Abstract: In one example, a semiconductor device comprises a spacer substrate, a first lens substrate over the first spacer substrate, and a lens protector over the first lens dielectric adjacent to the first lens. The spacer substrate comprises a spacer dielectric, a spacer top terminal, a spacer bottom terminal, and a spacer via. The first lens substrate comprises a first lens dielectric, a first lens, a first lens top terminal, a first lens bottom terminal, and a first lens via. A first interconnect is coupled with the spacer top terminal and the first lens bottom terminal. Other examples and related methods are also disclosed herein.
Abstract: A semiconductor apparatus includes a stack of first and second chips each having a plurality of pixel circuits arranged in a matrix form. The pixel circuit of the a-th row and the e1-th column is connected to the electric circuit of the p-th row and the v-th column. The pixel circuit of the a-th row and the f1-th column is connected to the electric circuit of the q-th row and the v-th column. The pixel circuit of the a-th row and the g1-th column is connected to the electric circuit of the r-th row and the v-th column. The pixel circuit of the a-th row and the h1-th column is connected to the electric circuit of the s-th row and the v-th column.
Abstract: To prevent peeling at an interface between layers forming a layer structure of a solid-state imaging element even in a case where stress is caused by an increase in pressure in a cavity in a configuration in which a translucent member is provided on the solid-state imaging element with a support portion interposed therebetween and the cavity is formed between the solid-state imaging element and the translucent member.
Type:
Grant
Filed:
January 21, 2019
Date of Patent:
November 1, 2022
Assignee:
SONY SEMICONDUCTOR SOLUTIONS CORPORATION
Abstract: A metal-insulator-semiconductor-insulator-metal (MISIM) device includes a semiconductor layer, an insulating layer disposed over an upper surface of the semiconductor layer, a back electrode disposed over a lower surface of the semiconductor layer opposing the upper surface, and first and second electrodes disposed over the insulating layer and spaced-apart from each other.
Type:
Grant
Filed:
December 23, 2019
Date of Patent:
June 1, 2021
Assignees:
TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
Inventors:
Jenn-Gwo Hwu, Hao-Hsiung Lin, Chang-Feng Yan, Samuel C. Pan
Abstract: A method of forming of an image sensor device includes a patterned hardmask layer is formed over a substrate. The patterned hard mask layer has a plurality of first openings in a periphery region, and a plurality of second openings in a pixel region. A first patterned mask layer is formed over the pixel region to expose the periphery region. A plurality of first trenches is etched into the substrate in the periphery region. Each first trench, each first opening and each second opening are filled with a dielectric material. A second patterned mask layer is formed over the periphery region to expose the pixel region. The dielectric material in each second opening over the pixel region is removed. A plurality of dopants is implanted through each second opening to form various doped isolation features in the pixel region.
Abstract: A method of forming of an image sensor device includes a patterned hardmask layer is formed over a substrate. The patterned hard mask layer has a plurality of first openings in a periphery region, and a plurality of second openings in a pixel region. A first patterned mask layer is formed over the pixel region to expose the periphery region. A plurality of first trenches is etched into the substrate in the periphery region. Each first trench, each first opening and each second opening are filled with a dielectric material. A second patterned mask layer is formed over the periphery region to expose the pixel region. The dielectric material in each second opening over the pixel region is removed. A plurality of dopants is implanted through each second opening to form various doped isolation features in the pixel region.
Abstract: A method of forming a window cap wafer (WCW) structure for semiconductor devices includes machining a plurality of cavities into a front side of a first substrate; bonding the first substrate to a second substrate, at the front side of the first substrate; removing a back side of the first substrate so as to expose the plurality of cavities, thereby defining the WCW structure comprising the second substrate and a plurality of vertical supports comprised of material of the first substrate.
Abstract: Provided are novel methods of fabricating photovoltaic modules using pressure sensitive adhesives (PSA) to secure wire networks of interconnect assemblies to one or both surfaces of photovoltaic cells. A PSA having suitable characteristics is provided near the interface between the wire network and the cell's surface. It may be provided together as part of the interconnect assembly or as a separate component. The interconnect assembly may also include a liner, which may remain as a part of the module or may be removed later. The PSA may be distributed in a void-free manner by applying some heat and/or pressure. The PSA may then be cured by, for example, exposing it to UV radiation to increase its mechanical stability at high temperatures, in particular at a, for example the maximum, operating temperature of the photovoltaic module. For example, the modulus of the PSA may be substantially increased during this curing operation.
