of the substrate, and forms a pn junction with the substrate. The plurality of external electrodes is formed on the back surface of the substrate and is electrically connected to the solid state imaging element. The translucent substrate is fixed to the substrate.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiteru Koseki
  • Patent number: 8624341
    Abstract: A light sensor is described that includes an IR cut interference filter and at least one color interference filter integrated on-chip. The light sensor comprises a semiconductor device (e.g., a die) that includes a substrate. Photodetectors are formed in the substrate proximate to the surface of the substrate. An IR cut interference filter is disposed over the photodetectors. The IR cut interference filter is configured to filter infrared light from light received by the light sensor to at least substantially block infrared light from reaching the photodetectors. At least one color interference filter is disposed proximate to the IR cut interference filter. The color interference filter is configured to filter visible light received by the light sensor to pass light in a limited spectrum of wavelengths (e.g., light having wavelengths between a first wavelength and a second wavelength) to at least one of the photodetectors.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 7, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Prashanth Holenarsipur, Zhihai Wang, Nicole Dorene Kerness
  • Patent number: 8541860
    Abstract: Device and method for an antireflective coating to improve image quality in an image display system. A preferred embodiment comprises a first high refractive index layer overlying a reflective surface of an integrated circuit, a first low refractive index layer overlying the first high refractive index layer, a second high refractive index layer overlying the first low refractive index layer, and a second low refractive index layer overlying the second high refractive index layer. The alternating layers of high refractive index material and low refractive index material form an optical trap, allowing light to readily pass through in one direction, but not so easily in a reverse direction. The dual alternating layer topology improves the antireflective properties of the antireflective layer and permits a wide range of adjustments for manipulating reflectivity and color point.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: September 24, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Simon Joshua Jacobs, Duane Scott Dewald, Leigh A. Files, Terry A. Bartlett
  • Patent number: 8476622
    Abstract: Disclosed are an active matrix organic light emitting diode and a method for manufacturing the same. The active matrix organic light emitting diode includes: a substrate; a black matrix formed above a part of the substrate; at least one thin film transistor formed above the black matrix; a passivation film formed to entirely cover the at least one thin film transistor; a planarizing layer formed above the passivation film; a color filter formed above an upper part of the planarizing layer opposite to the position where the at least one thin film transistor is formed; and an organic light emitting diode formed above the color filter.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 2, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hee Park, Chi Sun Hwang, Byoung Gon Yu
  • Patent number: 8461659
    Abstract: According to one embodiment, in the upper laminated structure, first layers and second layers are alternately laminated, the first layer and the second layer having different refractive indices. In the lower laminated structure, first layers and second layers are alternately laminated, the first layer and the second layer having different refractive indices. The upper laminated structure and the lower laminated structure are equal in number of layers laminated therein. Each of the lowermost layer of the upper laminated structure and the uppermost layer of the lower laminated structure are configured by the first layer. The upper laminated structure and the lower laminated structure are configured to be asymmetric to each other such that, within some layer sets out of a plurality of layer sets each including two layers disposed at corresponding positions in the upper and lower laminated layers, one layer of the two layers in each layer set of the some layer sets is thinner than the other layer.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: June 11, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Kokubun, Kazufumi Shiozawa
  • Patent number: 8405063
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Peter T. Kazlas, Seth Coe-Sullivan
  • Patent number: 8398871
    Abstract: A method for designing a first optical filter, exhibiting a first filter performance satisfying a first preset criterion, and a second optical filter, exhibiting a second filter performance satisfying a second preset criterion, includes providing initial first and second filter designs for the first and second optical filters, respectively, as first and second ordered stacks of layers, respectively. A pair of layers, including a first layer, characterized by a first thickness, and a second layer, characterized by a second thickness, is selected from the first and second ordered stacks of layers. The first thickness is constrained to a first constrained thickness that is a positive integer multiple of the second thickness to yield a constrained first filter design. A predicted performance of the constrained first filter design is determined and compared with the first preset criterion for one of accepting and rejecting the constrained first filter design.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 19, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Lu Gao, Gary Duerksen, Paulo E. X. Silveira