Abstract: A method of bonding by molecular bonding between at least one lower wafer and an upper wafer comprises positioning the upper wafer on the lower wafer. In accordance with the invention, a contact force is applied to a peripheral side of at least one of the two wafers in order to initiate a bonding wave between the two wafers.
Abstract: A semiconductor device includes: a first semiconductor layer of a first conductivity type; an insulation layer on the first semiconductor layer; a second semiconductor layer in the insulation layer; an active element in the second semiconductor layer; a first semiconductor region on the first semiconductor layer and of a second conductivity type; a second semiconductor region in the first semiconductor region and of the second conductivity type with a higher impurity concentration than the first semiconductor region; a first conductor in a through hole in the insulation layer and connected to the second semiconductor region; a second conductor above or within the insulation layer, the second conductor surrounding the first conductor such that an outside edge thereof is outside the second semiconductor region; a third conductor connecting the first and second conductors; and a fourth conductor connected to the first semiconductor layer.
Abstract: A solid-state imaging device includes: a substrate which is formed of a semiconductor and includes a first surface and a second surface which face opposite sides; a gate insulation film which is formed on a trench formed in the substrate to penetrate the first surface and the second surface; and a gate electrode which is embedded in the trench through the gate insulation film to be exposed to a second surface side of the substrate. A step difference is formed from the second surface of the substrate to a tip end surface of the gate electrode on the second surface side.
Abstract: The present invention refers to a composite getter for thin-film photovoltaic panels which is made with a polymer having low H2O transmission containing one or more alkaline earth metal oxide, to a photovoltaic panel containing such composite getter and to a method for the manufacturing of photovoltaic panels.
Type:
Grant
Filed:
July 29, 2014
Date of Patent:
December 9, 2014
Assignee:
SAES Getters S.p.A.
Inventors:
Sergio Rondena, Antonio Bonucci, Giorgio Longoni, Luca Toia, Marco Amiotti
Abstract: A MEMS inertial sensor and a method for manufacturing the same are provided. The method includes: depositing a first carbon layer on a semiconductor substrate; patterning the first carbon layer to form a fixed anchor bolt, an inertial anchor bolt and a bottom sealing ring; forming a contact plug in the fixed anchor bolt and a contact plug in the inertial anchor bolt; forming a first fixed electrode, an inertial electrode and a connection electrode on the first carbon layer, where the first fixed electrode and the inertial electrode constitute a capacitor; forming a second carbon layer on the first fixed electrode and the inertial electrode; and forming a sealing cap layer on the second carbon layer and the top sealing ring. Under an inertial force, only the inertial electrode may move, the fixed electrode will almost not move or vibrate, which improves the accuracy of the MEMS inertial sensor.
Abstract: Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate). In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
Type:
Grant
Filed:
June 26, 2013
Date of Patent:
December 2, 2014
Assignee:
OmniVision Technologies, Inc.
Inventors:
Gang Chen, Ashish Shah, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
Abstract: A compound semiconductor radiation detector includes a body of compound semiconducting material having an electrode on at least one surface thereof. The electrode includes a layer of a compound of a first element and a second element. The first element is platinum and the second element includes at least one of the following: chromium, cobalt, gallium, germanium, indium, molybdenum, nickel, palladium, ruthenium, silicon, silver, tantalum, titanium, tungsten, vanadium, zirconium, manganese, iron, magnesium, copper, tin, or gold. The layer can further include sublayers, each of which is made from a different one of the second elements and platinum as the first element.
Abstract: A method for forming a nanostructure according to one embodiment includes creating a hole in an insulating layer positioned over an electrically conductive layer; and forming a nanocable in the hole such that the nanocable extends through the hole in the insulating layer and protrudes therefrom, the nanocable being in communication with the electrically conductive layer. Additional systems and methods are also presented.