  • Patent number: 8294177
    Abstract: A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Keiichi Yamazaki, Naoko Takei, Tomoyuki Nakajima
  • Patent number: 8283661
    Abstract: Provided is an organic EL display manufacturing method which has: a step wherein an organic EL panel having a substrate and organic EL elements arranged in matrix on the substrate is prepared, and each organic EL element is permitted to have a pixel electrode disposed on the substrate, an organic layer disposed on the pixel electrode, a transparent counter electrode disposed on the organic layer, a sealing layer disposed on the transparent counter electrode, and a color filter disposed on the sealing layer; a step of detecting a defective portion on the organic layer in the organic EL element; and a step of breaking the transparent counter electrode in a region on the defective portion of the transparent counter electrode by irradiating the region on the defective portion with a laser beam. The laser beam is radiated by being tilted with respect to the normal line on the display surface of the organic EL panel.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: October 9, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazutoshi Miyazawa, Akihisa Nakahashi
  • Patent number: 8237206
    Abstract: A CMOS image sensor, in which an implantation process is performed on substrate under isolation structures each disposed between two adjacent photosensor cell structures. The implantation process is a destructive implantation to form lattice effects/trap centers. No defect repair process is carried out after the implantation process is performed. The implants can reside at the isolation structures or in the substrate under the isolation structures. Dark leakage and crosstalk are thus suppressed.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 7, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Hsin-Ping Wu
  • Publication number: 20120132809
    Abstract: A radiation sensor includes first and second pixels with a radiation absorption filter positioned over the first pixel and an interference filter positioned over both the first and second pixels. The combined spectral response of the absorption filter and the first pixel has a first pixel pass-band and a first pixel stop-band. The spectral response of the interference filter has an interference filter pass-band which is substantially within the first pixel pass-band for radiation incident on the interference filter at a first angle of incidence, and substantially within the first pixel stop-band for radiation incident on the interference filter at a second angle of incidence greater than the first angle of incidence.
    Type: Application
    Filed: September 21, 2011
    Publication date: May 31, 2012
    Applicant: STMicroelectronics (Research & Development) Limited
    Inventor: Ewan Findlay
  • Patent number: 8076681
    Abstract: A high-efficiency, white organic electroluminescent device has such a structure that its emission layer is obtained by laminating sub-emission layers of red, green, and blue, respectively. The green sub-emission layer contacting a hole transport layer has a delayed fluorescent material, and the red sub-emission layer has a phosphorescent light emitting material.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 13, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshifumi Mori, Koichi Suzuki, Akira Tsuboyama, Satoru Shiobara, Kenichi Ikari
  • Patent number: 8030723
    Abstract: An image sensor with decreased optical interference between adjacent pixels is provided. An image sensor, which is divided into a pixel region and a peripheral region, the image sensor including a photodiode formed in a substrate in the pixel region, first to Mth metal lines formed over the substrate in the pixel region, where M is a natural number greater than approximately 1, first to Nth metal lines formed over a substrate in the peripheral region, where N is a natural number greater than M, at least one layer of dummy metal lines formed over the Mth metal lines but formed not to overlap with the photodiode, and a microlens formed over the one layer of the dummy metal lines to overlap with the photodiode.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 4, 2011
    Assignee: Crosstek Capital, LLC
    Inventors: Won-Ho Lee, Dong-Heon Cho
  • Patent number: 7960807
    Abstract: A CMOS light detector configured to detect specific wavelengths of light includes a first sensor and a second sensor. The first sensor includes CMOS photocells that are covered by a colored filter layer of a first color that has a first transmittance that allows both light of the specific wavelengths and light of other wavelengths to pass. The second sensor including further CMOS photocells, at least some of which are covered by both a colored filter layer of the first color and a colored filter layer of a second color, stacked one above the other in either order, where the colored filter layer of the second color has a second transmittance that allows light of the other wavelengths to pass. The first sensor produces a first photocurrent, and the second sensor produces a second photocurrent, when light including both the specific and other wavelengths is incident upon the detector.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: June 14, 2011
    Assignee: Intersil Americas Inc.