Type:
Grant
Filed:
July 24, 2009
Date of Patent:
November 25, 2014
Assignees:
Q1 Nanosystems, Inc, The Regents of the University of California
Inventors:
Brian Argo, Ruxandra Vidu, Pieter Stroeve, John Argo, Saif Islam, Jie-Ren Ku, Michael Chen
Abstract: An embedded micro-electro-mechanical system (MEMS) (100) comprising a semiconductor chip (101) embedded in an insulating board (120), the chip having a cavity (102) including a radiation sensor MEMS (105), the opening (104) of the cavity at the chip surface covered by a plate (110) transmissive to the radiation (150) sensed by the MEMS. The plate surface remote from the cavity having a bare central area, to be exposed to the radiation sensed by the MEMS in the cavity, and a peripheral area covered by a metal film (111) touching the plate surface and a layer (112) of adhesive stacked on the metal film.
Type:
Grant
Filed:
February 27, 2012
Date of Patent:
October 21, 2014
Assignee:
Texas Instruments Incorporated
Inventors:
Christopher D. Manack, Frank Stepniak, Sreenivasan K. Koduri
Abstract: Provided is a semiconductor device having a backside illuminated image sensor and a method of forming same. The method includes providing a first substrate and a second substrate, forming metal interconnections on a first surface of the first substrate, forming a filling insulating layer filling spaces between sides of the metal interconnections and covering upper surfaces of the metal interconnections, forming a buffer insulating layer softer than the filling insulating layer on the filling insulating layer, forming a capping insulating layer denser than the buffer insulating layer on the buffer insulating layer, and bonding a surface of the capping insulating layer to a surface of the second substrate.
Type:
Grant
Filed:
April 12, 2013
Date of Patent:
October 21, 2014
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Dae-Keun Park, Dong-Jo Kang, Hyoung-Jun Kim, Jin-Sung Chung
Abstract: A method for manufacturing a semiconductor device including: forming a wiring layer on a surface side of a first semiconductor wafer; forming a buried film so as to fill in a level difference on the wiring layer, the level difference being formed at a boundary between a peripheral region of the first semiconductor wafer and an inside region being on an inside of the peripheral region, and the level difference being formed as a result of a surface over the wiring layer in the peripheral region being formed lower than a surface over the wiring layer in the inside region, and making the surfaces over the wiring layer in the peripheral region and the inside region substantially flush with each other; and opposing and laminating the surfaces over the wiring layer formed in the first semiconductor wafer to a desired surface of a second semiconductor wafer.
Abstract: A radio frequency transparent photovoltaic cell includes a back contact layer formed of an electrically conductive material, at least one aperture formed in the back contact layer, and at least one photovoltaic cell section disposed on the back contact layer. An airship includes one or more radio frequency antennas disposed in an interior of the airship. One or more radio frequency transparent photovoltaic cells are disposed on an outer surface of the airship.
Type:
Grant
Filed:
March 25, 2010
Date of Patent:
October 7, 2014
Assignee:
Raytheon Company
Inventors:
Daniel F. Sievenpiper, Michael Wechsberg, Fangchou Yang
Abstract: In a micromechanical component having an inclined structure and a corresponding manufacturing method, the component includes a substrate having a surface; a first anchor, which is provided on the surface of the substrate and which extends away from the substrate; and at least one cantilever, which is provided on a lateral surface of the anchor, and which points at an inclination away from the anchor.
Type:
Grant
Filed:
November 28, 2008
Date of Patent:
September 30, 2014
Assignee:
Robert Bosch GmbH
Inventors:
Tjalf Pirk, Stefan Pinter, Hubert Benzel, Heribert Weber, Michael Krueger, Robert Sattler, Frederic Njikam Njimonzie, Joerg Muchow, Joachim Fritz, Christoph Schelling, Christoph Friese
Abstract: Objects are to provide a small imaging device that can take an image of a thick book without distortion of an image of a gutter and to improve the portability of an imaging device by downsizing the imaging device. The imaging device has imaging planes on both surfaces. All elements included in the imaging device are preferably provided over one substrate. In other words, the imaging device has a first imaging plane and a second imaging plane facing opposite to the first imaging plane.