    Inventors: Xijian Lin, Phillip J. Benzel, Bjoy Santos, Joy Jones
  • Patent number: 7932122
    Abstract: A method of manufacturing a solid state image pickup device including photoelectric conversion elements which are two-dimensionally arranged in a semiconductor substrate, and a color filter having a plurality of color filter patterns differing in color from each other and disposed on a surface of the semiconductor substrate according to the photoelectric conversion elements. The method includes successively subjecting a plurality of filter layers differing in color from each other to a patterning process to form the plurality of color filter patterns. At least one color filter pattern to be formed at first among the plurality of color filter patterns is formed by dry etching, and the rest of the plurality of the color filter pattern is formed by photolithography.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: April 26, 2011
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Keisuke Ogata, Kenzo Fukuyoshi, Tadashi Ishimatsu, Mitsuhiro Nakao, Satoshi Kitamura
  • Patent number: 7932533
    Abstract: A pixel structure driven by a scan line and a data line arranged on a substrate is provided. The pixel structure includes a control unit, an OEL unit and a semi-transparent reflector structure. The control unit driven by the scan line and the data line is arranged on the substrate. The OEL unit is arranged on the substrate and includes a transparent electrode, a light-emitting layer and a metal electrode. The transparent electrode is electrically connected with the control unit. The light-emitting layer is disposed on the transparent electrode. The metal electrode is disposed on the light-emitting layer. The semi-transparent reflector structure is sandwiched between the substrate and the OEL unit, and includes at least a plurality of first and second dielectric layers. The first and second dielectric layers are alternately stacked, and the refractive index of the first dielectric layers is different from that of the second dielectric layers.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: April 26, 2011
    Assignee: Chunghwa Picture Tubes, LTD.
    Inventors: Liang-Yuan Wang, Chih-Kwang Tzen, Pei-Lin Huang, Yi-Lung Kao, Ya-Ping Tsai, Shuenn-Jiun Tang
  • Publication number: 20110032398
    Abstract: Image sensors are provided for electronic imaging devices. An image sensor can be formed from an array of image pixels. Bragg-type multilayer interference filters can be formed for the image sensor using dielectric layers with alternating high and low indices of refraction. The multilayer interference filters can be configured to form band-pass filters of desired colors and infrared-blocking filters. Dielectric layers with non-flat bulk absorption properties may be used to tune the absorption of the filters. The interference filters may be provided in a uniform pattern so that an image sensor exhibits a monochrome response or may be arranged in a multicolor color filter array pattern such as a Bayer pattern.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 10, 2011
    Inventor: Victor Lenchenkov
  • Patent number: 7880257
    Abstract: An image sensor includes a semiconductor layer, and first and second photoelectric converting units including first and second impurity regions in the semiconductor layer that are spaced apart from each other and that are at about an equal depth in the semiconductor layer, each of the impurity regions including an upper region and a lower region. A width of the lower region of the first impurity region may be larger than a width of the lower region of the second impurity region, and widths of upper regions of the first and second impurity regions are equal.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yun-ki Lee
  • Patent number: 7759755
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Publication number: 20100171191
    Abstract: An image sensor includes at least one photoelectric conversion device formed in a silicon substrate, at least one lens formed on one side of the photoelectric conversion device and configured to collect light, a dielectric layer formed on the other side of the photoelectric conversion device and a reflective pattern formed on the dielectric layer. The reflective pattern serves as an electrical circuit interconnection and is configured to reflect the light passing through the dielectric layer such that the light is absorbed to the silicon substrate again.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 8, 2010
    Inventor: Yun-Ki LEE
  • Patent number: 7745895
    Abstract: The present invention provides a semiconductor light emitting device capable of easily realizing stable output characteristics within a wide temperature range. The semiconductor light emitting device includes a semiconductor laser element, and a semiconductor photodiode having an absorption layer disposed on a semiconductor substrate, a second conductivity type region formed in a cap layer and the absorption layer, and a transmissive reflection film disposed on the back side of the semiconductor substrate. The semiconductor photodiode is mounted with the epitaxial layer side down, and the transmissive reflection film is irradiated with a laser beam emitted from the semiconductor laser element so that light reflected from the transmissive reflection film is used as output light, and transmitted light is received by the semiconductor photodiode and used for controlling the output of the semiconductor laser element.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 29, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Youichi Nagai, Yasuhiro Iguchi, Hiroshi Inada
  • Patent number: 7675078
    Abstract: A pixel structure including a control unit, an organic electro-luminescent (OEL) unit, and a filter structure is provided. The control unit is disposed on a substrate and is driven by a scan line and a data line. The OEL unit is disposed on the substrate, and includes a transparent electrode, a light-emitting layer, and a metal electrode. The transparent electrode is electrically connected with the control unit, and the light-emitting layer and the metal electrode are sequentially placed on the transparent electrode. The filter structure is sandwiched between the substrate and the OEL unit, and the filter structure includes a plurality of the first and second dielectric layers. The first and second dielectric layers are alternately stacked, and the refractive index of the first dielectric layers is different from that of the second dielectric layers.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 9, 2010
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Liang-Yuan Wang, Chih-Kwang Tzen, Pei-Lin Huang, Yi-Lung Kao, Ya-Ping Tsai, Shuenn-Jiun Tang
  • Patent number: 7646049
    Abstract: An image sensor includes a photo diode formed over a semiconductor substrate. At least one IMD layer is formed on the semiconductor substrate. A dielectric medium fills a through-hole formed in the IMD layer over the photo diode. The dielectric medium may be made with materials with a higher refractive index than the materials forming the IMD layer.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 12, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Cheon-Man Shim
  • Patent number: 7598581
    Abstract: An image sensor with decreased optical interference between adjacent pixels is provided. An image sensor, which is divided into a pixel region and a peripheral region, the image sensor including a photodiode formed in a substrate in the pixel region, first to Mth metal lines formed over the substrate in the pixel region, where M is a natural number greater than approximately 1, first to Nth metal lines formed over a substrate in the peripheral region, where N is a natural number greater than M, at least one layer of dummy metal lines formed over the Mth metal lines but formed not to overlap with the photodiode, and a microlens formed over the one layer of the dummy metal lines to overlap with the photodiode.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: October 6, 2009
    Assignee: Crosstek Capital, LLC
    Inventors: Won-Ho Lee, Dong-Heon Cho
  • Patent number: 7579639
    Abstract: A CMOS image sensor that includes a semiconductor substrate with a plurality of photodiodes arranged at fixed intervals on the semiconductor substrate. A light-shielding layer partially overlaping the plurality of photodiodes and an insulating interlayer are formed on an entire surface of the semiconductor substrate including the plurality of photodiodes. A color filter layer having a plurality of color filters separated by a predetermined gap is formed on the insulating interlayer and a planarization layer is formed over the entire surface of the semiconductor substrate including the color filter layer. A plurality of microlenses are formed on the planarization layer in correspondence with the color filters of the color filter layer, wherein an additional structural layer, disposed between the color filter layer and the insulating interlayer, is provided to close a predetermined gap between the color filters of the color filter layer.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 25, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Meng An Jung
  • Patent number: 7510885
    Abstract: A method of preparing a plurality of electrically connected organic optoelectronic devices on a substrate comprising firstly preparing a plurality of organic optoelectronic devices on a substrate, by the steps of providing a patterned layer of a first conductive material over the substrate, providing layer of organic optoelectronic material over the layer of first conductive material and providing a patterned layer of a second conductive material over the layer of organic optoelectronic material, at least partially removing regions of the organic optoelectronic material which are not covered by the patterned layer of second conductive material and secondly providing electrical connections to electrically connect at least two of the plurality of organic optoelectronic devices. The organic optoelectronic devices are suitably organic photovoltaic devices or organic electroluminescent devices.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 31, 2009
    Assignee: Cambridge Display Technology Limited
    Inventors: Jonathan Halls, Richard Wilson
  • Publication number: 20080211939