Type:
Grant
Filed:
October 5, 2012
Date of Patent:
September 30, 2014
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: Frontside-illuminated barrier infrared photodetector devices and methods of fabrication are disclosed. In one embodiment, a frontside-illuminated barrier infrared photodetector includes a transparent carrier substrate, and a plurality of pixels. Each pixel of the plurality of pixels includes an absorber layer, a barrier layer on the absorber layer, a collector layer on the barrier layer, and a backside electrical contact coupled to the absorber layer. Each pixel has a frontside and a backside. The absorber layer and the barrier layer are non-continuous across the plurality of pixels, and the barrier layer of each pixel is closer to a scene than the absorber layer of each pixel. A plurality of frontside common electrical contacts is coupled to the frontside of the plurality of pixels, wherein the frontside of the plurality of pixels and the plurality of frontside common electrical contacts are bonded to the transparent carrier substrate.
Abstract: A method of manufacturing a solar cell, which includes an edge deletion step using a laser beam, and a manufacturing apparatus which is used in such a method, the method and the apparatus being capable of preventing a shunt and cracks from being generated are provided. By radiating a first laser beam to a multilayer body, which includes a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer sequentially formed on a transparent substrate, from a side of the transparent substrate, the photoelectric conversion layer and the back electrode layer in a first region are removed, and by radiating a second laser beam into the region such that the second laser beam is spaced from a peripheral rim of the region, the transparent electrode layer in a second region is removed.
Abstract: A complementary metal oxide semiconductor (CMOS) device and a method for fabricating the same are provided. The CMOS image sensor includes: a first conductive type substrate including a trench; a channel stop layer formed by using a first conductive type epitaxial layer over an inner surface of the trench; a device isolation layer formed on the channel stop layer to fill the trench; a second conductive type photodiode formed in a portion of the substrate in one side of the channel stop layer; and a transfer gate structure formed on the substrate adjacent to the photodiode to transfer photo-electrons generated from the photodiode.
Abstract: A method of manufacturing an optical reflector including an alternating stack of at least one first layer of complex refraction index n1 and at least one second layer of complex refraction index n2, in which the first layer includes semiconductor nanocrystals, including the following steps: calculation of the total number of layers of the stack, of the thicknesses of each of the layers and of the values of complex refraction indices n1 and n2 on the basis of the characteristics of a desired spectral reflectivity window of the optical reflector, including the use of an optical transfer matrices calculation method; calculation of deposition and annealing parameters of the layers on the basis of the total number of layers and of the values of previously calculated complex refraction indices n1 and n2; deposition and annealing of the layers in accordance with the previously calculated parameters.
Type:
Grant
Filed:
August 10, 2012
Date of Patent:
August 26, 2014
Assignee:
Commissariat a l'energie atomique et aux energies alternatives
Inventors:
Kavita Surana, Mathieu Baudrit, Pierre Mur, Philippe Thony
Abstract: A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
Type:
Grant
Filed:
March 8, 2013
Date of Patent:
August 26, 2014
Assignee:
Board of Trustess of the Leland Stanford Junior University
Inventors:
Chi-Hwan Lee, Dong Rip Kim, Xiaolin Zheng
Abstract: The invention relates to a method for producing a monograin membrane and a monograin membrane produced according to said method. The invention further relates to the production of a solar cell from such a monograin membrane as well as a produced solar cell. The monograin membranes produced according to the invention can also be used for other applications, e.g. for converting electric energy into radiation energy or in detectors for detecting radiation. The aim of the invention is to improve the production of monograin membranes and solar cells. Said aim is achieved by first preparing a horizontally oriented layer made of a binder that is not yet cured or cross-linked such that the binder is liquid or at least viscous. Grains are partially introduced into the layer through a surface of the layer in such a way that only a portion of each grain is immersed in the layer and a zone of the grain remains above the surface of the layer.