    Abstract: A structure and method for fabricating imagers that detect light from the backside of the wafer. The structure may have less complex focusing, reduced crosstalk, tighter pixel packing density, increased quantum efficiency, and wafer-level packaging. The fabrication of the imager includes forming an imaging device on a silicon wafer, adhering an interconnect wafer to the device wafer, forming interconnects on the interconnect wafer, etching away the substrate of the device wafer, and patterning additional layers such as nitrides, color filter arrays, and lenses on the backside of the device wafer.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Inventor: Frederick Brady
  • Patent number: 7416915
    Abstract: Photoelectric converters are arranged two-dimensionally in a semiconductor substrate. A planarizing layer, a light shielding film, a further planarizing layer and condenser lenses are formed sequentially on the semiconductor substrate and the photoelectric converters. The light shielding film has apertures at positions corresponding to the photoelectric conversion devices. Multilayer interference filters that transmit either a red, green or blue wavelength component of light are disposed in the apertures.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: August 26, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiro Kasano, Yuichi Inaba, Takumi Yamaguchi
  • Patent number: 7411232
    Abstract: A semiconductor photodetecting device is provided for enabling a solid-state image sensor to meet the requirements of higher quality imaging and more reduction in cost. The photodetecting device of the present invention includes: a semiconductor substrate; and an epitaxial layer formed on the semiconductor substrate by epitaxial growth. The epitaxial layer has a multilayer structure including: a first pn junction layer; a first insulating layer; a second pn junction layer; a second insulating layer; and a third pn junction layer. The first insulating layer and the second insulating layer have openings, and the first pn junction layer and the second pn junction layer are adjacent to each other through the openings of the first insulating layer which is placed in between these pn junction layers, and the second pn junction layer and the third pn junction layer are adjacent to each other through the openings of the second insulating layer which is placed in between these pn junction layers.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: August 12, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuzo Ueda, Seiichiro Tamai
  • Patent number: 7388242
    Abstract: An image sensor is disclosed. The image sensor includes a plurality of pixels formed in a semiconductor substrate, each pixel including a light sensitive element. Further, a multilayer stack is formed over the pixels, the multilayer stack adapted to filter incident light in the infrared region. Finally, micro-lenses are formed over the multilayer stack and over the light sensitive element.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: June 17, 2008
    Assignee: OmniVision International Holding Ltd.
    Inventor: Katsumi Yamamoto
  • Publication number: 20080105939
    Abstract: Method for packaging a photo detector integrated circuit (IC) and a pigment filter and resulting package are described. An encapsulated package (e.g., an epoxy-encapsulated package) that includes a first surface is provided. A filter layer is then coated directly onto the first surface. The filter layer provides optical filtering properties (e.g., a predetermined filtering profile) in addition to the filtering provided by the pigment filter.
    Type: Application
    Filed: May 7, 2007
    Publication date: May 8, 2008
    Inventors: Kean Loo Keh, Chin Hin Oon, Boon Keat Tan
  • Publication number: 20080079106
    Abstract: A solid-state imaging device according to the present invention includes a semiconductor substrate; a light-receiving element formed in the semiconductor substrate and photoelectrically converting incident light; and a plurality of wiring layers stacked on top of each other on a surface of the semiconductor substrate where the light-receiving element is formed. At least one of the plurality of wiring layers includes: a first insulating layer; metal wiring formed on the first insulating layer; an antireflection layer stacked on the first insulating layer and the metal wiring, preventing diffusion of a material making up of the metal wiring, and preventing reflection of the incident light; and a second insulating layer stacked on the antireflection layer.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 3, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Ryohei MIYAGAWA, Shuichi MAYUMI
  • Patent number: 7329895
    Abstract: A sensor comprises two photodiodes sensitive to different wavelengths. The photodiodes or detectors are stacked in a vertical relationship to each other. A bandpass filter is provided to limit the wavelengths of light reaching the detectors. The photodiodes are formed of various combinations of materials such as AlGaN or InGaN, or different compositions of the same material. Charge detectors are coupled to each detector to provide a signal representative of the amount of radiation detected in their corresponding bandwidths. A biological sample is provided proximate the filter. A laser is used to illuminate the biological sample to create biofluorescence corresponding to intrinsic tryptophan of bacteria.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: February 12, 2008
    Assignee: Honeywell International Inc.
    Inventors: Barrett E. Cole, Wei Yang, Thomas E. Nohava