Abstract: An image sensor package and method of manufacture that includes a crystalline handler with conductive elements extending therethrough, an image sensor chip disposed in a cavity of the handler, and a transparent substrate disposed over the cavity and bonded to both the handler and image sensor chip. The transparent substrate includes conductive traces that electrically connect the sensor chip's contact pads to the handler's conductive elements, so that off-chip signaling is provided by the substrate's conductive traces and the handler's conductive elements.
Abstract: Electronic devices may be provided with imaging modules that include plasmonic light collectors. Plasmonic light collectors may be configured to exploit an interaction between incoming light and plasmons in the plasmonic light collector to alter the path of the incoming light. Plasmonic light collectors may include one or more spectrally tuned plasmonic image pixels configured to preferentially trap light of a given frequency. Spectrally tuned plasmonic image pixels may include plasmonic structures formed form a patterned metal layer over doped silicon layers. Doped silicon layers may be interposed between plasmonic structures and a reflective layer. Plasmonic image pixels may be used to absorb and detect as much as, or more than, ninety percent of incident light at wavelengths ranging from the infrared to the ultraviolet. Plasmonic image pixels that capture light of different colors may be arranged in patterned arrays to form imager modules or imaging spectrometers for optofluidic microscopes.
Type:
Grant
Filed:
February 2, 2012
Date of Patent:
July 15, 2014
Assignee:
Aptina Imaging Corporation
Inventors:
Kenneth Edward Salsman, Ulrich Boettiger, Dmitry Bakin, Curtis W. Stith
Abstract: Disclosed are a method of manufacturing a dye sensitized solar battery and a solar battery assembling apparatus. The method includes: forming electrode pads on electrodes of respective solar battery sub modules; applying a conductive adhesive on the electrode; and overlapping the electrodes of the solar battery sub modules, applying a current to the electrode pads, and then heating and hardening the conductive adhesive.
Type:
Grant
Filed:
November 2, 2012
Date of Patent:
July 15, 2014
Assignee:
Electronics and Telecommunications Research Institute
Abstract: In a semiconductor device including a semiconductor element and a wiring substrate on which the semiconductor element is mounted. The wiring substrate includes an insulating substrate and conductive wiring formed in the insulating substrate and electrically connected to the semiconductor element. The conductive wiring includes an underlying layer formed on the insulating substrate, a main conductive layer formed on the underlying layer, and an electrode layer covering side surfaces of the underlying layer and side surfaces and an upper surface of the main conductive layer. The underlying layer includes an adhesion layer being formed in contact with the insulating substrate and containing an alloy of Ti.
Abstract: A method for manufacturing solid-state imaging device for collectively manufacturing a multiplicity of solid-state imaging devices at a wafer level, the method including: a step of reducing the thickness of a cover glass wafer (10) after providing a mask material (12) to the cover glass wafer (10) including frame-shaped spacers (5); a step of releasing the mask material (12) and laminating a first support wafer (14) through a lamination member (16); a step of positioning and bonding a silicon wafer (18) and the cover glass wafer (10), the silicon wafer (18) including a second support wafer (22) laminated on the back side through a lamination member (24); a step of dicing the cover glass wafer (10) into cover glasses (4) by a whetstone (26); and a step of dicing the silicon wafer (18) by a whetstone (28).
Abstract: This invention relates to a method for producing solar cells, and photovoltaic panels thereof. The method for producing solar panels comprises employing a number of semiconductor wafers and/or semiconductor sheets of films prefabricated to prepare them for back side metallization, which are placed and attached adjacent to each other and with their front side facing downwards onto the back side of the front glass, before subsequent processing that includes depositing at least one metal layer covering the entire front glass including the back side of the attached wafers/sheets of films. The metallic layer is then patterned/divided into electrically isolated contacts for each solar cell and into interconnections between adjacent solar cells.
Type:
Grant
Filed:
April 2, 2009
Date of Patent:
June 17, 2014
Assignee:
Rec Solar Pte. Ltd.
Inventors:
Martin Nese, Erik Sauar, Andreas Bentzen, Paul Alan Basore
Abstract: The present disclosure relates to a method of forming a back-side illuminated CMOS image sensor (BSI CIS). In some embodiments, the method comprises forming a plurality of photodetectors within a front-side of a semiconductor substrate. An implant is performed on the back-side of the semiconductor substrate to form an implantation region having a doping concentration that is greater in the center than at the edges of the semiconductor substrate. The back-side of the workpiece is then exposed to an etchant, having an etch rate that is inversely proportional to the doping concentration, which thins the semiconductor substrate to a thickness that allows for light to pass through the back-side of the substrate to the plurality of photodetectors. By implanting the substrate prior to etching, the etching rate is made uniform over the back-side of the substrate improving total thickness variation between the photodetectors and the back-side of the substrate.
Abstract: A photoelectric conversion device comprises an n-type surface region, a p-type region which is formed under the surface region, and an n-type buried layer which is formed under the p-type region, wherein the surface region, the p-type region, and the buried layer form a buried photodiode, and a diffusion coefficient of a dominant impurity of the surface region is smaller than a diffusion coefficient of a dominant impurity of the buried layer.
Abstract: A bifacial solar cell module includes solar cells that are protected by front side packaging components and backside packaging components. The front side packaging components include a transparent top cover on a front portion of the solar cell module. The backside packaging components have a transparent portion that allows light coming from a back portion of the solar cell module to reach the solar cells, and a reflective portion that reflects light coming from the front portion of the solar cell module. The transparent and reflective portions may be integrated with a backsheet, e.g., by printing colored pigments on the backsheet. The reflective portion may also be on a reflective component that is separate from the backsheet. In that case, the reflective component may be placed over a clear backsheet before or after packaging.
Abstract: A solid-state imaging apparatus including pixels each including a photoelectric conversion element, and a light shielding layer covering the photoelectric conversion element is provided. For each of the photoelectric conversion elements, the light shielding layer includes a light shielding portion which shields a portion of incident light to the photoelectric conversion element, and an aperture which passes another portion of the incident light. The pixels include first and second pixels which have different areas on a planar view of the photoelectric conversion element. The area of the photoelectric conversion element in the first pixel is larger than the area of the photoelectric conversion element in the second pixel on the planar view. An area of the light shielding portion included in the first pixel is larger than an area of the light shielding portion included in the second pixel.
Abstract: Embodiments relate to buried structures for silicon devices which can alter light paths and thereby form light traps. Embodiments of the lights traps can couple more light to a photosensitive surface of the device, rather than reflecting the light or absorbing it more deeply within the device, which can increase efficiency, improve device timing and provide other advantages appreciated by those skilled in the art.
Abstract: A solar cell includes; a substrate; a first electrode disposed on the substrate, and including a first groove formed therein, a semiconductor layer disposed on the first electrode, and including a second groove formed therein, and a second electrode disposed on the semiconductor layer and connected to the first electrode via the second groove, wherein a third groove passing through the first electrode, the semiconductor layer, and the second electrode is formed in a first region, a fourth groove passing through only the semiconductor layer and the second electrode is formed in a second region, and the first region and the second region are alternately disposed along a direction of extension of the third groove.
Abstract: The invention is directed to providing a semiconductor device receiving a blue-violet laser, of which the reliability and yield are enhanced. A device element converting a blue-violet laser into an electric signal is formed on a front surface of a semiconductor substrate. An optically transparent substrate is attached to the front surface of the semiconductor substrate with an adhesive layer being interposed therebetween. The adhesive layer contains transparent silicone. Since the front surface of the device element is covered by the optically transparent substrate, foreign substances are prevented from adhering to the front surface of the device element. Furthermore, the adhesive layer is covered by the optically transparent substrate. This prevents the adhesive layer from being exposed to outside air, thereby preventing the degradation of the adhesive layer 6 due to a blue-violet laser.
Abstract: A photovoltaic device and method include a crystalline substrate and an emitter contact portion formed in contact with the substrate. A back-surface-field junction includes a homogeneous junction layer formed in contact with the crystalline substrate and having a same conductivity type and a higher active doping density than that of the substrate. The homogeneous junction layer includes a thickness less than a diffusion length of minority carriers in the homogeneous junction layer. A passivation layer is formed in contact with the homogeneous junction layer opposite the substrate, which is either undoped or has the same conductivity type as that of the substrate.
Type:
Application
Filed:
October 22, 2012
Publication date:
March 27, 2014
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
TZE-CHIANG CHEN, BAHMAN HEKMATSHOARTABARI, DEVENDRA K. SADANA, DAVOOD SHAHRJERDI
Abstract: Method and apparatus providing a wafer level fabrication of imager modules in which a permanent carrier protects imager devices on an imager wafer and is used to support a lens wafer.
Type:
Grant
Filed:
April 29, 2011
Date of Patent:
March 25, 2014
Assignee:
Micron Technology, Inc.
Inventors:
Swarnal Borthakur, Rick Lake, Andy Perkins, Scott Churchwell, Steve Oliver
Abstract: A solid-state imaging device including: a substrate; a light-receiving part; a second-conductivity-type isolation layer; a detection transistor; and a reset transistor.
Abstract: Methods and apparatus for integrating a CMOS image sensor and an image signal processor (ISP) together using an interposer to form a system in package device module are disclosed. The device module may comprise an interposer with a substrate. An interposer contact is formed within the substrate. A sensor device may be bonded to a surface of the interposer, wherein a sensor contact is bonded to a first end of the interposer contact. An ISP may be connected to the interposer, by bonding an ISP contact in the ISP to a second end of the interposer contact. An underfill layer may fill a gap between the interposer and the ISP. A printed circuit board (PCB) may further be connected to the interposer by way of a solder ball connected to another interposer contact. A thermal interface material may be in contact with the ISP and the PCB.
Abstract: An assembly includes a first packaged device that contains a first image sensor having first fiducial marks thereon. On a portion of the first packaged device at a predetermined location relative to the first fiducial marks is adhesive, and a first connection body is fixed within the adhesive and registered at the predetermined location relative to the first fiducial marks. The first connection body is mated into the first counter hole formed in a plate at a predetermined location.
Abstract: Embodiments of a pixel including a substrate having a front surface and a photosensitive region formed in or near the front surface of the substrate. An isolation trench is formed in the front surface of the substrate adjacent to the photosensitive region. The isolation trench includes a trench having a bottom and sidewalls, a passivation layer formed on the bottom and the sidewalls, and a filler to fill the portion of the trench not filled by the passivation layer.
Type:
Application
Filed:
August 16, 2012
Publication date:
February 20, 2014
Applicant:
OMNIVISION TECHNOLOGIES, INC.
Inventors:
Yin Qian, Hsin-Chih Tai, Gang Chen, Duli Mao, Vincent Venezia, Howard E. Rhodes
Abstract: A solid state imaging device includes: a substrate; a photoelectric conversion unit that is formed on the substrate to generate and accumulate signal charges according to light quantity of incident light; a vertical transmission gate electrode that is formed to be embedded in a groove portion formed in a depth direction from one side face of the substrate according to a depth of the photoelectric conversion unit; and an overflow path that is formed on a bottom portion of the transmission gate to overflow the signal charges accumulated in the photoelectric conversion unit.
Abstract: Methods of forming isolation structures are disclosed. A method of forming isolation structures for an image sensor array of one aspect may include forming a dielectric layer over a semiconductor substrate. Narrow, tall dielectric isolation structures may be formed from the dielectric layer. The narrow, tall dielectric isolation structures may have a width that is no more than 0.3 micrometers and a height that is at least 1.5 micrometers. A semiconductor material may be epitaxially grown around the narrow, tall dielectric isolation structures. Other methods and apparatus are also disclosed.
Type:
Application
Filed:
August 2, 2012
Publication date:
February 6, 2014
Inventors:
Chia-Ying Liu, Keh-Chiang Ku, Wu-Zhang Yang
Abstract: Disclosed herein is a method of manufacturing a bonded substrate, including the steps of: forming a first bonding layer on a surface on one side of a semiconductor substrate; forming a second bonding layer on a surface on one side of a support substrate; adhering the first bonding layer and the second bonding layer to each other; a heat treatment for bonding the first bonding layer and the second bonding layer to each other; and thinning the semiconductor substrate from a surface on the other side of the semiconductor substrate to form a semiconductor layer.